Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

A Metal-Free BF₃·OEt₂ Mediated Chemoselective Protocol for the Synthesis of Propargylic Cyclic Imines

Prasoon Raj Singh,^a Braj Gopal,^{‡a} Madan Kumar, ^{‡a} and Avijit Goswami^a*

^aDepartment of Chemistry, SS Bhatnagar Block, Main Campus, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India;

E-mail: agoswami@iitrpr.ac.in

Contents

Page No. 2 General information 1. 2. Synthesis of starting materials 2 2.1. General procedure for the synthesis of cyclopropane-1,1-diester 2 derivatives (GP 1) Synthesis of known alkynyl nitriles (GP 2) 2.2. 3 3. General procedures 3 Synthesis of propargylic cyclic imines 3 3.1. 3.2. Gram scale synthesis of **3ia** 4 Synthesis of diethyl 5-phenyl-2-(phenylethynyl)pyrrolidine-3,3-5 3.3. dicarboxylate 5 5 3.4. Synthesis of 2-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyrrole 6 Synthesis of diethyl (*Z*)-2-(2-hydroxy-2-(*p*-tolyl)vinyl)-5-phenyl-5 3.5 4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate 7 Characterization of starting material 6 4. 5. Characterization of compounds 7-39 Copies of ¹H and ¹³C NMR spectra 40-114 6. 7. X-ray crystallographic data 115-117 References 8. 118

1.General information:

All the chemicals and reagents were purchased from commercial suppliers and used without further purification. Solvents were dried and stored over molecular sieves under argon atmosphere prior to use. Thin-layer chromatography (TLC) was performed using pre-coated plates purchased from E. Merck (silica gel 60 PF254, 0.25 mm). Column chromatography was performed using E. Merck silica gel 60 (100–200 mesh). ¹H, ¹³C, ¹⁹F and DEPT-135 NMR spectra were recorded in CDCl₃, on JEOL JNM-ECS spectrometer at operating frequencies of 400 MHz {¹H} or 101 MHz {¹³C} as indicated in the individual spectrum. Chemical shifts (δ) are given in parts per million (ppm) relative to residual solvent (chloroform, δ = 7.26 for ¹H & 77.16 for ¹³C NMR and DMSO-*d*₆, δ = 2.5 for ¹H & 39.58 for ¹³C NMR, and coupling constants (*J*) in Hz. Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, q for quartet, and m for multiplet. High-resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) methods on waters mass spectrometer (XEVO G2-XS QTOF). The data collection for single crystal X-ray was performed at a 298 K on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with INCOATEC micro-focus source with graphite monochromated Mo K α radiation (λ = 0.71073 Å) operating at 50 kV and 30 mA.

2. Synthesis of starting materials:

2.1. Synthesis of donor-acceptor cyclopropanes:

Diethyl 2-vinylcyclopropane-1,1-dicarboxylate $(1n)^1$ and Diethyl [1,1'-bi(cyclopropane)]-2,2dicarboxylate $(1o)^2$ were synthesized according to the reported procedures. All other donoracceptor cyclopropanes were synthesized according to the GP 1³.

General procedure for the synthesis of cyclopropane-1,1-diester derivatives (GP 1):

Trimethylsulfoxonium iodide (TMSOI) (1.5 eq.) was added drop-wise into the suspension of sodium hydride (NaH) (60% suspension in mineral oil, 1.5 eq.) and dry dimethyl sulfoxide (DMSO) under nitrogen atmosphere. *Caution!* : Reaction of trimethylsulfoxonium iodide with sodium hydride is exothermic (evolution of H_2 and heat). So, the suspension was maintained at 0 °C before adding trimethylsulfoxonium iodide. After 15-20 min. vigorous stirring, a solution of benzylidenemalonate (1.0 eq.) in DMSO was added, mixture was allowed to warm up to room temperature. Upon completion (as determined by TLC analysis) of the reaction, crushed ice was added in the crude solution and extracted with diethyl ether. The combined organic layers were washed once with brine, dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl actetate as an eluent.

Figure 1. Cyclopropane-1,1-diester derivatives 1

2.2. Synthesis of alkynyl nitriles :

Synthesis of aromatic alkynyl nitriles (GP2)⁴: Phenylethyne (3 mmol, 1 eq.), benzoyl cyanide (3 mmol, 1 eq.), and Cu(NO₃)₂·3H₂O (0.2 mmol, 20 mol%) was dissolved in dimethylformamide (DMF)and heated at 60 °C for 5-6 h under air. After completion of reaction, monitored by TLC, the crude mixture was extracted with ethyl acetate (3×10 mL) and water. The collected organic layer was once washed with brine and water, dried over Na₂SO₄, concentrated in reduced pressure and purified by column chromatography using hexane and ethyl acetate as eluents.

Figure 2. Alkynylnitriles derivatives 2

Synthesis of aliphatic alkynyl nitriles (GP3)⁴c:

Step-1: N-Bromosuccinimide (NBS) (1.2 eq.) and Silver nitrate (20 mol%) were added sequentially to the stirred solution of the alkyne (1eq.) in acetone at rt and the reaction flask was covered with aluminum foil. The reaction mixture continued stirred for 3hrs. After completing the reaction removed extra acetone under reduced pressure and extracted with dichloromethane three times. Combined organic layers dried over Na_2SO_4 and evaporated under reduced pressure. Collected the residue (1-Bromoalkyne) which was directly used for the next step.

Step-2: Copper(I) cyanide (1eq.) and Potassium iodide (30 mol%) were added sequentially to the stirred solution of 1-Bromoalkyne (1eq.) in DMSO at 60 °C. The reaction mixture continued stirred for 6 - 12 hrs. After full consumption of 1-Bromoalkyne, the reaction mixture was cool to rt and extracted with ethyl acetate and ammonium chloride. The combined organic layers was washed 2 times with water and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and purified through column chromatography over silica gel using hexane/ethyl acetate as eluents to obtain aliphatic alkynyl nitriles.

3. General Procedures:

3.1. Synthesis of propargylic cyclic imines 3:

Donor-acceptor cyclopropanes 1 (0.15 mmol, 1 eq.), alkynylnitriles 2 (0.22 mmol, 1.5 eq.) and $BF_3 \cdot OEt_2$ (150 mol%) were dissolved in anhydrous 1,2-DCE (1 mL) under N₂ atmosphere. Unlike other cyclic imines **3aa**, **3da** and **3ia** were also synthesized in aerobic conditions. The solution was stirred at 60 °C (oil bath) until TLC analysis (*n*-hexane:Ethyl acetate = 10:1) showed complete consumption of cyclopropanes. After completing the reaction, the mixture was poured into an aqueous NaHCO₃ solution (10 mL) and extracted with dichloromethane (3 × 5 mL). The combined organic layer was washed three times with water and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and purified through column chromatography over silica gel using hexane/ethyl acetate as eluents to obtain the desired product.

3.2. Gram scale synthesis of diethyl 5-mesityl-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate 3ia:

In a schlenk tube alkynyl nitrile, **2a** (3.75 mmol, 1.5 eq.) and diethyl 2-mesitylcyclopropane-1,1dicarboxylate, **1i** (2.5 mmol, 1 eq.) was dissolved in DCE and added BF₃·OEt₂ (150 mol%). The reaction was stirred at 60 °C for 9 h and after the complete consumption of **1i**, monitored by TLC, the reaction mixture was poured in 10% aq. NaHCO₃ (150 mL). The crude was extracted thrice with DCM followed by washing of organic layer with water. The combined organic layer was dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography over silica gel using hexane/ethyl acetate as eluents.

Yield = 862 mg, 80%

3.3. Synthesis of diethyl 5-phenyl-2-(phenylethynyl)pyrrolidine-3,3-dicarboxylate 5:

In the solution of diethyl 5-phenyl-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate **3aa** (0.1 mmol, 1eq.) in MeOH: AcOH (3:1, 2 mL), NaBH₃CN (0.2 mmol, 2eq.) was added and stirred at room temperature. After complete consumption of **3aa** in 3 h, monitored by TLC analysis, the reaction mixture was quenched with 10% aq. NaHCO₃ solution, and then extracted with DCM. The combined organic layer was washed thrice with water. The separated organic layer was collected, dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by column chromatography using hexane and ethyl acetate as eluents. Yield = 33 mg, 85%

3.4. Synthesis of 2-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyrrole 6:

An aqueous solution of NaOH (1 M, 30 eq., 3 mL) was added in the solution of **3aa** (0.1 mmol, 1 eq.) in MeCN: H₂O (1.2:1, 2 mL). The mixture was stirred for 6 h at room temperature. After that crude was acidified with aq. HCl (2 N, 10 mL), then extracted with DCM and water. The combined organic phases were dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography using hexane and ethyl acetate as eluents. Yield = 18 mg, 73%

3.5. Diethyl (*Z*)-2-(2-hydroxy-2-(*p*-tolyl)vinyl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate 7:

Diethyl 2-(phenylethynyl)-5-(p-tolyl)-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate **3ea** (0.1 mmol, 1 eq.) was dissolved in wet DCE (DCE and one drop H₂O) 2 mL, and then cooled to 0 °C. After that triflic acid (50 mol%) was added to the cooled solution. After 5 minutes, the reaction mixture was warmed up to room temperature and stirred for 12 h. The complete consumption of **3ea** was monitored by TLC. The crude mixture was extracted with EtOAc and water. The combined organic layer was once washed with brine and the organic layer was dried over Na₂SO₄, filtered, concentrated under reduced pressure, and purified by column chromatography using hexane and ethyl acetate as eluent.

Yield = 26 mg, 55%

4. Characterization of starting material

Undec-2-ynenitrile (2l):

Physical State: Yellow oil.

Overall yield: 381 mg, 78% (reaction performed at 3 mmol scale)

¹**H NMR (400 MHz, CDCl₃):** δ 2.35 (t, J = 7.1 Hz, 2H), 1.64 – 1.55 (m, 2H), 1.44 – 1.35 (m, 2H), 1.33 – 1.23 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 105.4, 87.6, 55.3, 31.8, 29.1, 28.9, 28.8, 27.1, 22.7, 18.9, 14.1.

IR (neat) (v): 2926, 2856, 2312, 2261, 1462, 1410, 1057, 722, 499cm⁻¹

HRMS: m/z calculated for C₁₁H₁₈N [M+H]⁺ = 164.1439, found 164.1441.

5. Characterization of compounds

Diethyl 5-phenyl-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3aa):

Physical State: Yellow viscous liquid.

Yield: 48 mg, 82% (under N₂ atm.); 47 mg, 81% (under air atm.).

¹**H NMR (400 MHz, CDCl₃):** δ 7.56 – 7.54 (m, 2H), 7.41 – 7.28 (m, 7H), 7.17 – 7.11 (m, 1H), 5.32 (t, *J* = 7.8 Hz, 1H), 4.35 – 4.25 (m, 4H), 3.25 (dd, *J* = 13.5, 7.4 Hz, 1H), 2.50 (dd, *J* = 13.4, 8.2 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.0, 167.4, 154.1, 141.8, 132.5, 129.9, 128.8, 128.6, 127.6, 126.8, 121.6, 94.3, 83.4, 75.1, 73.2, 62.6, 62.5, 41.9, 14.2.

IR (neat) (\tilde{v}): 3030, 2982, 2217, 1730, 1603, 1445, 1304, 1253, 1180, 1100, 1029, 758 cm⁻¹.

HRMS: m/z calculated for C₂₄H₂₄NO₄ [M+H]⁺ = 390.1705, found 390.1708.

Diethyl 5-(4-fluorophenyl)-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ba):

Physical State: Brownish viscous liquid.

Yield: 43 mg, 71%.

¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.53 (m, 2H), 7.41 – 7.36 (m, 3H), 7.30 – 7.26 (m, 2H), 7.07 – 7.01 (m, 2H), 5.29 (t, *J* = 7.8 Hz, 1H), 4.35 – 4.25 (m, 4H), 3.25 – 3.20 (m, 1H), 2.45 (dd, *J* = 13.4, 8.2 Hz, 1H), 1.34 – 1.29 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 167.9, 167.3, 162.3 (d, ¹*J*_{C-F} = 246.4 Hz), 154.2, 137.6 (d, ⁴*J*_{C-F} = 3.79 Hz), 132.5, 130.0, 128.6, 128.5 (d, ³*J*_{C-F} = 8.52 Hz), 121.4, 115.6 (d, ²*J*_{C-F} = 21.59 Hz), 94.5, 83.2, 74.3, 73.1, 62.7, 62.5, 41.9, 14.2, 14.1.

¹⁹F NMR (377 MHz, CDCl₃): δ -115.05.

IR (neat) (v): 3061, 2982, 2919, 2217, 1730, 1603, 1587, 1490, 1416, 1253, 1158, 860 cm⁻¹.

HRMS: m/z calculated for C₂₄H₂₃FNO₄ [M+H]⁺ = 408.1611, found 408.1616.

Diethyl 5-(4-bromophenyl)-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ca):

Physical State: Brownish viscous liquid.

Yield: 60 mg, 85%.

¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.54 (m, 2H), 7.50 – 7.46 (m, 2H), 7.42 – 7.35 (m, 3H), 7.21 – 7.18 (m, 2H), 5.27 (t, *J* = 7.8 Hz, 1H), 4.33 – 4.27 (m, 4H), 3.23 (dd, *J* = 13.4, 7.4 Hz, 1H), 2.42 (dd, *J* = 13.4, 8.2 Hz, 1H), 1.32 – 1.28 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 167.9, 167.2, 154.5, 140.9, 132.5, 131.9, 130.0, 128.6, 128.5, 121.5, 121.4, 94.7, 83.2, 74.3, 73.2, 62.7, 62.6, 41.7, 14.2, 14.2.

IR (neat) (*v*): 3055, 2982, 2217, 1730, 1589, 1488, 1445, 1367, 1262, 1072, 895 cm⁻¹.

HRMS: m/z calculated for C₂₄H₂₂BrNO₄ [M+H]⁺ = 468.0810, found 468.0811.

Diethyl 2-(phenylethynyl)-5-(4-(trifluoromethyl)phenyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3da):

Physical State: Brownish viscous liquid.

Yield: 54 mg, 79% (under N₂ atm.); 51 mg, 75% (under air atm.).

¹**H** NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.2 Hz, 2H), 7.57 – 7.55 (m, 2H), 7.46 – 7.37 (m, 5H), 5.37 (t, J = 7.8 Hz, 1H), 4.34 – 4.27 (m, 4H), 3.28 (dd, J = 13.5, 7.5 Hz, 1H), 2.45 (dd, J = 13.4, 8.2 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 167.8, 167.2, 154.9, 145.8, 132.5, 130.1, 128.6 (q, ²*J*_{C-F} = 18.67 Hz) 128.7, 127.0 (q, ¹*J*_{C-F} = 225.97 Hz), 127.1, 125.7 (q, ³*J*_{C-F} = 3.69 Hz), 121.4, 94.9, 83.1, 74.5, 73.2, 62.8, 62.6, 41.6, 14.2.

¹⁹F NMR (**377** MHz, CDCl₃): δ -62.4.

IR (neat) (*v*): 3056, 2985, 2217, 1731, 1619, 1446, 1325, 1263, 1167, 732 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₃F₃NO₄ [M+H]⁺ = 458.1579, found 458.1581.

Diethyl 2-(phenylethynyl)-5-(p-tolyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ea):

Physical State: Yellow gum.

Yield: 46 mg, 77%.

¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.53 (m, 2H), 7.38 – 7.35 (m, 2H), 7.21 – 7.15 (m, 3H), 7.05 – 6.93 (m, 1H), 5.29 (t, *J* = 7.8 Hz, 1H), 4.33 – 4.24 (m, 4H), 3.22 (dd, *J* = 13.4, 7.4 Hz, 1H), 2.47 (dd, *J* = 13.5, 8.2 Hz, 1H), 2.34 (s, 3H), 1.34 – 1.28 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.4, 153.9, 138.8, 137.2, 132.4, 129.8, 129.4, 128.6, 126.7, 121.6, 94.1, 83.4, 74.9, 73.1, 62.6, 62.4, 41.9, 21.2, 14.2.

IR (neat) (\tilde{v}): 3057, 2925, 2214, 1731, 1596, 1389, 1069, 759 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₆NO₄ [M+H]⁺ = 404.1862, found 404.1860.

Diethyl 5-(2-chlorophenyl)-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3fa):

Physical State: Brownish viscous liquid.

Yield: 49 mg, 78%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.59 – 7.55 (m, 2H), 7.44 – 7.34 (m, 4H), 7.29 – 7.19 (m, 3H), 5.70 (t, *J* = 7.6 Hz, 1H), 4.37 – 4.29 (m, 2H), 4.24 (qd, *J* = 7.1, 2.0 Hz, 2H), 3.39 (dd, *J* = 13.5, 7.7 Hz, 1H), 2.37 (dd, *J* = 13.6, 7.5 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 167.9, 167.3, 155.0, 139.9, 132.5, 132.5, 130.0, 129.5, 128.8, 128.6, 127.8, 127.3, 121.5, 94.6, 83. 3, 73.1, 72.2, 62.7, 62.5, 40.7, 14.2, 14.15.

IR (neat) (\tilde{v}): 2982, 2217, 1731, 1601, 1471, 1367, 1258, 1031, 756 cm⁻¹.

HRMS: m/z calculated for C₂₄H₂₃ClNO₄ [M+H]⁺ = 424.1316, found 424.1324.

Diethyl 2-(phenylethynyl)-5-(o-tolyl)-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (3ga):

Physical State: Yellow viscous liquid.

Yield: 53 mg, 87%.

¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.55 (m, 2H), 7.41 – 7.34 (m, 3H), 7.20 – 7.13 (m, 4H), 5.51 (t, *J* = 7.6 Hz, 1H), 4.36 – 4.25 (m, 4H), 3.27 (dd, *J* = 13.4, 7.6 Hz, 1H), 2.40 – 2.34 (m, 4H), 1.35 – 1.25 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.5, 154.1, 140.3, 134.8, 132.5, 130.4, 129.9, 128.6, 127.5, 126.5, 126.2, 121.6, 94.1, 83.5, 73.1, 72.2, 62.6, 62.4, 40.9, 19.7, 14.2.

IR (neat) (\tilde{v}): 3054, 2984, 2217, 1729, 1600, 1463, 1367, 1263, 1033, 731 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₆NO₄ [M+H]⁺ = 404.1862, found 404.1865.

Diethyl 5-(3-methoxyphenyl)-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ha):

Physical State: Pale yellow gum.

Yield: 49 mg, 79%.

¹**H** NMR (400 MHz, DMSO- d_6): δ 7.60 – 7.46 (m, 5H), 7.29 (t, J = 8.1 Hz, 1H), 6.89 – 6.81 (m, 3H), 5.33 (t, J = 7.6 Hz, 1H), 4.30 – 4.18 (m, 4H), 3.75 (s, 3H), 3.15 (dd, J = 13.5, 7.6 Hz, 1H), 2.36 (dd, J = 13.6, 7.8 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 167.5, 167.0, 159.5, 153.0, 143.5, 132.1, 130.5, 129.8, 129.2, 120.4, 118.7, 112.8, 112.4, 93.4, 83.3, 74.2, 72.7, 62.3, 55.2, 40.9, 13.9.

IR (neat) (\tilde{v}): 2980, 2924, 2216, 1730, 1602, 1443, 1258, 1035, 786 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₆NO₅ [M+H]⁺ = 420.1811, found 420.1812.

Diethyl 5-mesityl-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ia):

Physical State: Yellow solid.

Melting Point: 87.5 °C – 90 °C.

Yield: 60 mg, 92% (under N₂ atm.); 57 mg, 89% (under air atm.).

¹**H NMR (400 MHz, CDCl₃):** δ 7.57 – 7.54 (m, 2H), 7.42 – 7.34 (m, 3H), 6.83 (s, 2H), 5.56 – 5.51 (m, 1H), 4.38 – 4.23 (m, 4H), 3.12 (dd, *J* = 13.4, 7.3 Hz, 1H), 2.56 (dd, *J* = 13.4, 10.0 Hz, 1H), 2.29 (s, 6H), 2.26 (s, 3H), 1.36 – 1.29 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.3, 152.3, 137.0, 136.7, 133.5, 132.5, 130.2, 129.8, 128.6, 121.7, 93.7, 83.6, 72.9, 72.2, 62.5, 62.4, 39.7, 20.9, 20.8, 14.2, 14.2.

IR (neat) (\tilde{v}): 3029, 2962, 2215, 1731, 1600, 1582, 1485, 1313, 1162, 1076, 1017, 850, 754 cm⁻¹.

HRMS: m/z calculated for C₂₇H₃₀NO₄ [M+H]⁺ = 432.2175, found 432.2174.

Dimethyl 5-phenyl-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ja):

Physical State: Yellow viscous liquid.

Yield: 46 mg, 84%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.56 – 7.53 (m, 2H), 7.41 – 7.24 (m, 8H), 5.31 (t, *J* = 7.8 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.22 (dd, *J* = 13.5, 7.3 Hz, 1H), 2.51 (dd, *J* = 13.4, 8.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 168.4, 167.9, 153.8, 141.6, 132.6, 130.0, 128.8, 128.6, 127.7, 126.8, 121.9, 94.7, 83.1, 75.0, 73.1, 53.6, 53.4, 42.1.

IR (neat) (\tilde{v}): 3031, 2924, 2216, 1732, 1602, 1491, 1310, 1171, 1029, 787 cm⁻¹.

HRMS: m/z calculated for C₂₂H₂₀NO₄ [M+H]⁺ = 362.1392, found 362.1398.

Diisopropyl 5-phenyl-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ka):

Physical State: Yellow viscous liquid.

Yield: 54 mg, 87%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.55 (d, *J* = 7.9 Hz, 2H), 7.38 – 7.28 (m, 8H), 5.32 (t, *J* = 7.7 Hz, 1H), 5.19 – 5.07 (m, 2H), 3.24 (dd, *J* = 13.5, 7.5 Hz, 1H), 2.46 (dd, *J* = 14.0, 8.6 Hz, 1H), 1.33 – 1.27 (m, 12H).

¹³C NMR (101 MHz, CDCl₃): δ 167.6, 166.9, 154.4, 142.0, 132.4, 129.8, 128.8, 128.6, 127.6, 126.9, 121.7, 93.9, 83.7, 75.1, 73.2, 41.7, 21.8, 21.7, 21.7, 21.6.

IR (neat) (\tilde{v}): 3055, 2930, 2218, 1725, 1603, 1491, 1376, 1146, 1026, 732 cm⁻¹.

HRMS: m/z calculated for C₂₆H₂₈NO₄ [M+H]⁺ = 418.2018, found 418.2021.

Dimethyl 5-(4-nitrophenyl)-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3la):

Physical State: Yellow viscous liquid.

Yield: 44 mg, 72%.

¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 8.7 Hz, 2H), 7.58 – 7.56 (m, 2H), 7.50 (d, 2H, J = 8.7 Hz, 2H), 7.44 – 7.36 (m, 3H), 5.41 (t, J = 7.9 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.29 (dd, J = 13.5, 7.4 Hz, 1H), 2.46 (dd, J = 13.4, 8.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 168.0, 167.5, 155.0, 149.0, 147.5, 132.7, 130.3, 128.7, 127.6, 124.1, 121.0, 95.8, 82.7, 74.0, 73.1, 53.8, 53.7, 41.7.

IR (neat) (\tilde{v}): 3054, 2956, 2217, 1736, 1603, 1491, 1348, 1173, 731 cm⁻¹.

HRMS: m/z calculated for C₂₂H₁₉N₂O₆ [M+H]⁺ = 407.1243, found 407.1247.

Diethyl 5-(naphthalen-2-yl)-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ma):

Physical State: Yellow viscous liquid.

Yield: 55 mg, 84%.

¹H NMR (400 MHz, CDCl₃): δ 7.86 – 7.79 (m, 5H), 7.59 – 7.54 (m, 2H), 7.48 – 7.37 (m, 5H), 5.50 (t, J = 7.8 Hz, 1H), 4.37 – 4.26 (m, 4H), 3.33 (dd, J = 13.5, 7.4 Hz, 1H), 2.57 (dd, J = 13.4, 8.2 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.0, 167.4, 154.4, 139.2, 133.5, 132.9, 132.5, 129.9, 128.6, 128.1, 127.8, 126.3, 126.0, 125.4, 124.9, 121.5, 94.5, 83.4, 75.1, 73.2, 62.7, 62.5, 41.8, 14.2.

IR (neat) (\tilde{v}): 3055, 2925, 2217, 1730, 1601, 1489, 1366, 1184, 1073, 756 cm⁻¹.

HRMS: m/z calculated for C₂₈H₂₆NO₄ [M+H]⁺ = 440.1862, found 440.1864.

Diethyl 2-(phenylethynyl)-5-vinyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3na):

Physical State: White viscous liquid.

Yield: 32 mg, 63%.

¹H NMR (400 MHz, CDCl₃): δ 7.54 – 7.51 (m, 2H), 7.42 – 7.33 (m, 3H), 5.98 – 5.90 (m, 1H), 5.31 – 5.17 (m, 2H), 4.78 – 4.73 (m, 1H), 4.34 – 4.23 (m, 4H), 2.93 (dd, *J* = 13.3, 7.4 Hz, 1H), 2.40 (dd, *J* = 13.3, 7.1 Hz, 1H), 1.31 – 1.28 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.0, 167.5, 153.7, 137.7, 132.4, 129.8, 128.6, 121.5, 116.6, 94.0, 83.3, 73.8, 72.6, 62.6, 62.5, 39.1, 14.2, 14.2.

IR (neat) (\tilde{v}): 2982, 2217, 1731, 1587, 1444, 1367, 1190, 1068, 758 cm⁻¹.

HRMS: m/z calculated for C₂₀H₂₂NO₄ [M+H]⁺ = 340.1549, found 340.1548.

Diethyl 5-cyclopropyl-2-(phenylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (30a):

Physical State: Yellow viscous liquid.

