Supporting Information

A cascade reaction for regioselective construction of pyrazole-containing aliphatic sulfonyl fluorides
Wen-Fei Yang, ${ }^{\dagger}$ Tao Shu, ${ }^{\dagger}$ Hong-Ru Chen, Hua-Li Qin* and Haolin Tang*
School of Chemistry, Chemical Engineering and Life Sciences; and State KeyLaboratory of Advanced Technology for Materials Synthesis and Processing, WuhanUniversity of Technology, Wuhan 430070, China.
${ }^{\dagger}$ These authors contributed equally to this work.
\boldsymbol{E}-mail: qinhuali@whut.edu.cn; thln@whut.edu.cn
Table of Contents
1 General Information. S1
2 Optimization of the Reaction Conditions S2
3 Experimental Procedures S10
3.1 General procedure for preparation of α-diazocarbonyl compounds (1) S10
3.2 Preparation of ethyl diazoacetate (1u) S12
3.3 Preparation of 2-diazo-1-(furan-2-yl)ethan-1-one (1t) S12
3.4 General procedure for preparation of $\mathbf{3 a} \mathbf{a} \mathbf{3 u}$ S13
4 Characterization S13
5 Procedure for Scale-up Reaction of $\mathbf{3 r}$ S23
6 SuFEx Reactions of compound 3r. S23
7 References S28
8 NMR spectra S29
9 Data of crystal structure of $3 \mathbf{u}$ S102

1. General Information

All reactions were carried out under an air atmosphere unless otherwise specified. Oil bath was used for the heating reactions. NMR spectra were recorded in CDCl_{3} or DMSO- d_{6} on a 500 MHz (for ${ }^{1} \mathrm{H}$), 471 MHz (for ${ }^{19} \mathrm{~F}$), and 126 MHz (for ${ }^{13} \mathrm{C}$) Bruker Avance spectrometer, and all chemical shifts are reported in ppm relative to TMS (0 $\mathrm{ppm})$ as an internal standard. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{m}=$ multiplet. The coupling constants were reported in Hertz (Hz). The HPLC experiments were carried out on a Waters e2695 instrument (column: J\&K, RP-C18, 5 $\mu \mathrm{m}, 4.6 \times 150 \mathrm{~mm}$), and the HPLC yields of the products were determined by using the corresponding pure compounds as the external standards. Melting points were measured and uncorrected. HRMS experiments were performed on a TOF-Q ESI instrument. Other reagents used in the reactions were all purchased from commercial sources and used without further purification. The product spots on the thin layer chromatography (TLC) were visualized under ultraviolet light (254 nm or 365 nm) followed by staining with potassium permanganate or phosphomolybdic acid.

2. Optimization of the Reaction Conditions

Table S1 Screening of the catalytic system ${ }^{a}$

 $1 a$		
Entry	Catalyst (30 mol\%)	$\text { Yield (3a,\%) }{ }^{b}$
1	CuBr	15
2	CuCl	Trace
3	CuI	Trace
4	$\mathrm{Cu}_{2} \mathrm{O}$	27
5	CuF_{2}	70
6	CuBr_{2}	17
7	$\mathrm{Cu}(\mathrm{acac})_{2}$	19
8	$\mathrm{Cu}\left(\mathrm{PF}_{6}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$	21
9	1	N.D.

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone (1a, $29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), $N, N-$ diethylnicotinamide ($71 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv.), Cu catalyst ($30 \mathrm{~mol} \%$) and Xantphos ($30 \mathrm{~mol} \%$) dissolved in co-solvent 1,1,2-trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3$, $2 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 12 h under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5\right.$ $\min , \lambda_{\max , 3 \mathrm{a}}=258.3 \mathrm{~nm}$, water $/$ methanol $=30: 70(\mathrm{v} / \mathrm{v})$).

Table S2 Screening of the ligand ${ }^{a}$

Entry	Ligand (30 mol\%)	${\text { Yield (3a, } \%)^{b}}^{b}$
1	$/$	20
2	DPPF	27
3	DPPB	36
4	DPPP	Trace
5	DPPE	Trace
$\mathbf{6}$	Xantphos	$\mathbf{7 0}$
7	DPE-phos	Trace
8	X-phos	38
9	Ph $_{3} \mathrm{P}$	20

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone (1a, $29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), $N, N-$ diethylnicotinamide ($71 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv.), CuF_{2} ($30 \mathrm{~mol} \%$) and ligand (30 $\mathrm{mol} \%$) dissolved in co-solvent $1,1,2$-trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,2 \mathrm{~mL}$) was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5 \mathrm{~min}, \lambda_{\max , 3 \mathrm{a}}=\right.$ 258.3 nm , water/methanol $=30: 70(\mathrm{v} / \mathrm{v}))$.

Table S3 Screening the loading amount of Cu catalyst and Ligand ${ }^{a}$

 1a			
	2		3a
Entry	CuF_{2} (X mol\%)	Xantphos (X mol\%)	Yield (3a,\%) ${ }^{\text {b }}$
1	1	1	N.D.
2	3	3	59
3	5	5	71
4	10	10	68
5	20	20	70
6	30	30	70
7	40	40	73

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone (1a, $29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), $N, N-$ diethylnicotinamide ($71 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv.), $\mathrm{CuF}_{2}(\mathrm{X} \mathrm{mol} \%$) and $\mathrm{Xantphos}(\mathrm{X}$ $\mathrm{mol} \%$) dissolved in co-solvent 1,1,2-trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,2 \mathrm{~mL}$) was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5 \mathrm{~min}, \lambda_{\max , 3 \mathrm{a}}=\right.$ 258.3 nm , water $/$ methanol $=30: 70(\mathrm{v} / \mathrm{v})$).

Table S4 Screening of the Base ${ }^{a}$

	$\mathrm{O}_{2} \mathrm{~F} \frac{x}{1,1,2 \text {-tric }}$	
1a		3a
Entry	Base	Yield (3a,\%) ${ }^{\text {b }}$
1	$\mathrm{Et}_{3} \mathrm{~N}$	76
2	DIPEA	89
3	TMEDA	67
4	DBU	18
5	Pyridine	82
6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	62
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	50
8	NaHCO_{3}	75
9	NaOH	35
10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	69
11	NaOAc	44
12	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	57
12	KF	40

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone (1a, $29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), base ($0.4 \mathrm{mmol}, 2.0$ equiv.), $\mathrm{CuF}_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{Xantphos}(5 \mathrm{~mol} \%)$ dissolved in co-solvent 1,1,2trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,2 \mathrm{~mL}$) was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5 \mathrm{~min}, \lambda_{\max , 3 \mathrm{a}}=258.3 \mathrm{~nm}\right.$, water $/$ methanol $=30$: $70(\mathrm{v} / \mathrm{v})$).

Table S5 Screening the base equivalent ${ }^{a}$

	$\mathrm{SO}_{2} \mathrm{~F} \underset{\substack{1,1,2 \text {-trichloro } \\(2 \mathrm{~mL})}}{\substack{\mathrm{DIP} \\ \text { Xant }}}$	
1a		3а
Entry	DIPEA (X equiv.)	$\text { Yield }(\mathbf{3 a}, \%)^{b}$
1	1	40
2	1.3	66
3	1.5	92
4	2.0	89
5	2.5	67
6	3.0	64

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone (1a, $29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), DIPEA (X equiv.), CuF_{2} (5 mol\%) and Xantphos (5 mol\%) dissolved in co-solvent 1,1,2trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,2 \mathrm{~mL}$) was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. ${ }^{b}$ HPLC yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5 \mathrm{~min}, \lambda_{\max , 3 \mathrm{a}}=258.3 \mathrm{~nm}\right.$, water $/$ methanol $=30$: $70(\mathrm{v} / \mathrm{v})$).

Table S6 Screening the ESF equivalent ${ }^{a}$

		3
1a		3
Entry	ESF (X equiv.)	Yield (3a,\%) ${ }^{\text {b }}$
1	2	38
2	3	65
3	4	92
4	5	96
5	6	97

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone ($\mathbf{1 a}, 29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, X equiv.), DIPEA ($39 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{CuF}_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{Xantphos}(5 \mathrm{~mol} \%)$ dissolved in co-solvent 1,1,2trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,2 \mathrm{~mL}$) was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5 \mathrm{~min}, \lambda_{\max , 3 \mathrm{a}}=258.3 \mathrm{~nm}\right.$, water $/$ methanol $=30$: $70(\mathrm{v} / \mathrm{v})$).

Table S7 Screening of the solvent ${ }^{a}$

1a		3a
entry	Solvent	Yield(3a,\%) ${ }^{\text {b }}$
1	Dioxane	79
2	1,1,2-trichloroethane/dioxane $(v / v=1: 3)$	92
3	1,1,2-trichloroethane/ dioxane $(\mathrm{v} / \mathrm{v}=1: 2)$	78
4	1,1,2-trichloroethane/ dioxane $(\mathrm{v} / \mathrm{v}=1: 1)$	74
5	1,1,2-trichloroethane/ dioxane $(\mathrm{v} / \mathrm{v}=2: 1)$	71
6	1,1,2-trichloroethane/ dioxane $(\mathrm{v} / \mathrm{v}=3: 1)$	68
7	1,1,2-trichloroethane	61
8	THF	62
9	DMF	trace
10	Toluene	70
11	DCE	60
12	MeCN	14
13	DMSO	trace
14	1,3-Dichloropropane	67

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone ($\mathbf{1 a}, 29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), DIPEA ($39 \mathrm{mg}, 0.3$ mmol, 1.5 equiv.), CuF_{2} ($5 \mathrm{~mol} \%$) and Xantphos ($5 \mathrm{~mol} \%$) dissolved in solvent was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5 \mathrm{~min}, \lambda_{\max , 3 \mathrm{a}}=\right.$ 258.3 nm , water/methanol $=30: 70(\mathrm{v} / \mathrm{v}))$.

Table S8 Screening of the reaction temperature ${ }^{a}$

	$\begin{gathered} \text { DIPEA (1.5 eq.) } \\ \mathrm{CuF}_{2}(5 \mathrm{~mol} \%) \\ \text { Xantphos (} 5 \mathrm{~mol} \% \text {) } \end{gathered}$	
1a		3 a
Entry	Temperature (${ }^{\circ} \mathrm{C}$)	Yield(3a,\%) ${ }^{\text {b }}$
1	r.t.	32
2	40	65
3	60	70
4	80	92
5	100	59

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone (1a, $29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), DIPEA ($39 \mathrm{mg}, 0.3$ mmol, 1.5 equiv.), CuF_{2} ($5 \mathrm{~mol} \%$) and Xantphos ($5 \mathrm{~mol} \%$) dissolved in co-solvent 1,1,2-trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,2 \mathrm{~mL}$) was stirred at the corresponding temperature for 12 h under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, \mathbf{3 a}}=4.5 \mathrm{~min}, \lambda_{\text {max }, 3 \mathrm{a}}=\right.$ 258.3 nm , water/methanol $=30: 70(\mathrm{v} / \mathrm{v}))$.

Table S9 Screening the reaction time ${ }^{a}$

	$\begin{gathered} \mathrm{DIPEA}_{2}(1.5 \mathrm{eq.}) \\ \mathrm{P}_{2} \mathrm{FuF}(5 \mathrm{~mol} \%) \\ \text { Xantphos (} 5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	
1a		3 a
Entry	Time (h)	Yield(3a,\%) ${ }^{\text {b }}$
1	1	58
2	3	74
3	6	90
4	9	93
5	12	92

${ }^{a}$ Reaction conditions: a mixture of α-diazoacetophenone (1a, $29 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), ethenesulfonyl fluoride (ESF, 2, $0.8 \mathrm{mmol}, 4.0$ equiv.), DIPEA ($39 \mathrm{mg}, 0.3$ mmol, 1.5 equiv.), CuF_{2} ($5 \mathrm{~mol} \%$) and Xantphos ($5 \mathrm{~mol} \%$) dissolved in co-solvent $1,1,2$-trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,2 \mathrm{~mL}$) was stirred at $80{ }^{\circ} \mathrm{C}$ for the corresponding time under air atmosphere. ${ }^{b} \mathrm{HPLC}$ yield $\left(\mathrm{t}_{\mathrm{R}, 3 \mathrm{a}}=4.5 \mathrm{~min}, \lambda_{\text {max, } 3 \mathrm{a}}=\right.$ 258.3 nm , water $/$ methanol $=30: 70(\mathrm{v} / \mathrm{v})$)

