Supporting information for
Diversity synthesis of indole-derivatives via acid-catalyzed
cyclization reaction of 2-indolylmethanols and
azonaphthalene
Ya-Long Cheng ${ }^{+}$, Guoqing Wu ${ }^{+}$, Yong-Jun Zang ${ }^{+}$, Yuan-Yang Hu, Lu-Zhe Qin,Xiaoan Wen*, Qing-Long Xu*
Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key
Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang,Nanjing 210009, China
E-mail: wxagj@,126.com; qlxu@.cpu.edu.cn

Contents

1. The absolute configuration determination of $\mathbf{3 a}, \mathbf{4 a}, \mathbf{5 a}$ 2
2. General information. 5
3. General procedure for the synthesis of substrates $\mathbf{1}$ and $\mathbf{2}$ 5
4. NMR spectra of all substrates and products 8
5. X-ray single crystal for compounds $\mathbf{3 a}, \mathbf{4 a}, \mathbf{5 a}$. (Thermal ellipsoids are set at $\mathbf{3 0 \%}$ probability, The instrument used for the crystal measurement is ROD synergy-s.) X-ray crystal structure of compounds 3a (CCDC-2154338). The crystal was grown from $\mathrm{CH}_{3} \mathrm{COCH}_{3} .10 \mathrm{mg}$ of $\mathbf{3 a}$ was dissolved in $\mathrm{CH}_{3} \mathrm{COCH}_{3}(5.5 \mathrm{~mL})$ and the solvent was evaporated slowly in a room atmosphere.

Single crystal structure of 3a.

Empirical formula
Formula weight
Temperature
Wavelength
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Mu (mm-1)
F(000)
h,k,Imax
Nref
Tmin,Tmax
Data completeness
$\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}$
585.68

296K
$0.71073 \AA$
P21/C
$\mathrm{a}=15.4317(10) \AA \quad$ alpha $=90$.
$\mathrm{b}=13.3076(8) \AA \quad$ beta=109.518(3).
$\mathrm{c}=15.3933(11) \AA$ gamma $=90$.
2979.5(3)

4
$1.306 \mathrm{Mg} / \mathrm{m}^{3}$
$0.085 \mathrm{~mm}-1$
1240
20,17,20
6841
$0.760,0.892$
0.994

X-ray crystal structure of compounds $\mathbf{4 a}$ (CCDC-2154339). The crystal was grown from $\mathrm{CH}_{3} \mathrm{COCH}_{3} .10 \mathrm{mg}$ of $\mathbf{4 a}$ was dissolved in $\mathrm{CH}_{3} \mathrm{COCH}_{3}(5.5 \mathrm{~mL})$ and the solvent was evaporated slowly in a room atmosphere.

Single crystal structure of 4 a .

Empirical formula
Formula weight
Temperature
Wavelength
Space group
Unit cell dimensions
$\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}$
567.66

293K
1.54178 Å

P-1
$\mathrm{a}=8.9864$ (5)
$\mathrm{b}=9.7311$ (5)
$\mathrm{c}=18.0784$ (9)
alpha=78.844(4)
beta=81.754(4)
gamma=75.670(4)
Volume
1495.17(14)

2
$1.261 \mathrm{Mg} / \mathrm{m}^{3}$
$0.639 \mathrm{~mm}-1$
600
10,11,22
5548
0.857,1.000
0.967

X-ray crystal structure of compounds 5a (CCDC-2154340). The crystal was grown from THF. 10 mg of $\mathbf{5 a}$ was dissolved in THF $(5.0 \mathrm{~mL})$ and the solvent was evaporated slowly in a room atmosphere.

Single crystal structure of 5 a .

Empirical formula
Formula weight
Temperature
Wavelength
Space group
Unit cell dimensions
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}$
526.59

296K
$0.71073 \AA$
P-1
$\mathrm{a}=10.3432$ (10)
$\mathrm{b}=11.855(9)$
$\mathrm{c}=12.430$ (9)
alpha $=79.657(15)$
beta $=66.16(2)$
gamma=74.86(4)
Volume
Z
Density (calculated)
Mu (mm-1)
F(000)
h,k,Imax
Nref
Tmin,Tmax
Data completeness
1314.0(14)

2
$1.304 \mathrm{Mg} / \mathrm{m}^{3}$
$0.085 \mathrm{~mm}-1$
554
12,14,14
4691
0.864,0.864
0.983

2. General information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured at 300 MHz and 75 MHz respectively. The solvents used NMR Spectroscopy were DMSO- d_{6}, using tetramethylsilane as the internal reference. HRMS (ESI) was determined by a HRMS/MS instrument. Analytical grade solvents for the column chromatography were used directly. All starting materials commercially available were used directly.

