Supporting Information

Solvent-Free Amide Bond Formation Using a Variety of Methoxysilanes as Coupling Agent

Thomas Lainer,^a Frank Czerny^b and Michael Haas^{*a}

^a Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria

^b Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr.C2, 10623 Berlin, Germany

Table of Content

Experimental Procedures	3
General Considerations	3
General Experimental Procedure	4
Analytic Section	4
Table 1 Spectroscopic Characterization of Compound (6-19)	4
NMR and GC-MS-spectra	7
Figure S1 ¹ H-NMR of 6	7
Figure S2 ¹³ C-NMR of 6	8
Figure S3 GC-MS of 6	9
Figure S4 GC-MS of 7	10
Figure S5 ¹ H-NMR of 8	11
Figure S6 ¹³ C-NMR of 8	12
Figure S7 GC-MS of 8	13
Figure S8 ¹ H-NMR of 9	14
Figure S9 ¹³ C-NMR of 9	15
Figure S10 GC-MS of 9	16
Figure S11 ¹ H-NMR of 10	17
Figure S12 ¹³ C-NMR of 10	
Figure S13 ¹³ C-NMR of 10	19
Figure S14 ¹ H NMR of 11	20
Figure S15 ¹³ C-NMR of 11	21
Figure S16 GC-MS of 11	22
Figure S17 ¹ H NMR of 12	23
Figure S18 ¹³ C-NMR of 12	24
Figure S19 GC-MS of 12	25
Figure S20 ¹ H-NMR of 13	26
Figure S21 ¹³ C-NMR of 13	27
Figure S22 GC-MS of 13	
Figure S23 ¹ H NMR of 15	29
Figure S24 ¹³ C-NMR of 15	
Figure S25 GC-MS of 15	
Figure S26 ¹ H NMR of 16	
Figure S27 ¹³ C-NMR of 16	
Figure S28 GC-MS of 16	
Figure S29 ¹ H NMR of 17	35

Figure S30 ¹³ C-NMR of 17	36
Figure S31 GC-MS of 17	37
Figure S32 ¹ H-NMR of 18	38
Figure S33 ¹³ C-NMR of 18	39
Figure S34 GC-MS of 18	40
Figure S35 ¹ H-NMR of 19	41
Figure S36 ¹³ C-NMR of 19	42
Figure S37 GC-MS of 19	43
Figure S38 SEM/EDX mapping of the polysiloxane on a Si wafer	44
Figure S39 High-resolution XPS Si2p spectrum of the	44
Figure S40 Solid state ¹ H NMR spectrum of the	45
Figure S41 ¹³ C CPMAS NMR spectrum of the polysiloxane	45
Figure S42 ²⁹ Si CPMAS NMR spectrum of the polysiloxane	46

Experimental Procedures

General Considerations

Commercial reagents were used as purchased unless otherwise noted. ¹H (299.95 MHz) and ¹³C (75.43 MHz) NMR spectra were either recorded on a Varian INOVA MHz 300 or a Varian Mercury MHz 300 spectrometer in CDCl₃ or DMSO-d₆ solution and referenced versus TMS using the internal ²H-lock signal of the solvent. Solid state NMR measurements were carried out on a Bruker Avance 400 MHz. Chemical shifts (δ) are given in ppm.

Scanning electron microscopy (SEM) was performed on a GeminiSEM500 NanoVP microscope (ZEISS) integrated with an EDX detector (Bruker Quantax XFlash® 6/60). Data handling and analysis were achieved with the software package EDAX. The SEM experiments were conducted at the Zentrum für Elektronenmikroskopie (ZELMI) of the TU Berlin.

X-ray photoelectron spectroscopy (XPS) was measured on K-Alpha^M + X-ray Photoelectron Spectrometer System (Thermo Scientific) with Hemispheric 180 ° dual-focus analyzer with 128-channel detector. X-ray monochromator is micro focused Al-K α radiation. For the measurement, the powder samples were mounted on conductive carbon tapes in the glovebox and the sample holder was then transferred under vacuum into the spectrometer. The data were collected with an x-ray spot size of 400 µm, 20 scans for survey and 50 scans for regions. Survey spectra were run in the binding energy range of 0-1000 eV. High-resolution spectra of Si2p and O1s were collected.