Yield: 25 mg, 52%,

¹H NMR (400 MHz, CDCl₃): δ 7.54 – 7.51 (m, 2H), 7.41 – 7.32 (m, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.66 – 3.60 (m, 1H), 2.87 (dd, J = 13.5, 7.1 Hz, 1H), 2.40 (dd, J = 13.5, 7.5 Hz, 1H), 0.97 – 0.87 (m, 1H), 0.68 – 0.53 (m, 2H), 0.50 – 0.45 (m, 1H), 0.41 – 0.35 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 168.7, 168.2, 152.7, 132.5, 129.9, 128.6, 121.5, 93.9, 83.1, 76.7, 72.5, 53.5, 53.4, 39.2, 16.0, 3.8, 3.1.

IR (neat) (\tilde{v}): 3004, 2954, 2216, 1734, 1602, 1489, 1311, 1159, 1025, 758 cm⁻¹.

HRMS: m/z calculated for C₁₉H₂₀NO₄ [M+H]⁺ = 326.1392, found 326.1391.

Diethyl 5-phenyl-2-(p-tolylethynyl)-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (3ab):

Physical State: Yellow viscous gum.

Yield: 56 mg, 93%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.44 (d, J = 8.1 Hz, 2H), 7.37 – 7.28 (m, 5H), 7.17 (d, J = 8.2 Hz, 2H), 5.31 (t, J = 7.8 Hz, 1H), 4.34 – 4.24 (m, 4H), 3.24 (dd, J = 13.4, 7.4 Hz, 1H), 2.49 (dd, J = 13.4, 8.2 Hz, 1H), 2.38 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.5, 154.2, 141.9, 140.4, 132.4, 129.4, 128.7, 127.6, 126.8, 118.5, 94.8, 83.0, 75.0, 73.2, 62.6, 62.5, 41.9, 21.8, 14.3, 14.2.

IR (neat) (v): 3010, 2964, 2217, 1730, 1587, 1440, 1263, 1058, 803 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₆NO₄ [M+H]⁺ = 404.1862, found 404.1866.

Diethyl 2-((4-methoxyphenyl)ethynyl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ac):

Physical State: Yellow viscous liquid.

Yield: 56 mg, 90%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.49 (d, *J* = 8.7 Hz, 2H), 7.38 – 7.27 (m, 5H), 6.88 (d, *J* = 8.9 Hz, 2H), 5.30 (t, *J* = 7.8 Hz, 1H), 4.35 – 4.23 (m, 4H), 3.83 (s, 3H), 3.23 (dd, *J* = 13.4, 7.4 Hz, 1H), 2.49 (dd, *J* = 13.4, 8.2 Hz, 1H), 1.34 – 1.26 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.5, 160.9, 154.2, 142.0, 134.2, 128.7, 127.6, 126.8, 114.3, 113.5, 94.9, 82.6, 74.9, 73.1, 62.6, 62.4, 55.5, 41.9, 14.3, 14.2.

IR (neat) (\tilde{v}): 3055, 2924, 2211, 1730, 1597, 1460, 1259, 1172, 1028, 735 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₆NO₅ [M+H]⁺ = 420.1811, found 420.1815.

Diethyl 2-((4-(tert-butyl)phenyl)ethynyl)-5-phenyl-4,5-dihydro-3*H*-pyrrole 3,3dicarboxylate (3ad):

Physical State: Yellow viscous liquid.

Yield: 61 mg, 92%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.51 – 7.46 (m, 2H), 7.40 – 7.26 (m, 7H), 5.31 (t, *J* = 7.8 Hz, 1H), 4.37 – 4.24 (m, 4H), 3.25 (dd, *J* = 13.4, 7.4 Hz, 1H), 2.50 (dd, *J* = 13.4, 8.3 Hz, 1H), 1.35 – 1.27 (m, 15H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.4, 154.2, 153.4, 141.9, 132.3, 128.7, 127.6, 126.8, 125.6, 118.5, 94.7, 82.9, 75.0, 73.2, 62.6, 62.4, 41.9, 35.1, 31.2, 14.2.

IR (neat) (v): 3054, 2931, 2214, 1731, 1596, 1495, 1263, 1181, 1030, 732 cm⁻¹.

HRMS: m/z calculated for C₂₈H₃₂NO₄ [M+H]⁺ = 446.2331, found 446.2331.

Diethyl 5-phenyl-2-(*m*-tolylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ae):

Physical State: Yellow viscous gum.

Yield: 51 mg, 85%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.15 (m, 9H), 5.32 (t, *J* = 7.8 Hz, 1H), 4.38 – 4.22 (m, 4H), 3.25 (dd, *J* = 13.5, 7.4 Hz, 1H), 2.50 (dd, *J* = 13.4, 8.2 Hz, 1H), 2.35 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): 168.0, 167.4, 154.1, 141.9, 138.3, 133.0, 130.8, 129.6, 128.7, 128.5, 127.6, 126.8, 121.4, 94.6, 83.1, 75.0, 73.2, 62.6, 62.5, 41.9, 21.3, 14.2.

IR (neat) (\tilde{v}): 3057, 2924, 2212, 1730, 1603, 1449, 1263, 1095, 734 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₆NO₄ [M+H]⁺ = 404.1862, found 404.1863.

Diethyl 2-(mesitylethynyl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3af):

Physical State: Yellow viscous liquid.

Yield: 60 mg, 93%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.28 (m, 5H), 6.94 – 6.84 (s, 2H), 5.32 (t, *J* = 7.7 Hz, 1H), 4.36 – 4.24 (m, 4H), 3.29 (dd, *J* = 13.3, 7.3 Hz, 1H), 2.46 – 2.42 (m, 7H), 2.30 (s, 3H), 1.31 – 1.24 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.3, 167.4, 154.2, 142.0, 141.8, 139.7, 128.7, 127.9, 127.6, 126.9, 118.3, 92.7, 90.8, 75.2, 73.2, 62.6, 62.4, 42.4, 21.6, 21.0, 14.2, 14.1.

IR (neat) (v): 3053, 2984, 2205, 1730, 1595, 1367, 1292, 1183, 1028, 733 cm⁻¹.

HRMS: m/z calculated for C₂₇H₃₀NO₄ [M+H]⁺ = 432.2175, found 432.2179.

Diethyl 2-(oct-1-yn-1-yl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ak):

Physical State: Yellow Oil.

Yield: 46 mg, 76%.

¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.29 (m, 2H), 7.28 – 7.21 (m, 3H), 5.21 (t, *J* = 7.8 Hz, 1H), 4.32 – 4.17 (m, 4H), 3.16 (dd, *J* = 13.4, 7.3 Hz, 1H), 2.44 – 2.36 (m, 3H), 1.62 – 1.53 (m, 2H), 1.45 – 1.37 (m, 2H), 1.33 – 1.23 (m, 10H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.5, 141.9, 128.7, 127.5, 126.8, 97.1, 75.2, 74.5, 72.9, 62.4, 62.3, 42.0, 31.4, 28.7, 28.1, 22.6, 19.6, 14.2, 14.1.