3. Experimental Procedures

3.1 General procedure for preparation of α-diazocarbonyl compounds (1)

3.1.1 Preparation of the substituted 2-bromoacetophenones. ${ }^{[1]}$

Step 1: An oven-dried 100 mL round bottom flask equipped with a magnetic stirring bar was charged with substituted acetophenone ($\mathbf{I}, 10 \mathrm{mmol}$), ptoluenesulfonic acid (PTSA, $0.95 \mathrm{~g}, 5 \mathrm{mmol}, 0.5$ equiv), NBS ($1.96 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv) and acetonitrile (40 mL). The resulting mixture was stirred at room temperature for five minutes and then refluxed for 3 h . When the reaction reached its completion, the reaction mixture was diluted with water and the aqueous phrase was
extracted with dichloromethane ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the organic solvent was removed under vacuum on a rotary evaporator and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate as eluent to afford the substituted 2-bromoacetophenones (II).

3.1.2 Preparation of N, N^{\prime}-Bis(p-toluenesulfonyl)hydrazine (III). ${ }^{[2]}$

A mixture of p-toluenesulfonyl hydrazide ($9.5 \mathrm{~g}, 50 \mathrm{mmol}, 1.0$ equiv.) and p toluenesulfonyl chloride ($12.4 \mathrm{~g}, 65 \mathrm{mmol}, 1.3$ equiv.) in $\mathrm{DCM}(50 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ before the slow addition of pyridine ($5.1 \mathrm{~g}, 65 \mathrm{mmol}, 1.3$ equiv.). The reaction mixture became homogenous and turned yellow gradually with the generation of white precipitates during the addition. The reaction mixture was further stirred for 1 h , then n -Hexane $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$ were added, and the stirring lasted for 15 min under the ice bath. The white precipitates were collected by filtration and washed with ice-cooled $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, then dried under air to afford the product N, N^{\prime} ditosylhydrazine (III, $12.7 \mathrm{~g}, 75 \%$)

3.1.3 Preparation of α-diazocarbonyl compounds (1). ${ }^{[2]}$

Step 2: A mixture of the substituted 2-bromoacetophenones (II, 10 mmol), $N, N^{\prime}-$ ditosylhydrazine ($3.74 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv.) in THF (40 mL) was stirred at $0^{\circ} \mathrm{C}$ for 5 min , then $\mathrm{DBU}(3.8 \mathrm{~g}, 25 \mathrm{mmol}, 2.5$ equiv.) was added dropwise. After the addition was complete, the resulting mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . The reaction mixture was poured into saturated aqueous solution of sodium bicarbonate (20 mL) and stirred for several minutes. The organic layer was separated and the aqueous phrase was extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under vacuum on a rotary evaporator and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate as eluent to afford the α-diazocarbonyl compounds (1).
3.2 Preparation of ethyl diazoacetate (1u). ${ }^{[3]}$

To a mixture of ethyl acetoacetate $(9.11 \mathrm{~g}, 70 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(9.19 \mathrm{~g}, 91 \mathrm{mmol}$, 1.3 equiv.) in $\mathrm{MeCN}(84 \mathrm{~mL}$) slowly added a solution of p-toluenesulfonyl azide ($15.19 \mathrm{~g}, 77 \mathrm{mmol}, 1.1$ equiv) dissolved in $\mathrm{MeCN}(84 \mathrm{~mL})$ under the ice bath. After the completion of the addition, the reaction mixture was warmed to room temperature and the stirring lasted overnight. The solvent was evaporated with a rotary evaporator and the residue re-dissolved with ethyl ether (420 mL), then 5% aqueous solution of potassium hydroxide (350 mL) was added. The reaction mixture was left to stir at room temperature for 1 hour. The organic layer was separated and the aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel chromatography to give a final yellow liquid (1u) with the yield of $(85 \%$, 6.78 g)
3.3 Preparation of 2-diazo-1-(furan-2-yl)ethan-1-one (1t). ${ }^{[4]}$

An oven-dried 100 mL round bottom flask equipped with a magnetic stirring bar was charged with furan-2-carboxylic acid ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(133 \mathrm{~mL})$ and DMF ($18.33 \mathrm{mg}, 0.25 \mathrm{~mL}$), and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ with an ice bath. Oxalyl chloride ($1.27 \mathrm{~g}, 20 \mathrm{mmol}, 2.0$ equiv) was subsequently introduced dropwise and the mixture reacted at room temperature for 3 h . The organic solvent was removed under vacuum to obtain the crude furan-2-carbonyl chloride, which was used for next step without further purification.

To a solution of trimethylsilyl diazomethane $\left(2 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)(1.37 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$
equiv,) and triethylamine ($1.01 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (20 mL) added the crude furan-2-carbonyl chloride dropwise at $0{ }^{\circ} \mathrm{C}$ under Argon atmosphere. Then the mixture reacted at room temperature until the furan-2-carbonyl chloride was completely consumed (Monitored by TLC). The desired product (1t, $544 \mathrm{mg}, 40 \%$) was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1, v / v) as eluent.
3.4 General procedure for preparation of 3a-3u

An oven-dried reaction tube equipped with a magnetic stirring bar was charged with α-diazocarbonyl compounds (1, 1 mmol), CuF_{2} ($5 \% \mathrm{~mol}, 5 \mathrm{mg}$), Xantphos (5% mol, 30 mg), DIPEA ($1.5 \mathrm{mmol}, 1.5$ equiv, 194 mg), ethenesulfonyl fluoride (ESF, 4.0 mmol , 4.0 equiv, 440 mg) and co-solvent 1,1,2-trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3,10$ $\mathrm{mL})$. Then the mixture reacted at $80^{\circ} \mathrm{C}$ for 6 h under air atmosphere. The organic solvent was removed under vacuum and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate as eluent to afford the title products 3 .