3. General procedure for the synthesis of substrates 1 and 2

In a flame-dried three-necked bottle, phenyl magnesium bromide ($100 \mathrm{~mL}, 1.0$ $\mathrm{mmol} / \mathrm{mL}$) was added to the bottle under argon. At $0^{\circ} \mathrm{C}$, THF (50 mL) solution of ethyl indole-2-carboxylate ($5.7 \mathrm{~g}, 30 \mathrm{mmol}$) was added to the bottle dropwise. After the solution added, the reaction was slowly rising to $80^{\circ} \mathrm{C}$ and reflux overnight. The mixture was allowed to cool down to room temperature, quenched by saturated ammonium chloride solution, extracted by ethyl acetate three times. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to afford the pure 2-indolylmethanol $\mathbf{1 a}$ in 90% yield.
(1 H -indol-2-yl) diphenylmethanol (1a). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.18(\mathrm{~m}, 11 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=10.9,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$.
bis(4-chlorophenyl)(1H-indol-2-yl)methanol (1b). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.92(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H})$.
(1H-indol-2-yl)di-p-tolylmethanol (1c). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.77$ (s, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.08(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, 6 H).
(1-methyl-1H-indol-2-yl)diphenylmethanol (1d) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) 87.43 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 11 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92-6.72(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$.
(4-methyl-1H-indol-2-yl)diphenylmethanol (1e) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ 10.83 ($\mathrm{s}, 1 \mathrm{H}$), $7.39-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
(5-methyl-1H-indol-2-yl)diphenylmethanol (1f) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.69(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H})$, 2.32 ($\mathrm{s}, 3 \mathrm{H}$).
(6-methyl-1H-indol-2-yl)diphenylmethanol (1g) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.69(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 11 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H})$, $5.72(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
(5-fluoro-1H-indol-2-yl) diphenylmethanol (1h) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.97(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.23(\mathrm{~m}, 11 \mathrm{H}), 7.19(\mathrm{dd}, J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{td}, J=9.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.81(\mathrm{~m}, 1 \mathrm{H})$.
(5-chloro-1H-indol-2-yl) diphenylmethanol (1i) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.09$ $(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 11 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.85$ ($\mathrm{s}, 1 \mathrm{H}$).
(6-chloro-1H-indol-2-yl)diphenylmethanol ($\mathbf{1} \mathbf{j}^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.09$
$(\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 11 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.85$ ($\mathrm{s}, 1 \mathrm{H}$).
(4,6-dichloro-1H-indol-2-yl)diphenylmethanol ($\mathbf{1 k})^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ $11.46(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.23(\mathrm{~m}, 11 \mathrm{H}), 7.11(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H})$.
(4-bromo-1H-indol-2-yl)diphenylmethanol (1l) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $11.31(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.23(\mathrm{~m}, 11 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H})$.
(5-bromo-1H-indol-2-yl)diphenylmethanol (1m) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $11.11(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 11 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, 5.85 ($\mathrm{s}, 1 \mathrm{H}$).
(4-methoxy-1H-indol-2-yl)diphenylmethanol (1n) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.87(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.95(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~m}, 1 \mathrm{H})$, 5.76 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ ($\mathrm{s}, 3 \mathrm{H}$).
(5-methoxy-1H-indol-2-yl)diphenylmethanol (1o) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.66(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~s}$, $1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$.
(6-methoxy-1H-indol-2-yl)diphenylmethanol (1p) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ 10.67 (s, 1H), 7.37-7.17 (m, 11H), 6.86 (s, 1H), 6.59 (dd, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (s, $1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.
1-(1H-indol-2-yl)-1-phenylethan-1-ol (1r) ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.80$ (s, $1 \mathrm{H}), 7.50(\mathrm{t}, J=9.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.