IR (neat) (\tilde{v}): 2930, 2230, 1730, 1599, 1450, 1366, 1233, 1178, 1066, 1019, 860, 699 cm⁻¹.

HRMS: m/z calculated for C₂₄H₃₁NO₄ [M+H]⁺ = 398.2331, found 398.2339.

Dimethyl 2-(dec-1-yn-1-yl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3al):

Physical State: Yellow Oil.

Yield: 42 mg, 71%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.36 – 7.31 (m, 2H), 7.27 (d, *J* = 8.8 Hz, 3H), 5.22 (t, *J* = 7.8 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.18 (dd, *J* = 13.4, 7.2 Hz, 1H), 2.46 – 2.39 (m, 3H), 1.63 – 1.54 (m, 2H), 1.46 – 1.37 (m, 2H), 1.34 – 1.23 (m, 8H) 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.57, 167.97, 153.88, 141.77, 128.70, 127.55, 126.74, 97.49, 74.94, 74.54, 72.87, 53.46, 53.31, 42.20, 31.97, 29.31, 29.22, 28.93, 28.16, 22.79, 19.59, 14.24.

IR (neat) (\vec{v}): 2926, 2855, 2230, 1735, 1600, 1434, 1236, 1198, 1169, 1069, 1019, 911, 731, 699cm⁻¹.

HRMS: m/z calculated for C₂₄H₃₁NO₄ [M+H]⁺ = 398.2331, found 398.2331.

Diethyl 5-(p-tolyl)-2-(p-tolylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3eb):

Physical State: Yellow viscous liquid.

Yield: 54 mg, 86%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.48 – 7.39 (m, 2H), 7.21 – 7.12 (m, 6H), 5.27 (t, *J* = 7.7 Hz, 1H), 4.33 – 4.22 (m, 4H), 3.21 (dd, *J* = 13.5, 7.4 Hz, 1H), 2.47 (dd, *J* = 13.4, 8.2 Hz, 1H), 2.37 (s, 3H), 2.34 (s, 3H), 1.35 – 1.28 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.5, 154.0, 140.3, 138.9, 137.2, 132.5, 129.4, 129.4, 126.7, 118.5, 94.7, 83.1, 74.8, 73.2, 62.6, 62.4, 41.9, 21.8, 21.3, 14.2.

IR (neat) (\tilde{v}): 2981, 2923, 2214, 1731, 1606, 1446, 1258, 1179, 1074, 734 cm⁻¹.

HRMS: m/z calculated for C₂₆H₂₈NO₄ [M+H]⁺ = 418.2018, found 418.2022.

Diethyl 5-(2-chlorophenyl)-2-(*p*-tolylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3fb):

Physical State: Brownish viscous liquid.

Yield: 54 mg, 82%.

¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.26 (m, 4H), 7.25 – 7.13 (m, 4H), 5.68 (t, *J* = 7.6 Hz, 1H), 4.38 – 4.17 (m, 4H), 3.38 (dd, *J* = 13.6, 7.7 Hz, 1H), 2.44 – 2.31 (m, 4H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.25 (t, *J* = 7.6 Hz, 3H)

¹³C NMR (101 MHz, CDCl₃): δ 167.9, 167.4, 155.1, 140.5, 140.0, 132.5, 129.5, 129.4, 128.7, 127.4, 127.8, 127.3, 118.4, 95.1, 82.9, 73.1, 72.1, 62.6, 62.5, 40.7, 21.8, 14.2, 14.2.

IR (neat) (\tilde{v}): 2981, 2818, 2214, 1732, 1594, 1471, 1258, 1180, 1030, 817 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₅ClNO₄ [M+H]⁺ = 438.1472, found 438.1472.

Diethyl 2-((4-fluorophenyl)ethynyl)-5-(*p*-tolyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3eh):

Physical State: Brownish viscous gum.

Yield: 50 mg, 80%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.56 – 7.50 (m, 2H), 7.21 – 7.14 (m, 4H), 7.06 (t, *J* = 8.7 Hz, 2H), 5.28 (t, *J* = 7.8 Hz, 1H), 4.34 – 4.25 (m, 4H), 3.22 (dd, *J* = 13.4, 7.4 Hz, 1H), 2.46 (dd, *J* = 13.4, 8.2 Hz, 1H), 2.34 (s, 3H), 1.32 (t, *J* = 6.9 Hz, 3H), 1.28 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.0, 167.4, 163.5 (d, ¹*J*_{C-F} = 253.5 Hz), 153.8, 138.8, 137.3, 134.5 (d, ³*J*_{C-F} = 8.70 Hz), 129.4, 126.7, 117.7 (d, ⁴*J*_{C-F} = 2.86 Hz), 116.1 (d, ²*J*_{C-F} = 22.20 Hz), 93.0, 83.3, 74.9, 73.1, 62.6, 62.5, 41.9, 21.3, 14.2.

¹⁹F NMR (377 MHz, CDCl₃): δ -108.0.

IR (neat) (\tilde{v}): 3053, 2985, 2218, 1729, 1591, 1421, 1263, 1155, 1031, 733 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₅FNO₄ [M+H]⁺ = 422.1768, found 422.1775.

Diethyl 5-(4-bromophenyl)-2-((3-methoxyphenyl)ethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ci):

Physical State: Brownish viscous liquid.

Yield: 53 mg, 72%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 8.5 Hz, 2H), 7.26 (t, J = 4.0 Hz, 1H), 7.21 (s, 2H), 7.16 – 7.12 (m, 1H), 7.09 – 7.04 (m, 1H), 6.98 – 6.94 (m, 1H), 5.27 (t, J = 7.8 Hz, 1H), 4.35 – 4.24 (m, 4H), 3.80 (s, 3H), 3.23 (dd, J = 13.5, 7.5 Hz, 1H), 2.42 (dd, J = 13.4, 8.2 Hz, 1H), 1.32 (t, J = 7.4 Hz, 3H), 1.29 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 167.8, 167.2, 154.5, 140.9, 131.8, 129.7, 128.5, 125.0, 122.3, 121.5, 117.2, 116.6, 94.6, 82.9, 74.3, 73.1, 62.7, 62.6, 55.6, 41.7, 14.19, 14.17.

IR (neat) (\tilde{v}): 2980, 2935, 2212, 1728, 1599, 1464, 1367, 1227, 1096, 785 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₅BrNO₅ [M+H]⁺ = 498.0916, found 498.0916.

Diethyl 5-(2-chlorophenyl)-2-((2-chlorophenyl)ethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3fj):

Physical State: Brownish viscous liquid.