4. Characterization

3a
2-(3-benzoyl-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3a). Yellow viscous liquid, $257 \mathrm{mg}, 91$ \% yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.18 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F} \mathbf{N M R}(471 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 57.5(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.6,152.2,137.1,132.9$, 131.8, 130.4, 128.3, 109.9, 50.4 (d, $J=17.2 \mathrm{~Hz}$), 46.4. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 283.0545$, found: 283.0547.

3b

2-(3-(4-methylbenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3b). Light yellow powder, $263 \mathrm{mg}, 89 \%$ yield. M.p. $93-95^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.6(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $187.3,152.3,143.8,134.5,131.6,130.5,129.0,109.8,50.4(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 46.4$, 21.7. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 297.0765$, found: 297.0766.

3c
2-(3-(4-methoxybenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3c). Light yellow solid, $284 \mathrm{mg}, 91 \%$ yield. M.p. $60-62{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=1.9 \mathrm{~Hz} 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.6(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $185.9,163.6,152.5,132.8,131.6,129.8,113.6,109.8,55.5,50.5$ (d, $J=17.3 \mathrm{~Hz}$), 46.3. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 313.0720, found: 313.0723 .

2-(3-(4-fluorobenzoyl)-1H-pyrazol-1-yl)ethane-1-sulfonyl fluoride (3d). Light yellow solid, $264 \mathrm{mg}, 88 \%$ yield. M.p. $54-56{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.97$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19}$ F NMR (471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.8(\mathrm{~s}, 1 \mathrm{~F}),-105.38--105.44(\mathrm{~m}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 185.7,165.8(\mathrm{~d}, J=254.4 \mathrm{~Hz}), 152.1,133.3(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 133.1(\mathrm{~d}, J=$ 9.1 Hz), 131.8, 115.4 (d, $J=21.8 \mathrm{~Hz}$), 110.0, 50.5 (d, $J=18.1 \mathrm{~Hz}$), 46.4. HRMSESI (m / z) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 301.0545$, found: 301.0547.

$3 e$
2-(3-(4-chlorobenzoyl)-1H-pyrazol-1-yl)ethane-1-sulfonyl fluoride (3e). Light yellow solid, 284 mg , 90 \% yield. M.p. $83-85{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500$ MHz, DMSO- d_{6}) $\delta 8.24$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.06 (d, $\left.J=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60$ (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.8(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.1$, 152.0, 139.4, 135.3, 131.9, 128.6, 110.0, $50.4(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 46.4$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClFN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 317.0260\right.$, found: 317.0258.

Note: In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}$, theoretically, there should be ten peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

2-(3-(4-bromobenzoyl)-1H-pyrazol-1-yl)ethane-1-sulfonyl fluoride (3f). Yellowish solid, 317 mg , 88% yield. M.p. $92-94{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.15$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.06 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.8(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 186.1, 150.6, 136.3, 133.5, 132.7, 131.9, 127.5, 109.4, 50.4 (d, $J=14.5 \mathrm{~Hz}), 46.6$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrFN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 360.9760$, found: 360.9763.

3g
2-(3-(4-cyanobenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3g). Light yellow powder, $236 \mathrm{mg}, 77 \%$ yield. M.p. 111-113 ${ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500$ MHz, DMSO- d_{6}) $\delta 8.30$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.08 (d, $\left.J=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.00$ (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 58.0(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $186.2,150.3,140.8,133.8,132.8,131.2,118.8,115.3,109.5,50.4(\mathrm{~d}, J=14.5 \mathrm{~Hz})$, 46.6. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 308.0570, found: 308.0570 .

3h
2-(3-(4-(trifluoromethoxy) benzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3h). Yellowish solid, $302 \mathrm{mg}, 82 \%$ yield. M.p. $46-48{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ $(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.8(\mathrm{~s}, 1 \mathrm{~F}),-57.5(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.7,152.6,152.0,135.2,132.5,131.9,120.4(\mathrm{q}, J=$ $258.9 \mathrm{~Hz}), 120.1,110.0,50.5(\mathrm{~d}, J=17.3 \mathrm{~Hz}), 46.5$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 367.0466$, found: 367.0464.

$3 i$
4-(1-(2-(fluorosulfonyl) ethyl)-1H-pyrazole-3-carbonyl) phenyl sulfurofluoridate (3i). Light yellow solid, $287 \mathrm{mg}, 76 \%$ yield. M.p. $73-75{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ $(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9(\mathrm{~s}, 1 \mathrm{~F}), 38.8(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.3,152.6,151.7,137.1,132.9,132.1,120.7,110.1$, $50.4(\mathrm{~d}, ~ J=17.3 \mathrm{~Hz})$, 46.5. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\right]^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 380.9995$, found: 381.0095 .

3j

2-(3-(3-methylbenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3j). Yellow viscous liquid, 289 mg , 98% yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36$ (m, 2H), 6.93 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.43 (s, 3H). ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.7(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.0,152.1,138.1,137.2,133.7,131.7,130.7,128.1,127.7,109.9,50.4(\mathrm{~d}$, $\mathrm{J}=17.2 \mathrm{~Hz}), 46.4,21.4$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 297.0765, found: 297.0771.

3k
2-(3-(3-nitrobenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3k). Light brown solid, $245 \mathrm{mg}, 75 \%$ yield. M.p. $109-111{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500$ MHz, DMSO- d_{6}) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) δ 185.1, 150.2, 148.1, 138.3, 136.8, 133.8, 130.6, 127.6, 125.1, 109.6, $50.4(\mathrm{~d}, ~ J=14.5 \mathrm{~Hz})$, 46.7. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 328.0490$, found: 328.0493.

31
2-(3-(2-methylbenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (31). Yellow viscous liquid, $269 \mathrm{mg}, 91 \%$ yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.56-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.6(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 191.1, 152.7, 137.9, 137.5, 132.1, 131.2, 130.9, 129.6, 125.1, 109.6, 50.4 (d, $J=17.3 \mathrm{~Hz}$), 46.4, 20.2. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$297.0765, found: 297.0758.

3m
2-(3-(benzo[d] [1,3] dioxole-5-carbonyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride ($\mathbf{3 m}$). Yellow viscous liquid, 287 mg , 88 \% yield. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96\left(\mathrm{dd}, J_{1}=1.3 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.73(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}$, $2 \mathrm{H}), 4.85(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 57.7 ($\mathrm{s}, 1 \mathrm{~F}$). ${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) δ 185.0, 151.9, 151.1, 147.9, 133.1, 131.5, 127.4, 110.1, 109.4, 108.4, 102.4, $50.5(\mathrm{~d}, J=14.6 \mathrm{~Hz}), 46.5$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 327.0540$, found: 327.0540 .

3n
2-(3-(3,4-dimethoxybenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3n). White
solid, $300 \mathrm{mg}, 88 \%$ yield. M.p. $109-111{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-$ $6.93(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .3 .95(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.7$ (s, 1F). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $185.9,153.4,152.5,148.9,131.5,129.9,125.8,112.3,110.0,109.9,56.1,56.0,50.4$ (d, $J=18.1 \mathrm{~Hz}$), 46.3. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{\dagger}\right)$: 343.0850, found: 343.0852 .

2-(3-(3,4-dichlorobenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (30). Yellow solid, $284 \mathrm{mg}, 81 \%$ yield. M.p. $77-79{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09\left(\mathrm{dd}, J_{l}=2.0 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) δ 184.7, 151.7, 137.4, 136.5, 132.8, 132.4, 132.0, 130.4, 129.5, 110.1, $50.4(\mathrm{~d}, J=18.1 \mathrm{~Hz})$, 46.5. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 350.9870$, found: 350.9873 .

3p
2-(3-(3,5-difluorobenzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3p). Yellow lumpy solid, $277 \mathrm{mg}, 87 \%$ yield. M.p. $70-72{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H} \mathbf{~ N M R ~}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=8.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9(\mathrm{~s}, 1 \mathrm{~F}) .-108.68--108.72(\mathrm{~m}, 2 \mathrm{~F}){ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.3,162.6\left(\mathrm{dd}, J_{1}=249.8 \mathrm{~Hz}, J_{2}=11.8 \mathrm{~Hz}\right), 151.6,139.6(\mathrm{t}, J=8.2$ $\mathrm{Hz}), 132.1,113.5\left(\mathrm{dd}, J_{1}=20.9 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}\right), 110.1,108.1(\mathrm{t}, J=25.5 \mathrm{~Hz}), 50.4$ ($\mathrm{d}, J=18.2 \mathrm{~Hz}$), 46.5. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 319.0457, found: 319.0455.

3q
2-(3-(3,5-bis(trifluoromethyl)benzoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3q). Yellow viscous liquid, $315 \mathrm{mg}, 75 \%$ yield. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 57.9(\mathrm{~s}, 1 \mathrm{~F}),-62.9(\mathrm{~s}, 6 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 184.1, 151.2, $138.4,132.4,131.8(\mathrm{q}, ~ J=33.6 \mathrm{~Hz}), 130.67-130.65(\mathrm{~m}), 125.9-125.8(\mathrm{~m}), 123.1(\mathrm{q}, J$ $=272.5 \mathrm{~Hz}), 110.2,50.2(\mathrm{~d}, J=18.2 \mathrm{~Hz})$, 46.6. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 419.0406$, found: 419.0406.

$3 r$
2-(3-([1,1'-biphenyl]-4-carbonyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3r). Off-white lumpy solid, $293 \mathrm{mg}, 82 \%$ yield. M.p. $120-122{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=5.9$
$\mathrm{Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.7(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $187.0,152.3,145.6,140.1,135.8,131.7,131.0,129.0,128.2,127.3,127.0,109.9$, $50.5(\mathrm{~d}, J=17.3 \mathrm{~Hz})$, 46.4. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 359.0930, found: 359.0929 .

3s
2-(3-(2-naphthoyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3s). Yellow solid, $294 \mathrm{mg}, 88 \%$ yield. M.p. $93-95{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=3: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.88$ (m, 2H), 7.62-7.59 (m, 2H), 7.57-7.54 (m, 1H), 6.99 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO) δ 187.5, 152.3, 135.6, 134.4, 132.6, 132.4, 131.7, 129.8, 128.5, 128.1, 127.8, 126.7, 125.7, 110.0, $50.5(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 46.4$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)\right.$: 333.0780, found: 333.0779.

3t

2-(3-(furan-2-carbonyl)-1H-pyrazol-1-yl) ethane-1-sulfonyl fluoride (3t). White powder, $217 \mathrm{mg}, 80 \%$ yield. M.p. $148-150{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) δ 8.09-8.03 (m, 3H), 6.90-6.77 (m, 2H), 4.85-4.68 (m, 4H). ${ }^{19} \mathbf{F}$ NMR (471 MHz, DMSO- d_{6}) $\delta 57.5(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 173.6$, 151.0, 150.1, 148.9, 133.4, 123.1, 113.1, 108.5, 50.4 ($\mathrm{d}, J=14.5 \mathrm{~Hz}$), 46.5. HRMSESI (m/z) calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$273.0420, found: 273.0421 .

$3 u$
ethyl 1-(2-(fluorosulfonyl)ethyl)-1H-pyrazole-3-carboxylate (3u). Off-white powder, $165 \mathrm{mg}, 66 \%$ yield. M.p. $94-96^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=7: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.5(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8,145.5,132.1$, 109.4, 61.2, 50.5 (d, $J=18.2 \mathrm{~Hz}$), 46.5, 14.3. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 251.0610$, found: 251.0612 .

5. Procedure for Scale-up Reaction of 3r

An oven-dried 100 mL round bottom flask equipped with a magnetic stirring bar was charged with diazo ($\mathbf{1 r}, 5 \mathrm{mmol}, 1.11 \mathrm{~g}$), CuF_{2} ($5 \% \mathrm{~mol}, 25 \mathrm{mg}$), Xantphos (5% mol, 145 mg), DIPEA ($7.5 \mathrm{mmol}, 1.5$ equiv, 970 mg), ethenesulfonyl fluoride (ESF, 2, 20.0 mmol , 4.0 equiv, 2.2 g) and co-solvent 1,1,2-trichloroethane/dioxane ($\mathrm{v} / \mathrm{v}=1: 3$, 50 mL). Then the mixture reacted at $80^{\circ} \mathrm{C}$ for 6 h under air atmosphere. The organic solvent was removed under vacuum on a rotary evaporator and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate $(\operatorname{PE}: E A=5: 1(\mathrm{v} / \mathrm{v}))$ as eluent to afford the title product $\mathbf{3 r}$ as off-white lumpy solid (87% yield, 1.55 g).

