Solvent Controlled Synthesis of 2,3-Diarylepoxy Indenone, α-Hydroxy Diarylindanones and their Evaluation as Inhibitors of DNA Alkylation Repair

Rollania Negi¹, Tapan Kumar Jena¹, Jyoti¹, Nikhil Kumar Tuti², Roy Anindya², Faiz Ahmed Khan^{1,*}

¹Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi – 502 285, Sangareddy, Telangana, INDIA

²Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi – 502 285, Sangareddy, Telangana, INDIA

* corresponding author: Anindya Roy, E-mail: anindya@bt.iith.ac.in; Faiz Ahmed Khan, E-mail: faiz@chy.iith.ac.in

1.	¹ H, ¹³ C NMR spectrum of compounds 2 , 3 , 1 , 4	S2-S79
2.	X-ray crystallography Data of compound 2a , 3ab , 3ac	S80-S84

1. Copies of NMR Spectrum:

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 2a

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 2b

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 2c

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 2e

^1H (400 MHz) and ^{13}C (100 MHz) NMR in CDCl3 of Compound 2f

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 2g

 $^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 2i

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 3aa

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 3ac

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 3ad

S 27

 $^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 3ae

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 3af

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 3ag

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 3ah

 $^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 3ai

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 3aj

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 1a

^1H (400 MHz) and ^{13}C (100 MHz) NMR in CDCl3 of Compound 1b

^1H (400 MHz) and ^{13}C (100 MHz) NMR in CDCl3 of Compound 1c

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 1d

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl₃ of Compound 1e

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 1f

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 1g

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 1h

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 1i

$^1\mathrm{H}$ (600 MHz) and $^{13}\mathrm{C}$ (151 MHz) NMR in CDCl3 of Compound 10

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 4a

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 4e

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 4g

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 4i

$^{1}\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 4j

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 41

¹H (400 MHz) and ¹³C (100 MHz) NMR in CDCl₃ of Compound 4m

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 4n

S 76

$^1\mathrm{H}$ (400 MHz) and $^{13}\mathrm{C}$ (100 MHz) NMR in CDCl3 of Compound 40

- 2. Single crystal X-ray data:
- X-ray crystal structure data for 1a,6a-*di*-m-tolyl-1a,6a-dihydro-6H-indeno[1,2b]oxiren-6-one (2a): CCDC Number-2110069

Figure S1. Perspective Drawing of 2a with 40% Ellipsoid Probability.

Single crystals of **2a** was obtained by slow evaporation of chloroform-methanol solution at room temperature.

Table S1. Single Crystallographic Data of 2a

Empirical formula	$C_{24}H_{20}O_2$
Formula weight	340.40
Temperature/K	293.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	18.013(2)
b/Å	10.9258(16)
c/Å	19.1838(15)
a/°	90
β/°	93.691(7)
$\gamma/^{\circ}$	90
Volume/Å ³	3767.7(8)
Z	8
$\rho_{cale}g/cm^3$	1.200
μ/mm^{-1}	0.075

F(000)	1440.0	
Crystal size/mm ³	$0.08\times0.06\times0.04$	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/° 5.87 to 58.21		
Index ranges	$-24 \le h \le 14, -14 \le k \le 13, -23 \le l \le 24$	
Reflections collected	19874	
Independent reflections	8706 [$R_{int} = 0.0400, R_{sigma} = 0.0702$]	
Data/restraints/parameters	8706/0/475	
Goodness-of-fit on F ²	1.036	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1144, \ wR_2 = 0.3373$	
Final R indexes [all data]	$R_1 = 0.2117, wR_2 = 0.4170$	
Largest diff. peak/hole / e Å ⁻³ 1.11/-0.41		

• X-ray crystal structure data for 2-hydroxy-5-methyl-2,3-diphenyl-2,3-dihydro-*1*H-inden-1-one (3ab): CCDC Number-2110074

Figure S2. Perspective Drawing of 3ab with 40% Ellipsoid Probability.

Single crystals of **3ab** was obtained by slow evaporation of DCM-Hexane solution at room temperature.

Table S2. Single Crystallographic Data of 3ab.

Empirical formula	$C_{22}H_{18}O_2$
Formula weight	314.36
Temperature/K	301.41(10)
Crystal system	monoclinic

Space group	$P2_1/n$	
a/Å	8.6355(11)	
b/Å	6.4732(8)	
c/Å	30.237(3)	
α/°	90	
β/°	91.300(11)	
$\gamma/^{\circ}$	90	
Volume/Å ³	1689.8(4)	
Z	4	
$\rho_{calc}g/cm^3$	1.236	
μ/mm^{-1}	0.078	
F(000)	664.0	
Crystal size/mm ³	$0.18 \times 0.14 \times 0.12$	
Radiation	Μο Κα (λ = 0.71073)	
2Θ range for data collection/° 6.144 to 58.06		
Index ranges	$-11 \le h \le 9, -8 \le k \le 8, -40 \le l \le 38$	
Reflections collected	15595	
Independent reflections	3961 [$R_{int} = 0.1080$, $R_{sigma} = 0.0752$]	
Data/restraints/parameters	3961/0/219	
Goodness-of-fit on F ²	1.097	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1086, wR_2 = 0.2983$	
Final R indexes [all data]	$R_1 = 0.1361, wR_2 = 0.3138$	
Largest diff. peak/hole / e Å ⁻³ 0.35/-0.29		

• X-ray crystal structure data for 2-hydroxy-5-methyl-2,3-di-*p*-tolyl-2,3-dihydro-1*H*-inden-1-one (3ac): CCDC Number-2109773

Figure S3. Perspective Drawing of 3ac with 40% Ellipsoid Probability.

Single crystals of **3ac** was obtained by slow evaporation of DCM-Hexane solution at room temperature.

Table 3. Single Crystallographic Data of 3ac.

Empirical formula	$C_{24}H_{22}O_2$
Formula weight	342.16
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	8.739(5)
b/Å	6.410(4)
c/Å	33.594(18)
$\alpha/^{\circ}$	90
β/°	94.590(17)
γ/°	90
Volume/Å ³	1875.7(18)
Z	8
$\rho_{calc}g/cm^3$	1.213
µ/mm ⁻¹	0.076

F(000)	728.0	
Crystal size/mm ³	$0.027\times0.023\times0.012$	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/° 2.432 to 56.67		
Index ranges	$-6 \le h \le 11, -8 \le k \le 8, -32 \le l \le 44$	
Reflections collected	7261	
Independent reflections	4476 [$R_{int} = 0.1120, R_{sigma} = 0.2695$]	
Data/restraints/parameters	4476/0/240	
Goodness-of-fit on F ²	0.901	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0828, wR_2 = 0.1533$	
Final R indexes [all data]	$R_1 = 0.2604, wR_2 = 0.2431$	
Largest diff. peak/hole / e Å ⁻³ 0.42/-0.48		