Yield: 47 mg, 69%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.63 – 7.60 (m, 1H), 7.45 – 7.27 (m, 5H), 7.27 – 7.20 (m, 2H), 5.72 (t, *J* = 7.6 Hz, 1H), 4.37 – 4.22 (m, 4H), 3.42 (dd, *J* = 13.5, 7.7 Hz, 1H), 2.37 (dd, *J* = 13.5, 7.5 Hz, 1H), 1.34 – 1.25 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 167.9, 167.2, 155.0, 139.8, 136.8, 134.4, 132.5, 131.0, 129.6, 129.5, 128.8, 127.8, 127.3, 126.8, 121.6, 90.7, 87.9, 73.0, 72.4, 62.8, 62.6, 40.9, 14.2, 14.1.

IR (neat) (v): 3661, 2982, 2852, 2220, 1785, 1730, 1599, 1472, 1390, 1261, 1128, 957, 804 cm⁻¹.

HRMS: m/z calculated for C₂₄H₂₂Cl₂NO₄ [M+H]⁺ = 458.0926, found 458.0927.

Diethyl 5-(4-nitrophenyl)-2-(*p*-tolylethynyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3lb):

Physical State: Yellow viscous liquid.

Yield: 29 mg, 46%.

¹**H NMR (400 MHz, CDCl₃):** δ 8.25 – 8.20 (d, *J* = 8.7 Hz, 2H), 7.51 – 7.45 (m, 4H), 7.18 (d, *J* = 8.3 Hz, 2H), 5.39 (t, *J* = 7.9 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.28 (dd, *J* = 13.5, 7.4 Hz, 1H), 2.46 (dd, *J* = 13.4, 8.5 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.1, 167.6, 155.1, 149.1, 147.5, 140.9, 132.6, 129.5, 127.7, 124.1, 118.0, 96.3, 82.3, 74.0, 73.1, 53.8, 53.6, 41.8, 21.9.

IR (neat) (\tilde{v}): 3054, 2927, 2213, 1733, 1599, 1522, 1443, 1348, 1263, 1104, 1014, 732 cm⁻¹.

HRMS: m/z calculated for C₂₃H₂₁N₂O₆ [M+H]⁺ = 421.1400, found 421.1403.

Diethyl 5-phenyl-2-(phenylethynyl)pyrrolidine-3,3-dicarboxylate (5a):

Physical State: Brown viscous liquid.

Yield: 33 mg, 85%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.42 – 7.27 (m, 9H), 7.24 - 7.22 (m, 1H), 5.12 (s, 1H), 4.72 (t, *J* = 8.0 Hz, 1H), 4.29 – 4.17 (m, 4H), 3.30 (dd, *J* = 13.8, 8.0 Hz, 1H), 2.07 (dd, *J* = 13.8, 8.0 Hz, 1H), 1.26 – 1.23 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.9, 168.9, 142.6, 131.8, 128.6, 128.5, 128.4, 127.4, 126.7, 122.7, 87.1, 85.3, 66.0, 62.0, 61.1, 55.8, 41.5, 14.2, 14.1.

IR (neat) (\tilde{v}): 2954, 2923, 2212, 1735, 1596, 1520, 1435, 1347, 1272, 1173, 1034, 818 cm⁻¹.

HRMS: m/z calculated for C₂₄H₂₆NO₄ [M+H]⁺ = 392.1862, found 392.1862.
Diethyl 2-(phenylethynyl)-5-(4-(trifluoromethyl)phenyl)pyrrolidine-3,3-dicarboxylate (5b):

Physical State: yellowish gum.

Yield: 31 mg, 69%.

¹**H NMR (400 MHz, CDCl₃):** δ 7.58 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.42 – 7.38 (m, 2H), 7.33 – 7.28 (m, 3H), 5.11 (s, 1H), 4.77 (t, J = 8.0 Hz, 1H), 4.28 – 4.16 (m, 4H), 3.32 (dd, J = 13.8, 8.2 Hz, 1H), 2.44 (s, 1H), 2.05 (dd, J = 13.8, 7.8 Hz, 1H), 1.28 – 1.23 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.5, 168.8, 147.1, 131.8, 130.2, 129.7 (q, ²*J*_{C-F} = 34.52 Hz), 128.6, 128.5, 127.0, 126.2 (q, ¹*J*_{C-F} = 248.23), 125.6 (q, ³*J*_{C-F} = 3.36 Hz), 122.6, 86.8, 85.6, 65.7, 62.2, 60.4, 55.7, 41.4, 14.2, 14.1.

¹⁹F NMR (377 MHz, CDCl₃): δ -62.44.

IR (neat) (\tilde{v}): 3337, 2982, 2917, 2175, 1734, 1490, 1419, 1325, 1260, 1160, 917, 757 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₅NO₄F₃ [M+H]⁺ = 460.1736, found 460.1737.

Diethyl 2-(phenylethynyl)-5-(o-tolyl)pyrrolidine-3,3-dicarboxylate (5c):

Physical State: yellowish gum.

Yield: 31 mg, 77%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 7.2 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.32 – 7.27 (m, 3H), 7.20 – 7.16 (m, 1H), 7.14 (m, 2H), 5.13 (s, 1H), 4.89 (t, *J* = 8.0 Hz, 1H), 4.28 – 4.16 (m, 5H), 3.30 (dd, *J* = 13.6, 8.0 Hz, 1H), 2.39 (s, 3H), 1.94 (dd, *J* = 13.6, 7.9 Hz, 1H), 1.28 – 1.24 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 170.5, 168.9, 140.9, 135.5, 131.7, 130.3, 128.4, 128.3, 126.9, 126.3, 125.0, 122.7, 87.2, 85.2, 65.7, 70.0, 61.9, 57.4, 55.4, 40.1, 19.5, 14.2, 14.1.

IR (neat) (\tilde{v}): 3338, 2980, 2915, 2219, 1732, 1489, 1392, 1215, 1177, 756 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₈NO₄ [M+H]⁺ = 406.2018 found 406.2018.

2-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyrrole (6):

Physical State: Pale yellow viscous liquid.

Yield: 18 mg, 73%.

¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.55 (m, 2H), 7.42 – 7.27 (m, 8H), 5.27-5.22 (m, 1H), 3.01 – 2.92 (m, 1H), 2.89 – 2.80 (m, 1H), 2.59 – 2.49 (m, 1H), 1.91 – 1.84 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 160.3, 143.6, 132.4, 129.6, 128.6, 128.5, 127.1, 126.6, 121.6, 93.3, 84.7, 76.5, 40.7, 31.9.

IR (neat) (\tilde{v}): 2922, 2851, 2209, 1600, 1491, 1450, 1330, 1262, 1026, 757 cm⁻¹.

HRMS: m/z calculated for C₁₈H₁₆N [M+H]⁺ = 246.1283, found 246.1285.

Diethyl (*Z*)-2-(2-hydroxy-2-(*p*-tolyl)vinyl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (7):

Physical State: Yellow Solid.