6. SuFEx Reactions of compound 3 r

A mixture of compound $\mathbf{3 r}(179 \mathrm{mg}, 0.5 \mathrm{mmol})$, morpholine $(4,87 \mathrm{mg}, 1.0 \mathrm{mmol}$, 2.0 eq.), triethylamine ($101 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ eq.) and acetonitrile (2 mL) was agitated at $80^{\circ} \mathrm{C}$ for 24 h under air atmosphere. The organic solvent was removed under vacuum and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate $(\mathrm{PE}: \mathrm{EA}=5: 1(\mathrm{v} / \mathrm{v}))$ as eluent to afford the title product 5 .
[1,1'-biphenyl]-4-yl(1-(2-(morpholinosulfonyl)ethyl)-1H-pyrazol-3-yl)methanone
(5). White solid, $177 \mathrm{mg}, 83 \%$ yield. M.p. $49-51{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.66$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}) .4 .71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .3 .70(\mathrm{t}, J=4.4$ $\mathrm{Hz}, 4 \mathrm{H}) .3 .57(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .3 .21(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 187.1,151.8,145.5,140.1,135.9,131.6,131.0,129.0,128.2,127.3,126.9$, 109.7, 66.3, 48.5, 46.7, 45.5. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 426.1460, found: 426.1463 .

To a solution of $\mathbf{3 r}(179 \mathrm{mg}, 0.5 \mathrm{mmol})$ and phenol $(\mathbf{6}, 47 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) dissolved in acetonitrile (1 mL) added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(163 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ eq.), and the resulting mixture was stirred at room temperature for 12 h . The organic solvent was removed under vacuum and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate ($\mathrm{PE}: \mathrm{EA}=3: 1$ $(\mathrm{v} / \mathrm{v}))$ as eluent to afford the title product 7 .

Phenyl 2-(3-([1,1'-biphenyl]-4-carbonyl)-1H-pyrazol-1-yl) ethane-1-sulfonate (7).

White solid, $212 \mathrm{mg}, 98 \%$ yield. M.p. $103-105{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=3: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2H), 7.67-7.64 (m, 3H), $7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .7 .18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .6 .99(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}) .4 .83(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .3 .92(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $187.0,152.1,148.8,145.5,140.1,135.9,131.9,131.1,130.1,129.0,128.2,127.6$, 127.3, 126.9, 121.8, 109.8, 50.0, 47.0. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 433.1300$, found: 433.1302 .

To a solution of $\mathbf{3 r}(179 \mathrm{mg}, 0.5 \mathrm{mmol})$ and methanol $(\mathbf{8}, 19 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2 \mathrm{eq}$. dissolved in THF (2 mL) added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(163 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ eq.), and the resulting mixture was stirred at $37{ }^{\circ} \mathrm{C}$ for 12 h . The organic solvent was removed under vacuum and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate $(\mathrm{PE}: \mathrm{EA}=5: 1(\mathrm{v} / \mathrm{v}))$ as eluent to afford the title product 9 .

Methyl 2-(3-([1,1'-biphenyl]-4-carbonyl)-1H-pyrazol-1-yl)ethane-1-sulfonate (9). Yellow viscous liquid, $122 \mathrm{mg}, 66 \%$ yield. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=5: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 187.0,151.9,145.5,140.1,135.9,131.8,131.0,129.0,128.2,127.3,127.0$, 109.6, 55.9, 49.1, 47.0. HRMS-ESI (m/z) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 371.1170, found: 371.1170 .

To a solution of $\mathbf{3 r}(107 \mathrm{mg}, 0.3 \mathrm{mmol})$ and TBS-protected phenol $(\mathbf{1 0}, 85 \mathrm{mg}, 0.3$ mmol, 1.0 eq.) dissolved in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ added catalytic amount (30 $\mathrm{mol} \%, 90 \mu \mathrm{~L}$) of TBAF solution (tetrabutylammonium fluoride, 1 M in anhydrous THF), and the resulting mixture was stirred at room temperature for 2 h . The organic solvent was removed under vacuum and the residue was purified by flash silica gel chromatography using a mixture of petroleum ether and ethyl acetate (PE:EA $=3: 1$ $(\mathrm{v} / \mathrm{v}))$ as eluent to afford the title product 11.
[1,1'-biphenyl]-4-yl 2-(3-([1,1'-biphenyl]-4-carbonyl)-1H-pyrazol-1-yl) ethane-1sulfonate (11). White solid, $137 \mathrm{mg}, 90 \%$ yield. M.p. $151-153{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether / ethyl acetate $=3: 1(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.11$ (d, $J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .4 .28(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.0,152.1,148.2,145.5,140.9,140.1,139.5,135.9,131.9,131.1,129.0$, 128.9, 128.8, 128.2, 127.8, 127.3, 127.1, 126.9, 122.1, 109.8, 50.0, 47.0. HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 509.1660$, found: 509.1663.