The corresponding hydrazine hydrochloride ($5 \mathrm{~g}, 25.68 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$. Pyridine ($4.7 \mathrm{~mL}, 56.51 \mathrm{mmol}$) was added. The solution was cooled to $0^{\circ} \mathrm{C}$ and chloroformate ($2.93 \mathrm{~mL}, 30.81 \mathrm{mmol}$) was added dropwise under stirring. The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then for 1 h at room temperature. Water (30 mL) was added and the resulting mixture was acidified with $\mathrm{HCl}(6 \mathrm{M})$ to $\mathrm{pH} 4-6$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated to dryness. The residue products were purified by flash chromatography on silica gel eluted with (petroleum ether/ethyl acetate $=15 / 1$) to afford the corresponding products in $70-97 \%$ yield. PCC ($7.38 \mathrm{~g}, 34.25 \mathrm{mmol}$) was added to a solution of corresponding hydrazine carboxylate (31.38 mmol) in 30 mL DCM. The mixture was stirred until hydrazine carboxylate completely consumed (monitored by TLC). The reaction mixture was filtered. The filtrate was concentrated under reduced pressure and purified by chromatography on silica gel eluted with (petroleum ether/ethyl acetate $=100 / 1$) to afford the corresponding product azonaphthalene $\mathbf{2}$ in $38-80 \%$ yield.
ethyl (E)-2-(naphthalen-2-yl)diazene-1-carboxylate (2a) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 8.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86$ (dd, $J=8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.66(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$.
tert-butyl (E)-2-(naphthalen-2-yl)diazene-1-carboxylate (2b) ${ }^{1} \mathrm{H}$ NMR (300 MHz ,

DMSO- d_{6}) $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J$ $=8.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.65(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H})$.
isopropyl (E)-2-(naphthalen-2-yl)diazene-1-carboxylate (2c) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J$ $=8.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.64(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{dq}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, 1.41 ($\mathrm{s}, 3 \mathrm{H}$).
butyl (E)-2-(naphthalen-2-yl)diazene-1-carboxylate (2d) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=8.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.61(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.32$ (m, 2H), $0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
benzyl (E)-2-(naphthalen-2-yl)diazene-1-carboxylate (2e) ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=$ $9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.51(\mathrm{~s}, 2 \mathrm{H})$. ethyl (E)-2-(6-bromonaphthalen-2-yl)diazene-1-carboxylate (2f) ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$.
ethyl (E)-2-(6-methylnaphthalen-2-yl)diazene-1-carboxylate (2g) ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=13.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ $(\mathrm{s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
benzyl (E)-2-(6-bromonaphthalen-2-yl)diazene-1-carboxylate (2h) ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{dd}, J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.14,149.27,137.09,135.19,132.48,131.80,131.69$, 131.09, 130.57, 129.59, 129.23, 129.20, 129.11, 123.47, 116.64, 70.02.
benzyl (E)-2-(6-methylnaphthalen-2-yl)diazene-1-carboxylate (2i) ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.51$ $(\mathrm{d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 4 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.29,148.68,140.14,136.40,135.28,132.24,131.38,130.35,130.17$, 129.63, 129.20, 129.17, 129.10, 127.51, 115.26, 69.87, 21.99.
ethyl (E)-2-(7-bromonaphthalen-2-yl)diazene-1-carboxylate (2j) ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 1 \mathrm{H})$, $7.79-7.65(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
ethyl (E)-2-(7-methylnaphthalen-2-yl)diazene-1-carboxylate ($\mathbf{2 k})^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
ethyl (E)-2-(7-methoxynaphthalen-2-yl)diazene-1-carboxylate (2l) ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 4 \mathrm{H}), 1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.49,158.78,149.58,134.76,131.49,130.48,130.01$, $129.99,122.12,112.88,108.65,64.76,55.90,14.43$.

4. NMR spectra of all substrates and products

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 c}\left(\right.$ DMSO－$\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 d}\left(\mathrm{DMSO}-d_{6}\right)$

$$
\begin{aligned}
& \text { テNNNNNNN~NNe心。 }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1} \mathbf{e}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 f}\left(\mathrm{DMSO}_{-} d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 g}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 h}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 k}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 m}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 n}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 p}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 q}\left(\right.$ DMSO－$\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}\left(\mathrm{CDCl}_{3}\right)$

势品守

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 e}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 f}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 h}\left(\right.$ DMSO- $\left._{6}\right)$

$$
\begin{aligned}
& \underset{O}{0} \\
& \stackrel{1}{1}
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 i}\left(\mathrm{DMSO}-d_{6}\right)$

సे	\%	さn
¢	$\stackrel{¢}{\square}$	Mono
	\uparrow	-

				1						-	10					
180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{fl}(\mathrm{ppm})}$	90	80	70	60	50	40	30	20

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2} \mathbf{j}\left(\mathrm{CDCl}_{3}\right)$

$\hat{0}$ oे
－ $2+$
in

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 k}\left(\mathrm{CDCl}_{3}\right)$
$\underbrace{\text { にo }}$

㤩笪

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 l}\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 l}$ (DMSO- d_{6})

$$
\begin{array}{ll}
\text { o } \\
\text { o } \\
\text { i } & \text { in }
\end{array}
$$

$$
-14.43
$$

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{3} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}\left(\mathrm{DMSO}-d_{6}\right)$