General Experimental Procedure

Carboxylic acid (1,64 mmol), amine (1.64) and either coupling agent **1** (120 mol% tetramethoxysilane), **2** (60% hexamethoxydisilane) or **3** (20%

dodecamethoxyneopentasilane) were charged in a gc-vial with a needle as pressure release (picture 1). The heating block was heated for 7 hours at 120°C. Once completed aqueous work up with K_2CO_3 took place. The organic solvents were dried over sodium sulphate, filtered and evaporated. The pure compounds could be obtained after column chromatography with heptane/EE 1:1.

Picture 1: Experimental Setup

Analytic Section

	Structure/Yield ^(a)	Spectral Data	Ref.	
6	O 11	¹ H-NMR (CDCl _{3,} 300 MHz): δ 7.73-7.70 (m, 2H, Ar-H),	1	
		7.18-7.42 (m, 8H, Ar-H) 6.57 (br s, 1H, N-H) 4.56 (d,		
	Н	2H); ¹³ C-NMR (CDCl _{3,} 76 MHz): δ 167.42, 138.20,		
	Yield: (1) 99% (2) 99% (3) 99%	134.41, 131.58, 128.82, 128.62, 127.96, 127.66,		
		126.99, 44.19 MS(70ev): m/z 211.1		
7	O U	¹ H-NMR (CDCl _{3,} 300 MHz): δ 7.2-7.40 (m, 5H, Ar-H),	2	
		5.95 (br s, 1H, N-H) 4.45 (d, 2H); 1.2 (s, 9H) ¹³ C-NMR		
	I I I I I I I I I I I I I I I I I I I	(CDCl _{3,} 76 MHz): δ 178.20, 138.22, 128.5, 127.58,		
		43.44, 27.55 MS(70ev): m/z 191.1		
	field. (1) 95% (2) 86% (5) 95%			
8	O.	¹ H-NMR (CDCl ₃ , 300 MHz): δ 8.45(d, 1H, Ar-H), 8.30	3	
		(s, 1H, Ar-H) 8.15 (d, 1H, Ar-H), 7.81 (t, 1H, Ar-H), 7.21		
		(m, 5H, Ar-H); 4.59 (d, 2H) ¹³ C-NMR (CDCl ₃ , 76 MHz):δ		
		164.26, 149.89, 148.11, 138.25, 137.38, 128.73,		
	Yield: (1) 66% (2) 74% (3) 94%	127.88, 127.38, 126.15, 122.38, 43.36.MS(70ev): m/z		
		212.0		
9	0	¹ H-NMR (CDCl _{3,} 300 MHz): δ 7.64 (d, 2H, Ar-H), 7.22	4	
	N N	(m, 5H, Ar-H) 6.91 (d, 2H, Ar-H), 6.02 (s, 1H, N-H),		
		4.56 (q, 2H, Ar-H), 4.56 (q, 2H, Ar-H), 1.45 (t, 3H, Ar-		
		H); ¹³ C-NMR (CDCl ₃ , 76 MHz):δ 166.95, 161.51,		
	Yield: (1) 74% (2) 71% (3) 74%	138,44, 138.15, 128.78, 128.74, 127.90, 114.22,		
		63.63, 44.07, 14.15 MS(70ev): m/z 255.1		
10	O HN	¹ H-NMR (CDCl _{3,} 300 MHz): δ 7.57 (d, 1H, Ar-H) 7.14-	5	
		7.42 (m, 9H, Ar-H), 6.94 (br s, 1H, N-H) 4.56 (d, 2H);		
		¹³ C-NMR (CDCl ₃ , 76 MHz):δ 158.85, 154.78, 148.84,		
	Yield: (1) 51% (2) 61% (3) 81%	137.84, 128.85, 128.0, 127.76, 126.94, 123.75,		
		111.75, 110.68, 43.43 MS(70ev): m/z 251.1		
11	O 	¹ H-NMR (CDCl ₃ , 300 MHz): δ 7.19-7.65 (m, 9H, Ar-H),	6	
		6.36 (br s, 1H, N-H) 4.55 (d, 2H); ¹³ C-NMR (CDCl _{3,} 76		
	H H	MHz): δ 166.11, 137.95, 137.84, 132.76, 128.88,		
		128.43, 127.98, 127.77, 44.11 MS(70ev): m/z 245.0		
	Yield: (1) 66% (2) 54% (3) 82%			
12		¹ H-NMR (CDCl _{3,} 300 MHz): δ 8.17 (d, 2H, Ar-H), 7.86	7	
		(d, 2H, Ar-H)7.24-7.38 (m, 5H, Ar-H) 6.61 (br s, 1H, N-		
		H) 4.59 (d, 2H); ¹³ C NMR (76 MHz, CDCl3) δ 170.90,		
	0 ₂ N			

 Table 1 Spectroscopic Characterization of Compound (6-19)

	Yield: (1) 66 % (2) 57% (3) 83%	138.19, 134.85, 129.47, 129.07, 128.67, 127.51, 127.44, 127.41, 43,84, 43,60; MS(70ev): m/z 225.0	
13	O N H Yield: (1) 95% (2) 95% (3) 98%	¹ H-NMR (CDCl ₃ , 300 MHz): δ 7.08-7.29 (m, 10H, Ar-H), 5.73 (br s, 1H, N-H) 4.31 (d, 2H), 3.53 (s, 2H); ¹³ C-NMR (CDCl ₃ , 76 MHz): δ 167.42, 138.20, 134.41, 131.58, 128.82, 128.62, 127.96, 127.66, 126.99, 44.19 MS(70ev): m/z 211.1	8
14	O O O	No reaction	
15	Yield: (1) 63% (2) 63% (3) 82%	¹ H-NMR (DMSO-d ₆ , 300 MHz): δ 10.6 (br s, 1H, N-H), 8.48 (br,s , 2H, Ar-H) 7.97 (m, 2H, Ar-H), 7.87 (m, 2H, Ar-H) 7.58 7.97 (m, 5H, Ar-H); ¹³ C NMR (76 MHz, DMSO-d ₆) δ 166.48, 150.29, 145.91, 134.24, 132.10, 128.36, 127.72, 113.70, MS(70ev): m/z 198.1	9
16	O N Yield: (1) 65% (2) 90% (3) 93%	¹ H-NMR (DMSO-d ₆ , 300 MHz): δ 7.42 (m, 5H, Ar-H), 3.2-3.5 (m, 4H, Ar-H) 1.59 (m, 6H); ¹³ C NMR (76 MHz, DMSO-d ₆) δ 168.83, 136.55, 129.16, 128.33, 126.54, 47.78, 42.45, 25.50, 24.02; MS(70ev): m/z 188.10	10
17	O H Yield: (1) 70% (2) 60% (3) 85%	¹ H-NMR (CDCl ₃ , 300 MHz): δ 7.34-7.68 (m, 5H, Ar- H),6.18 (bs 1H, N-H) 3.36 (m, 2H,), 1.53 (m, 2H); 1.25 (m, 6H,) 0.82 (m, 3H) ¹³ C NMR ¹³ C NMR (76 MHz, CDCl3) δ 167.23, 134.94, 131.33, 128.58, 126.89, 40.22, 31.80, 29.13, 26.41, 22.64, 13.77.; MS(70ev): m/z 205.10	11
18	Vield: (1) 62% (2) 60% (3) 83%	¹ H-NMR (DMSO-d ₆ , 300 MHz): δ 10.80 (s, 1H) 8.45 (d, 2H) 7.64 (d, 2H) 7.30 (m, 4H,), 3.73 (s, 2H,) ¹³ C NMR (76 MHz, DMSO-d ₆ ,) δ 170.56, 149.15, 146.79, 135.20, 129.21, 128.34, 126.69, 113.29, 43.29,; MS(70ev): m/z 212.0	12
19	O N H	¹ H-NMR (CDCl ₃ , 300 MHz): δ 7.17-7.38 (m, 5H, Ar- H),5.38 (bs 1H, N-H), 3.49 (s, 2H,), 3.11 (m, 2H); 1.33 (m, 2H), 1.15 (m, 6H), 0.78 (m, 3) ¹³ C NMR ¹³ C NMR (76 MHz, CDCl3) δ 170.86, 135.14, 129.44, 129.00,	13
	Yield: (1) 68% (2) 61% (3) 82%	127.30, 43.92, 39.69, 31.38, 29.41, 26.43, 22.50; 13.95 MS(70ev): m/z 219.0	

(a) yield with different coupling agent used: (1) tetramethoxysilane (2) hexamethoxydisilane (3) dodecamethoxyneopentasilane

Figure S2 ¹³C-NMR of **6**

Figure S3 GC-MS of 6

Figure S4 GC-MS of 7

Figure S5¹H-NMR of 8

Figure S6¹³C-NMR of 8

f1

Figure S7 GC-MS of 8

- 14.03		
/0.44 —		_
		_
	-	
-114.14		
126.45		
06'ZZI		
82.821		
81 851 -		
— 191'99 — 199'99		

Figure S9 ¹³C-NMR of **9**

Figure S10 GC-MS of 9

Figure S13 ¹³C-NMR of **10**

ę

G

S

C L

1 10

L L

Figure S16 GC-MS of **11**

Figure S17 ¹H NMR of **12**

Figure S18 ¹³C-NMR of **12**

tition Mi polisyota (Advision on territo) (Advisor of Section of Million (Advisor) (Advisor) (Advisor) (Advisor