To a solution of $\mathbf{3 r}(72 \mathrm{mg}, 0.2 \mathrm{mmol})$ and TBS-protected estrone $(\mathbf{1 2}, 77 \mathrm{mg}, 0.2$ mmol, 1.0 eq.) dissolved in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ added catalytic amount (30 $\mathrm{mol} \%, 60 \mu \mathrm{~L}$) of TBAF solution (tetrabutylammonium fluoride, 1 M in anhydrous THF), and the resulting mixture was stirred at room temperature for 2 h . The organic solvent was removed under vacuum and the residue was purified by flash silica gel
chromatography using a mixture of petroleum ether and ethyl acetate (PE:EA = 3:1 $(\mathrm{v} / \mathrm{v}))$ as eluent to afford the title product 13.
(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-
cyclopenta[a]phenanthren-3-yl 2-(3-([1,1'-biphenyl]-4-carbonyl)-1H-pyrazol-1-yl) ethane-1-sulfonate (13). White solid, $114 \mathrm{mg}, 94 \%$ yield. M.p. $131-133{ }^{\circ} \mathrm{C}$. Purified by column chromatography on silica gel using petroleum ether $/$ ethyl acetate $=3: 1$ $(\mathrm{v} / \mathrm{v})$ as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, 4.83 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.90 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.81-2.80 (m, 2H), 2.52-2.46 (m, $1 \mathrm{H}), 2.31-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.90(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.36(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.6,187.0,152.0,146.8,145.5,140.0,139.4,139.0,135.9$, $132.0,131.1,129.0,128.3,127.3,127.0,126.9,121.7,118.8,109.8,50.3,49.7,47.8$, 47.0, 44.0, $37.8,35.8,31.5,29.3,26.1,25.7,21.5,13.8$. HRMS-ESI (m / z) calcd. for $\left[\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 609.2398$, found: 609.2399.

7. References

[1] J. C. Rodríguez, R. A. Maldonado, G. Ramírez-García, E. D. Cervantes and F. N. de la Cruz, J Heterocyclic Chem., 2020, 57, 2279.
[2] Z.-L. Xia, J.-D. Hu, Y.-Q. Gao, Q.-Z. Yao and W.-Q. Xie, Chem. Commun., 2017, 53, 7485.
[3] R.-X. Chen, Y.-W. Zhao, H.-M. Sun, Y. Shao, Y.-D. Xu, M.-H. Ma, L. Ma and X.-B. Wan, J. Org. Chem., 2017, 82, 9291.
[4] (a) M.-M. Sun, W.-D. Chen, H.-J. Wu, X.-Y. Xia, J.-G. Yang, L. Wang, G.-D. Shen and Z.M. Wang, Org. Lett., 2020, 22, 8313. (b) M. A. Cortes Gonzalez, X.-G. Jiang, P. Nordeman, G. Antonib and K. J. Szabo, Chem. Commun., 2019, 55, 13358
8. NMR spectra

3a
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3g
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3q
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

> 3q
> ${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3s
${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3t
${ }^{19}$ F NMR (471 MHz, DMSO- d_{6})

${ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 $\lfloor\cup \cup \cup \mid$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 Tinil|

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9 Data of crystal structure of 3u

Approximately 136 mg of the purified compound $\mathbf{3 u}$ was dissolved in dichloroethane and placed under dark conditions to evaporate slowly. After several days, a colorless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart-1000 CDCC diffractometer (graphite-monochromated Mo K α radiation, $\lambda=0.71073 \mathrm{~nm}$) at 298(2) K. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 2106085). The ellipsoid contour probability level in the caption is 50%.

Table S10. Crystal data and structure refinement for 201110b.

Identification code	201110b
Empirical formula	C8 H11 F N2 O4 S
Formula weight	250.25
Temperature 2	298(2) K
Wavelength 0	0.71073 A
Crystal system, space group	oup Monoclinic, C2/c
Unit cell dimensions $\begin{aligned} & \mathrm{b}=5.1 \\ & \mathrm{c}=23 . \end{aligned}$	$\begin{aligned} & \quad \mathrm{a}=20.3525(18) \mathrm{A} \quad \text { alpha }=90 \mathrm{deg} . \\ & =5.1265(6) \text { A } \quad \text { beta }=111.209(4) \mathrm{deg} . \\ & 23.391(2) \text { A gamma }=90 \mathrm{deg} . \end{aligned}$
Volume 22	2275.3(4) A^3
Z, Calculated density	$8,1.461 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.299 \mathrm{~mm}^{\wedge}-1$
$\mathrm{F}(000)$	1040

Crystal size 0.27	$0.27 \times 0.15 \times 0.04 \mathrm{~mm}$
Theta range for data collection	ection 1.87 to 25.02 deg .
Limiting indices -2	$-23<=\mathrm{h}<=24,-6<=\mathrm{k}<=5,-27<=\mathrm{l}<=22$
Reflections collected / unique	ique $5292 / 2003[\mathrm{R}(\mathrm{int})=0.1089]$
Completeness to theta $=25.02$	$25.02 \quad 100.0$ \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	on $\quad 0.9881$ and 0.9235
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	ters 2003 / 0 / 147
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.015
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{a}(\mathrm{I})] \quad \mathrm{R} 1=0.0740, \mathrm{wR} 2=0.1857$
R indices (all data) R	$\mathrm{R} 1=0.1260, \mathrm{wR} 2=0.2077$
Extinction coefficient	0.0010(5)
Largest diff. peak and hole	le 0.269 and -0.267 e. $\mathrm{A}^{\wedge}-3$

Table S11. Atomic coordinates ($\mathrm{x} 10^{\wedge} 4$) and equivalent isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 201110b.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized
Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{F}(1)$	$879(2)$	$10621(6)$	$10483(2)$	$136(1)$
$\mathrm{N}(1)$	$1217(2)$	$7629(7)$	$9478(2)$	$66(1)$
$\mathrm{N}(2)$	$1688(2)$	$9162(7)$	$9372(2)$	$66(1)$
$\mathrm{O}(1)$	$1225(2)$	$13597(7)$	$8156(2)$	$88(1)$
$\mathrm{O}(2)$	$2267(2)$	$13026(7)$	$8872(2)$	$99(1)$
$\mathrm{O}(3)$	$507(2)$	$6526(7)$	$10676(2)$	$112(1)$
$\mathrm{O}(4)$	$1414(3)$	$8758(10)$	$11457(2)$	$142(2)$
$\mathrm{S}(1)$	$1089(1)$	$8206(3)$	$10825(1)$	$87(1)$
$\mathrm{C}(1)$	$1655(3)$	$12527(9)$	$8652(3)$	$70(1)$
$\mathrm{C}(2)$	$1309(2)$	$10637(9)$	$8903(2)$	$65(1)$
$\mathrm{C}(3)$	$594(3)$	$10046(11)$	$8723(2)$	$83(2)$
$\mathrm{C}(4)$	$559(3)$	$8085(11)$	$9098(3)$	$83(2)$
$\mathrm{C}(5)$	$1447(2)$	$5706(9)$	$9961(2)$	$73(1)$
$\mathrm{C}(6)$	$1717(2)$	$6839(10)$	$10587(2)$	$71(1)$
$\mathrm{C}(7)$	$1536(3)$	$15439(12)$	$7850(3)$	$107(2)$
$\mathrm{C}(8)$	$977(4)$	$16519(16)$	$7346(3)$	$158(3)$

Table S12. Bond lengths [A] and angles [deg] for 201110b.

$\mathrm{F}(1)-\mathrm{S}(1)$	1.452(4)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.331(4)
$\mathrm{N}(1)-\mathrm{C}(4)$	1.334(6)
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.443(6)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.327(5)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.296(6)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.461(6)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.190(5)$
$\mathrm{O}(3)-\mathrm{S}(1)$	1.402(4)
$\mathrm{O}(4)-\mathrm{S}(1)$	$1.412(5)$
$\mathrm{S}(1)-\mathrm{C}(6)$	1.718(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.442(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.393(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.352(7)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9300
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.485(6)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9700
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9700
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9700
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9700
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.422(8)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9700
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9700
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9600
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	112.9(4)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	119.9(4)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)$	127.2(4)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{N}(1)$	104.3(3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(7)$	116.1(4)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(4)$	114.7(3)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{F}(1)$	109.4(3)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{F}(1)$	109.8(3)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(6)$	109.2(2)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(6)$	107.3(3)
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}(6)$	106.0(2)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	123.9(5)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	124.0(5)

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$112.1(4)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$110.9(4)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.7(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$129.4(5)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$105.2(5)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	127.4
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	127.4
$\mathrm{~N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$106.6(4)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{H}(4)$	126.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	126.7
$\mathrm{~N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.8(4)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.8
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.8
$\mathrm{~N}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.8
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.8
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.7
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(1)$	$115.1(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.5
$\mathrm{~S}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.5
$\mathrm{~S}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(1)$	$107.4(5)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.2
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.2
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.2
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.2
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table S13. Anisotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 201110 b .
The anisotropic displacement factor exponent takes the form:
$-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{* \wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12\right]$

U11	U22	U33	U23	U13	U12

$\mathrm{F}(1)$	$157(3)$	$80(2)$	$216(4)$	$23(2)$	$121(3)$	$27(2)$
$\mathrm{N}(1)$	$68(2)$	$67(2)$	$72(3)$	$-1(2)$	$37(2)$	$-5(2)$
$\mathrm{N}(2)$	$57(2)$	$73(3)$	$76(3)$	$1(2)$	$35(2)$	$-6(2)$
$\mathrm{O}(1)$	$81(2)$	$108(3)$	$77(3)$	$21(2)$	$31(2)$	$-1(2)$
$\mathrm{O}(2)$	$80(2)$	$93(3)$	$122(3)$	$28(2)$	$33(2)$	$-12(2)$
$\mathrm{O}(3)$	$102(2)$	$81(3)$	$199(4)$	$-13(2)$	$110(3)$	$-21(2)$
$\mathrm{O}(4)$	$173(4)$	$178(5)$	$92(3)$	$-33(3)$	$68(3)$	$-6(4)$
$\mathrm{S}(1)$	$97(1)$	$84(1)$	$101(1)$	$-4(1)$	$63(1)$	$4(1)$
$\mathrm{C}(1)$	$66(3)$	$80(3)$	$71(4)$	$-3(3)$	$32(3)$	$-5(3)$
$\mathrm{C}(2)$	$62(3)$	$72(3)$	$66(3)$	$-4(2)$	$31(2)$	$2(2)$
$\mathrm{C}(3)$	$64(3)$	$103(4)$	$79(4)$	$12(3)$	$22(3)$	$5(3)$
$\mathrm{C}(4)$	$68(3)$	$97(4)$	$93(4)$	$2(3)$	$40(3)$	$-12(3)$
$\mathrm{C}(5)$	$78(3)$	$65(3)$	$93(4)$	$2(3)$	$50(3)$	$1(2)$
$\mathrm{C}(6)$	$60(3)$	$82(3)$	$76(4)$	$5(3)$	$32(2)$	$6(2)$
$\mathrm{C}(7)$	$109(4)$	$115(5)$	$97(5)$	$34(4)$	$38(4)$	$-9(4)$
$\mathrm{C}(8)$	$197(7)$	$155(7)$	$125(7)$	$50(5)$	$60(6)$	$-1(6)$

Table S14. Hydrogen coordinates ($\times 10^{\wedge} 4$) and isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 201110b.

x		y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(3)$	222	10830	8413	99
$\mathrm{H}(4)$	154	7224	9092	100
$\mathrm{H}(5 \mathrm{~A})$	1815	4652	9905	88
$\mathrm{H}(5 \mathrm{~B})$	1054	4561	9925	88
$\mathrm{H}(6 \mathrm{~A})$	2063	8165	10603	85
$\mathrm{H}(6 \mathrm{~B})$	1958	5477	10875	85
$\mathrm{H}(7 \mathrm{~A})$	1784	16808	8132	128
$\mathrm{H}(7 \mathrm{~B})$	1869	14551	7707	128
$\mathrm{H}(8 \mathrm{~A})$	689	15137	7106	237
$\mathrm{H}(8 \mathrm{~B})$	1169	17513	7095	237
$\mathrm{H}(8 \mathrm{C})$	696	17636	7495	237

Table S15. Torsion angles [deg] for 201110b.

$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$-0.3(5)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$179.0(4)$
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$2.5(8)$
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-176.8(4)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$1.1(5)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$-178.7(4)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$-6.6(7)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$172.7(4)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$173.7(5)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-7.0(7)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-1.5(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$178.3(5)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$-0.7(6)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$-179.9(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	$1.2(6)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$69.1(5)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$-111.7(5)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(1)$	$71.3(5)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$45.0(5)$
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$169.9(4)$
$\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-72.8(4)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-176.1(6)$

Symmetry transformations used to generate equivalent atoms:

Table S16. Hydrogen bonds for 201110b [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) $<$ (DHA)