Melting Point: 89 °C – 91 °C.

Yield: 26 mg, 55%.

¹**H NMR (400 MHz, CDCl₃):** δ 10.51 (s, 1H), 7.82 (d, *J* = 7.9 Hz, 2H), 7.38 – 7.30 (m, 5H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.25 (s, 1H), 5.04 (t, *J* = 7.6 Hz, 1H), 4.34 – 4.21 (m, 4H), 3.11 (dd, *J* = 13.4, 6.8 Hz, 1H), 2.50 (dd, *J* = 13.5, 8.5 Hz, 1H), 2.39 (s, 3H), 1.34 – 1.27 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 189.5, 168.2, 167.9, 161.4, 141.6, 140.5, 137.2, 129.1, 129.0, 128.4, 127.5, 126.4, 89.4, 65.5, 62.8, 62.5, 61.8, 41.1, 21.6, 14.1.

IR (neat) (\tilde{v}): 3268 (br.), 2976, 2927, 1731, 1607, 1572, 1524, 147, 1367, 1241, 1106, 912, 723 cm⁻¹.

HRMS: m/z calculated for C₂₅H₂₈NO₅ [M+H]⁺ = 422.1862, found 422.1848.

6. Copies of ¹H, ¹³C, ¹⁹F, DEPT-135 NMR spectra

¹H NMR (400 MHz, CDCl₃)

3aa

3ba

Note: * = DCM

¹H NMR (400 MHz, CDCl₃)

3ka

¹H NMR (400 MHz, CDCl₃)

3ma

7. X-ray crystallographic data

For the determination of X-ray crystal structure of **3ia** single crystals were selected and mounted with paratone oil on a glass fiber using gum. The data were collected at 293K on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with a INCOATEC micro-focus source with graphite monochromatic Mo K α radiation ($\lambda = 0.71073$ Å) operating at 50 kV and 30 mA. For the integration of diffraction profiles SAINT program⁵ was used. Adsorption correction was done applying SADABS program.⁶ The crystal structure was solved by SIR 92⁷ and refined by full matrix least square method using SHELXL-97⁸ WinGX system, Ver 1.70.01.⁹ All the non-hydrogen atoms in the structure were located from the Fourier map and refined anisotropically. The hydrogen atoms were fixed by HFIX in their ideal positions and refined using riding model with isotropic thermal parameters. The crystal structure has been deposited to Cambridge Crystallographic Data Centre and allotted deposition number is *2063896*.

Suitable single – crystals of **3ia** for X-ray analysis were grown up from slow crystallization in DCM/*n*-hexane (1:3, v/v) at 1 °C.

6.1 Crystal structure of 3ia:

CCDC No.	2063896	
Formula	C27 H29 N O4	
Formula weight	431.51	
Crystal system	Triclinic	
Space group	P-1	
a, b, c (Å)	9.0386 (4), 10.9319 (5), 13.2664 (6)	
α, β, γ (°)	75.768 (2), 71.588 (2), 87.843 (2)	
V (Å3)	1204.42 (10)	
Z	2	
Calculated Density (g/cm ³)	1.190	
Absorption coefficient (mm ⁻¹)	0.079	
F(000)	460.0	
Theta range for data collection:	e for data collection: 2.2 to 27.1	
Data set	-11: 11 ; -14: 14 ; -16: 17	
Reflection	5296	
Independent refl.	(R(int) = 0.034)	
data $[I > 2\sigma(I)]$	3621	
R indices (all data)	R = 0.0568, WR2 = 0.1655	
S	1.024	
Min. and Max. Resd. Dens. (e/Å3)	-0.19 and 0.26	

Table S1: Crystal data and structure refinement of 3ia.

Selected bond le	engths [Å] of 3ia	Selected bond a	ngles [°] of 3ia
Atoms	Bond lengths [Å]	Atoms	Bond Angles [°]
N1-C9	1.276(2)	N1-C9-C8	121.96(17)
N1-C18	1.480(2)	N1-C9-C10	115.82(16)
01-C11	1.188(3)	C9-N1-C18	108.93(16)
O4-C14	1.186(3)	N1-C18-C17	106.20(15)
C6-C7	1.433(3)	N1-C18-C19	114.11(15)
C7-C8	1.191(3)	O1-C11-C10	124.32(19)
C8-C9	1.433(3)	O4-C14-C10	124.91(19)
C10-C11	1.523(3)	C6-C7-C8	178.1(2)
C10-C14	1.523(3)	С7-С8-С9	177.5(2)
C10-C17	1.540(3)	C8-C9-C10	122.22(16)
C17-C18	1.537(3)	С9-С10-С17	100.35(14)
C18-C19	1.523(3)	С11-С10-С14	111.07(15)
		C11-C10-C17	112.70(15)
		C14-C10-C17	109.86(15)
		C10-C17-C18	103.99(15)
		C17-C18-C19	113.82(15)

Table S2: Bond lengths and bond angles of 3ia

8. References

- [1] A. T. Parsons, M. J. Campbell, J. S. Johnson, Org. Lett. 2008, 10, 2541-2544.
- [2] A. Kreft, P. G. Jones, D. B. Werz, Org. Lett. 2018, 20, 2059-2062.
- [3] a) E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364; b) A. F. G. Goldberg, N. R. O'Connor, R. A. Craig, B. M. Stoltz, Org. Lett. 2012, 14, 5314-5317; c) P. D. Pohlhaus, S. D. Sanders, A. T. Parsons, W. Li, J. S. Johnson, J. Am. Chem. Soc. 2008, 130, 8642-8650; d) I. A. Andreev, N. K. Ratmanova, A. U. Augustin, O. A. Ivanova, I. I. Levina, V. N. Khrustalev, D. B. Werz, I. V. Trushkov, Angew. Chem. Int. Ed. 2021, 60, 7927-7934.
- [4] Y. Li, D. Shi, P. Zhu, H. Jin, S. Li, F. Mao and W. Shi, *Tetrahedron Lett.* 2015, 56, 390-392; b) Y. Du, Z. Li, Tetrahedron Lett. 2018, 59, 4622-4625. c) J. Tang, L. Sun, Z. Lin, J. Yi and W. Shi ChemistrySelect 2020, 5, 15254–15258.
- [5] Bruker, SAINT V7.68A, Bruker AXS Inc., Madison (WI, USA), 2005.
- [6] G. M. Sheldrick, SADABS 2008/2, Göttingen, 2008.
- [7] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst. 1993, 26, 343-350.
- [8] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution and Refinement; University of Göttingen, Göttingen, 43, Germany, 1997
- [9] L. Farrugia, WinGX-A Windows Program for Crystal Structure Analysis, J. Appl. Cryst. 1999, 32, 837-838.