Figure S19 GC-MS of 12

Figure S21 ¹³C-NMR of **13**

Figure S22 GC-MS of 13

Figure S23 ¹H NMR of **15**

- 113.78 - 145.91 - 150.29 - 150.29 - 150.29

8**Þ**.86.48

-214.78

Figure S24 ¹³C-NMR of **15**

فحفده فسراء بالوانا والترزيلان

in the Andrew Market and Andrew An

Figure S25 GC-MS of 15

Figure S26 1H NMR of 16

Figure S27 ¹³C-NMR of **16**

Figure S28 GC-MS of 16

Figure S30 ¹³C-NMR of **17**

10 0 -

40 30 20

evena eleptication (periton) periode a la benetation de la produce

Figure S31 GC-MS of 17

Figure S32 ¹H-NMR of **18**

Figure S34 GC-MS of 18

-43.29

-113.29

~ 156.69 128.34 129.21 129.21 ~ 135.20

~146.79 ~149.15

Figure S36 ¹³C-NMR of **49**/I –

والمداخ فالمارة فيغولها متعادم المكاملة المكولانات والمنواردة معطرة والمتغد ومتحلها ومراحمة ومدخمهما والمراحية والمراحية والمراحية

Figure S37 GC-MS of 19

Figure S38 upper row: SEM/EDX mapping of the polysiloxane on a Si wafer; bottom row: SEM/EDX mapping of the polysiloxane on Cu tape.

Figure S39 High-resolution XPS Si2p spectrum of the polysiloxane. Black squares show the experimental data, blue curve shows the envelope of the fit and the yellow curves show the fitted $2p_{3/2}$ and $2p_{1/2}$ areas. Fitting was carried out using Avantage Software of Thermo ScientificTM.

Figure S40 Solid state ¹H NMR spectrum of the polysiloxane.

Figure S41 ¹³C CPMAS NMR spectrum of the polysiloxane.

Figure S42 ²⁹Si CPMAS NMR spectrum of the polysiloxane.

⁸ Tozawa, T.; Yamane, Y.; Mukaiyama, T. Chem. Lett. **2005**, 34, 1334–1335.

¹ L. U. Nordstrøm, H. Vogt, R. Madsen, J. Am. Chem. Soc. 2008, 130, 17672-17673

² Kita, Y.; Akai, S.; Ajimura, N.; Yoshigi, M.; Tsugoshi, T.; Yasuda, H.; Tamura, Y. J. Org. Chem. **1986**, 51, 4150–4158

³ R. Paruszewski.; M. Strupinska., J. P. Stables.; M., Swiade.; S. Czuczwar, Z. Kleinrok, W. Turski *Chem. Pharm. Bull.* **2001**, 49, 629

⁴ C.G. Jorgensen, B. Frolund, J. Kehler, A.A. Jensen, *ChemMedChem* 2011, 6, 725 – 736

⁵ D. N. Sawant, D. B. Bagal, S. Ogawa, K. Selvam and S. Saito, Org. Lett., **2018**, 20, 4397–4400

⁶ L.-Y. Chen, M.-F. Wu, Synthesis 2019, 51, 1595-1602

⁷ S. Jamalifard, J. Mokhtari, Z. Mirjafary, RSC Adv. 2019, 9, 22749-22754

⁹ Q. Shen, T. Ogata, J. Hartwig, J. Am. Chem. Soc. 2008, 130, 20, 6586–6596

¹⁰ T. Ohsima, T. Iwasaki, Y. Maegawa, A. Yoshiyama K. Mashima, J. Am. Chem. Soc. 2008, 130, 10, 2944–2945

¹¹ J. hoerter, K. Otte, S. Gellman and S.Stahl, J. Am. Chem. Soc. 2006, 128, 15, 5177–5183

¹² S. Muthaiah, S. Chandra Ghosh, Joo-Eun Jee, C. Chen, J. Zhang, and S. Hyeok Hong *J. Org. Chem.* **2010**,75, 3002–3006

¹³ S. Muthaiah, S. Chandra Ghosh, Joo-Eun Jee, C. Chen, J. Zhang, and S. Hyeok Hong *J. Org. Chem.* **2010**,75, 3002–3006