$\stackrel{\square}{\square}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(\right.$ DMSO $\left.-d_{6}+\mathrm{D}_{2} \mathrm{O}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}\left(\right.$ DMSO- $\left.d_{6}\right)$

Ph

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{e}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}\left(\right.$ DMSO- $\left.d_{6}\right)$

$\stackrel{\text { y }}{\text { N }}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13}$ CNMR spectrum of $\mathbf{3 g}\left(\right.$ DMSO- $\left.d_{6}\right)$

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{h}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13}$ CNMR spectrum of $\mathbf{3} \mathbf{h}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}\left(\right.$ DMSO- $\left.d_{6}\right), 80{ }^{\circ} \mathrm{C}$
菏
$\stackrel{\stackrel{\rightharpoonup}{1}}{\stackrel{\rightharpoonup}{1}}$
$\stackrel{\rightharpoonup}{i}$
$\stackrel{\rightharpoonup}{1}$
$\underset{\square}{7}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{j}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{j}\left(\mathrm{DMSO}-d_{6}\right)$

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}\left(\mathrm{DMSO}-d_{6}\right)$

240
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}\left(\right.$ DMSO- $\left.d_{6}\right), 80^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}\left(\right.$ DMSO $\left.-d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 c}\left(\right.$ DMSO- $\left._{6}\right)$

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
												f 1 (ppm)												

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d}\left(\right.$ DMSO $\left.-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 e}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{3} \mathrm{C}$ NMR spectrum of $\mathbf{4 e}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 f}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 f}$ (DMSO- d_{6})

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
												f1 (ppm)												

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 g}\left(\right.$ DMSO- $\left.d_{6}\right)$

$$
\begin{aligned}
& \text { of } \\
& \underset{\sim}{2} \\
& \underset{i}{2}
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 h}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 h}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 i}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 i}\left(\right.$ DMSO- $\left.d_{6}\right)$

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
												(ppm)												

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{j}\left(\right.$ DMSO $\left.-d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{j}\left(\mathrm{DMSO}-d_{6}\right)$

[^3]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{k}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 k}\left(\right.$ DMSO- $\left._{6}\right)$

[^4]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 1}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 1}$ (DMSO- d_{6})

\[

$$
\begin{aligned}
& \underset{\substack{132}}{\substack{130 \\
128 \\
128_{1} \\
126}}
\end{aligned}
$$
\]

[^5]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 m}\left(\mathrm{DMSO}-d_{6}\right)$

```
# (ryn
```


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 m}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 n}\left(\mathrm{DMSO}-d_{6}\right)$

[^6]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 0}\left(\right.$ DMSO- $\left.d_{6}\right)$

```
\゙
```


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 p}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{p}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 q}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 q}\left(\right.$ DMSO- $\left.d_{6}\right)$

220	210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10	-20

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 r}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 r}\left(\right.$ DMSO- $\left._{6}\right)$

| 132 | 131 | 130 | 129 | 128 | 127 | 126 | 125 | 124 | 123 | 122 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^7]${ }^{1} \mathrm{H}$ NMR spectrum of $4 \mathrm{~s}\left(\mathrm{DMSO}-d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $4 \mathrm{~s}\left(\mathrm{DMSO}-d_{6}\right)$

[^8]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 t}\left(\mathrm{DMSO}-d_{6}\right)$

[^9]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 u}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 u}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{v}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{v}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 w}\left(\mathrm{DMSO}_{\mathbf{~}} d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 w}$ (DMSO- d_{6})

[^10]${ }^{1} \mathrm{H}$ NMR spectrum of $4 \mathbf{x}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 x}\left(\right.$ DMSO- $\left.d_{6}\right)$

[^11]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 y}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 y}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 z}\left(\right.$ DMSO- $\left.d_{6}\right)$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 z}\left(\right.$ DMSO- $\left._{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}\left(\right.$ DMSO $\left.-d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}\left(\right.$ DMSO- $\left.d_{6}\right)$

240

$\begin{array}{llllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 10 \\ & & & & (p p m) & \end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}\left(\right.$ DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}\left(\right.$ DMSO- $\left.d_{6}\right)$
 \qquad -64.55
$\begin{array}{ll}\infty & \overrightarrow{0} \\ \underset{1}{\infty} & \overrightarrow{0} \\ \underset{1}{\infty} & \underset{1}{1}\end{array}$

240
$\begin{array}{lllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 d}\left(\right.$ DMSO- $\left.d_{6}\right)$

[^0]: $\begin{array}{llllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & & & & & & & \\ (\mathrm{pgm})\end{array}$

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

[^11]:

