Asymmetric Hydrogenation of TIPS-Protected Oximes with Chiral Boranes

Kuai Yu,^{a,c} Xiangqing Feng*^{a,b} and Haifeng Du*^{a,b}

^{*a*} Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,

China.

^b University of Chinese Academy of Sciences, Beijing 100049, China.

^c College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. of China.

Supporting Information

General consideration: All air-sensitive compounds were handled under an atmosphere of argon or in a nitrogen-filled glovebox. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker AV 300, 400 or 500 at ambient temperature with CDCl₃ as solvent and TMS as internal standard. Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of TMS (0), to the carbon resonance of the CDCl₃ (77.23). Coupling constants (*J*) were given in Hertz (Hz). IR spectrums were recorded on Perkin-Elmer-983 spectrometer. Column chromatography was performed on silica gel (200-300 mesh). All solvents were purified by conventional methods, distilled before use. Commercially available reagents were used without further purification.

Representative procedure for the synthesis of TIPs-protected oxime 1f

A glass vial was charged with acetophenone (0.60 g, 5.0 mmol), hydroxylamine hydrochloride (0.35 g, 5.0 mmol, 1.0 equiv.), sodium acetate (0.41 g, 5.0 mmol, 1.0 equiv.), and methanol (10 mL) without exclusion of oxygen or moisture. After stirring at room temperature overnight, the reaction mixture was diluted with water. The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL) and the combined organic phases were dried over Na_2SO_4 and filtered. Evaporation of the solvent under reduced pressure yielded the crude oximes which were used without further purification.

A flame-dried Schlenk flask was charged with the above obtained oxime (0.61 g, 4.5 mmol), triisopropylsilyl chloride (1.2 mL, 5.4 mmol, 1.2 equiv.), and CH_2Cl_2 (5 mL). Imidazole (0.62 g, 9 mmol, 2.0 equiv.) in CH_2Cl_2 (10 mL) was added dropwise, and the reaction mixture was stirred at room temperature overnight. After evaporation of the solvent, the residue was purified by flash

column chromatography on silica gel using petroleum ether/EA = 20/1 as eluent to give the desired product **1f** (1.19 g, 90% yield).

J. Mohr and M. Oestreich, Angew. Chem. Int. Ed., 2014, 53, 13278-13281.

Representative procedure for the preparation of racemic products (rac-2f): To a stainless-steel autoclave were added $B(C_6F_5)_3$ (15.3 mg, 0.03 mmol), (*E*)-1-phenylethan-1-one *O*-triisopropylsilyl oxime (**1f**) (87.5 mg, 0.30 mmol), and dry toluene (1.5 mL) in a nitrogen atmosphere glovebox. After being sealed, the autoclave was purged three times with H₂ and the final pressure of hydrogen was adjusted to 4 MPa. The resulting mixture was stirred at 60 °C in an oil bath for 18 h. The solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (petroleum ether/EA = 20/1) on silica gel to give *N*-(1-phenylethyl)-*O*-(triisopropylsilyl)hydroxylamine (**rac-2f**) as a colorless oil.

Representative procedure for asymmetric hydrogenation of *O*-triisopropylsilyl oxime 1f (Scheme 3): To a stainless-steel autoclave, were added HB(C₆F₅)₂ (4) (10.4 mg, 0.03 mmol), chiral diene 3f (16.6 mg, 0.015 mmol), and dry toluene (1.5 mL) in a nitrogen atmosphere glovebox. The resulting mixture was stirred for 10 min at room temperature followed by addition of TIPS-protected oxime 1f (87.5 mg, 0.30 mmol). After being sealed, the autoclave was purged three times with H₂ and the final pressure of hydrogen was adjusted to 40 bar. The resulting mixture was stirred at 60 °C in an oil bath for 18 h. After cooling to room temperature, the solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (petroleum ether/EA = 20/1) on silica gel to give product 2f as a colorless oil (86.7 mg, 97% yield, 65% ee).

General procedure for the removal of TIPS-protecting group of 2r (Scheme 4): In a test tube, 2-Pic-BH₃ (95 mg, 0.90 mmol) and 10% hydrochloric acid in ethanol (1.0 mL) were added to a solution of 2r (96.5 mg, 0.30 mmol) in ethanol (1.0 mL) at 0 °C. The reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with saturated Na₂CO₃ solution (3 mL). The aqueous phase was extracted with ethyl acetate (3×10 mL) and the combined organic phases were dried over MgSO₄. The solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (petroleum ether/EA = 4/1) on silica to give product **5** as a colorless oil (44.1 mg, 86% yield).

General procedure for the synthesis of *N*-benzoyl amines for chiral HPLC analysis: In a test tube, triethylamine (20.0 mg, 0.2 mmol) and benzoyl chloride (27.3 mg, 0.12 mmol.) were added to a solution of TIPS-protected hydroxylamine **2** (0.1 mmol) in DCM (1.0 mL) at room temperature. The reaction mixture was stirred at room temperature for 16 h and was then diluted with water. The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL) and the combined organic phases were dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography (petroleum ether/EA = 10/1) on silica to give the product for the determination of ee.

J. Mas-Rosello, T. Smejkal and N. Cramer, Science, 2020, 368, 1098.

Characterization of substrates

N^{OSiⁱPr₃}

(*E*)-1-phenylethan-1-one *O*-triisopropylsilyl oxime (1f): colorless oil. ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.73-7.64 (m, 2H), 7.38-7.32 (m, 3H), 2.27 (s, 3H), 1.34-1.21 (m, 3H), 1.15-1.07 (m, 18H);
¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.5, 137.3, 129.1, 128.5, 126.2, 18.2, 12.2, 12.1
J. Mohr and M. Oestreich, *Angew. Chem. Int. Ed.*, 2014, **53**, 13278-13281.

(*E*)-1-(2-fluorophenyl)ethan-1-one *O*-triisopropylsilyl oxime (1h): colorless oil. IR (film): 2945, 2867, 1452, 932 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.51-7.54 (m, 1H), 7.35-7.27 (m, 1H), 7.16-7.01 (m, 2H), 2.28 (d, *J* = 3.0 Hz, 3H), 1.33-1.20 (m, 3H), 1.15-1.07 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.9, 158.2 (d, *J* = 224.0 Hz), 130.2 (d, *J* = 8.0 Hz), 129.6 (d, *J* = 4.0 Hz), 125.8 (d, *J* = 12.0 Hz), 123.9 (d, *J* = 3.0 Hz), 116.1 (d, *J* = 22.0 Hz), 17.9, 14.9 (d, *J* = 5.0 Hz), 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -114.3; HRMS (ESI) calcd. for C₁₇H₂₉FNOSi (M+H)⁺: 310.1997, Found: 310.1990.

1-(*o***-tolyl)ethan-1-one** *O***-triisopropylsilyl oxime (1i)**: colorless oil, a mixture of *Z* and *E* isomers (*Z*:*E* = 1:5). IR (film): 2944, 2866, 1463, 920 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.24-7.16 (m, 4H), 2.35 (s, 2.5H), 2.25 (s, 0.5H), 2.21 (s, 2.5H), 2.12 (s, 0.5H), 1.31-1.19 (m, 3H), 1.15-1.06 (m, 15H), 0.98-0.94 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.2, 138.2, 136.0, 130.8, 128.5, 128.4, 125.9, 20.7, 18.2, (18.1 for Z isomer), 16.3, 12.2, (12.0 for Z isomer); HRMS (ESI) calcd. for C₁₈H₃₂NOSi (M+H)⁺: 306.2250, Found: 306.2249.

1-(2-methoxyphenyl)ethan-1-one *O*-triisopropylsilyl oxime (1j): colorless oil, a mixture of *Z* and *E* isomers (*Z*:*E* = 1:3). IR (film): 2944, 2866, 1463, 920 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.30-7.14 (m, 2H), 6.90-6.77 (m, 2H), 3.74 (s, 2H), 2.14 (s, 2.4H), 2.01 (s, 0.8H), 1.25-1.13 (m, 3H), 1.05-1.03 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.6, 157.8, 130.0, 129.8, (128.0 for *Z* isomer), 120.7, 111.4, 55.6, 22.8, 18.3, (18.0 for *Z* isomer), 15.9, 12.2, (12.1 for *Z* isomer); HRMS (ESI) calcd. for $C_{18}H_{32}NO_2Si (M+H)^+$: 322.2197, Found: 322.2194.

(*E*)-1-(3-fluorophenyl)ethan-1-one *O*-triisopropylsilyl oxime (1k): colorless oil. IR (film): 2945, 2867, 1463, 878 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.49-7.27 (m, 3H), 7.08-7.00 (m, 1H), 2.26 (s, 3H), 1.34-1.22 (m, 3H), 1.18-1.08 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.1 (d, *J* = 243.5 Hz), 157.5 (d, *J* = 2.6 Hz), 139.5 (d, *J* = 7.8 Hz), 129.9 (d, *J* = 8.3 Hz), 121.9 (d, *J* = 2.7 Hz), 115.9 (d, *J* = 21.3 Hz), 113.0 (d, *J* = 23.0 Hz), 18.2, 12.2, 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -113.2; HRMS (ESI) calcd. for C₁₇H₂₉FNOSi (M+H)⁺: 310.1997, Found: 310.1990.

(*E*)-1-(3-chlorophenyl)ethan-1-one *O*-triisopropylsilyl oxime (11): colorless oil. IR (film): 2944,
2866, 1461, 990 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.69-7.49 (m, 2H), 7.35-7.21 (m, 2H),
2.25 (s, 3H), 1.36-1.22 (m, 3H), 1.20-1.01 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.4,
139.0, 134.5, 129.7, 129.0, 126.3, 124.3, 18.2, 12.1, 12.0; HRMS (ESI) calcd. for C₁₇H₂₉ClNOSi

(M+H)⁺: 326.1702, Found: 326.1693.

(*E*)-1-(3-bromophenyl)ethan-1-one *O*-triisopropylsilyl oxime (1m): colorless oil. IR (film): 2944, 2866, 1464, 996 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.80-7.78 (m, 1H), 7.63-7.59 (m, 1H), 7.49-7.43 (m, 1H), 7.26-7.19 (m, 1H), 2.24 (s, 3H), 1.34-1.22 (m, 3H), 1.21-1.07 (m, 18H).¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.1, 139.1, 131.7, 129.8, 129.0, 124.5, 122.5, 18.0, 11.9, 11.8; HRMS (ESI) calcd. for C₁₇H₂₉BrNOSi (M+H)⁺: 370.1196, Found: 370.1187.

(*E*)-1-(3-(trifluoromethyl)phenyl)ethan-1-one *O*-triisopropylsilyl oxime (1n): colorless oil. IR (film): 2923, 2867, 1650, 1131 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.91-7.86 (m, 2H), 7.61-7.56 (m, 1H), 7.53-7.43 (m, 1H), 2.29 (s, 3H), 1.35-1.22 (m, 3H), 1.21-1.06 (m, 18H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 157.3, 138.0, 131.0 (q, J = 31.3 Hz), 129.3, 129.0, 125.7 (q, J = 3.8 Hz), 124.3 (q, J = 271.3 Hz), 123.0 (q, J = 3.8 Hz), 18.2, 12.2, 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -62.8; HRMS (ESI) calcd. for C₁₈H₂₉F₃NOSi (M+H)⁺: 360.1965, Found: 360.1956.

(E)-1-(*m*-tolyl)ethan-1-one *O*-triisopropylsilyl oxime (10): colorless oil. IR (film): 2944, 2866, 1463, 939 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.50-7.44 (m, 2H), 7.27-7.11 (m, 2H), 2.37 (s, 3H), 2.26 (s, 3H), 1.34-1.21 (m, 3H), 1.21-1.06 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ

158.6, 138.0, 137.3, 129.8, 128.4, 126.9, 123.4, 21.8, 18.2, 12.2; HRMS (ESI) calcd. for C₁₈H₃₂NOSi (M+H)⁺: 306.2250, Found: 306.2248.

(*E*)-1-(3-methoxyphenyl)ethan-1-one *O*-triisopropylsilyl oxime (1p): colorless oil. IR (film): 2944, 2866, 1464, 942 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.33-7.23 (m, 3H), 6.93-6.87 (m, 1H), 3.82 (s, 3H), 2.26 (s, 3H), 1.34-1.20 (m, 3H), 1.20-1.06 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.7, 158.3, 138.7, 129.4, 118.8, 114.8, 111.6, 55.4, 18.2, 12.2, 12.1; HRMS (ESI) calcd. for C₁₈H₃₂NO₂Si (M+H)⁺: 322.2197, Found: 322.2197.

(*E*)-1-(4-fluorophenyl)ethan-1-one *O*-triisopropylsilyl oxime (1q): colorless oil. IR (film): 2945, 2867, 1511, 930 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.69-7.62 (m, 2H), 7.08-7.00 (m, 2H), 2.25 (s, 3H), 1.33-1.21 (m, 3H), 1.16-1.07 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 164.7, 162.2, 157.5, 133.4, 128.0 (d, *J* = 8.0 Hz), 115.4 (d, *J* = 21.0Hz), 18.2, 12.2, 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -112.9; HRMS (ESI) calcd. for C₁₇H₂₉FNOSi (M+H)⁺: 310.1997, Found: 310.1991.

(*E*)-1-(4-chlorophenyl)ethan-1-one *O*-triisopropylsilyl oxime (1r): colorless oil. IR (film): 2944, 2866, 1461, 990 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.61 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 2.25 (s, 3H), 1.33-1.21 (m, 3H), 1.16-1.06 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.5, 135.7, 135.1, 128.7, 127.4, 18.2, 12.2, 12.0; HRMS (ESI) calcd. for C₁₇H₂₉ClNOSi (M+H)⁺: 326.1702, Found: 326.1693.

(*E*)-1-(4-bromophenyl)ethan-1-one *O*-triisopropylsilyl oxime (1s): colorless oil; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.55 (d, *J* = 9.0 Hz, 2H), 7.48 (d, *J* = 9.0 Hz, 2H), 2.24 (s, 3H), 1.33-1.21 (m, 3H), 1.16-1.06 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.6, 136.2, 131.6, 127.7, 123.3, 18.2, 12.1, 11.9.

J. Mohr and M. Oestreich, Angew. Chem. Int. Ed., 2014, 53, 13278-13281.

(*E*)-1-(*p*-tolyl)ethan-1-one *O*-triisopropylsilyl oxime (1t): colorless oil. IR (film): 2944, 2866, 1463, 926 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 2.35 (s, 3H), 2.25 (s, 3H), 1.33-1.21 (m, 3H), 1.16-1.06 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.4, 139.0, 134.5, 129.2, 126.1, 21.5, 18.2, 12.2, 12.0; HRMS (ESI) calcd. for C₁₈H₃₂NOSi (M+H)⁺: 306.2250, Found: 306.2247.

(*E*)-1-(4-ethylphenyl)ethan-1-one O-triisopropylsilyl oxime (1u): colorless oil. IR (film): 2943, 2866, 1462, 925 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 2.65 (q, *J* = 7.7 Hz, 2H), 2.25 (s, 3H), 1.33-1.21 (m, 3H), 1.24 (t, *J* = 7.5 Hz, 3H), 1.14-1.08 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.9, 136.6, 128.9, 128.5, 126.4, 28.0, 20.3, 18.2, 14.6, 12.2; HRMS (ESI) calcd. for C₁₉H₃₄NOSi (M+H)⁺: 320.2404, Found: 320.2403.

(*E*)-1-(4-methoxyphenyl)ethan-1-one *O*-triisopropylsilyl oxime (1v): colorless oil. ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.62 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 3H), 2.24 (s, 3H), 1.33-1.21 (m, 3H), 1.16-1.05 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.5, 157.9, 129.9, 127.5, 113.9, 55.4, 18.2, 12.2, 11.9.

J. Mohr and M. Oestreich, Angew. Chem. Int. Ed., 2014, 53, 13278-13281.

(*E*)-1-(3,4-dimethylphenyl)ethan-1-one *O*-triisopropylsilyl oxime (1w): colorless oil. IR (film):
2943, 2866, 1463, 880 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.46-7.38 (m, 2H), 7.11 (d, *J* = 7.8 Hz, 1H), 2.28 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H), 1.33-1.21 (m, 3H), 1.17-1.06 (m, 18H); ¹³C NMR

(100 MHz, CDCl₃, ppm) δ 158.3, 137.5, 136.5, 134.7, 129.5, 127.4, 123.5, 20.1, 19.7, 18.1, 12.1,
12.0; HRMS (ESI) calcd. for C₁₉H₃₄NOSi (M+H)⁺: 320.2404, Found: 320.2405.

(*E*)-1-(naphthalen-2-yl)ethan-1-one *O*-triisopropylsilyl oxime (1x): colorless oil. IR (film): 2944, 2866, 1463, 925 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 8.02-7.93 (m, 2H), 7.89-7.77 (m, 3H), 7.51-7.43 (m, 2H), 2.39 (s, 3H), 1.39-1.25 (m, 3H), 1.18-1.08 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.4, 134.7, 133.8, 133.3, 128.6, 128.0, 127.8, 126.6, 126.4, 125.9, 123.7, 18.2, 12.2, 11.9; HRMS (ESI) calcd. for C₂₁H₃₂NOSi (M+H)⁺: 342.2248, Found: 342.2249.

(*E*)-1-phenylpropan-1-one *O*-triisopropylsilyl oxime (1y): colorless oil. IR (film): 2943, 2866, 1463, 934 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm,) δ 7.70-7.62 (m, 2H), 7.40-7.31 (m, 3H), 2.81 (q, *J* = 7.6 Hz, 2H), 1.34-1.23 (m, 3H), 1.22-1.11 (m, 21H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.0, 136.3, 129.0, 128.6, 126.4, 19.6, 18.2, 12.2, 11.2; HRMS (ESI) calcd. for C₁₈H₃₂NOSi (M+H)⁺: 306.2248, Found: 306.2243.

(*E*)-1-(4-methoxyphenyl)propan-2-one *O*-triisopropylsilyl oxime (1z): colorless oil. IR (film): 2942, 2864, 1463, 927 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm,) δ 7.54 (d, *J* = 5.6 Hz, 2H), 6.79 (d, *J* = 5.6 Hz, 2H), 3.71 (s, 3H), 3.22 (s, 2H), 2.16 (s, 3H), 1.27-1.11 (m, 3H), 1.06-0.95 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.2, 157.6, 129.6, 127.2, 113.5, 55.1, 45.8, 17.9, 11.9, 11.6; HRMS (ESI) calcd. for $C_{19}H_{34}NO_2Si (M+H)^+$: 336.2359, Found: 336.2353.

Characterization of products:

(*R*)-*N*-(1-phenylethyl)-*O*-(triisopropylsilyl)hydroxylamine (2f): colorless oil, 86.7 mg, 97% yield, 65% ee, $[\alpha]_D^{24} = +22.6$ (*c* 0.50, CHCl₃). ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.37-7.22 (m, 5H), 4.15 (q, *J* = 6.7 Hz, 1H), 1.47 (d, *J* = 6.7 Hz, 3H), 1.18-1.08 (m, 3H), 1.08-0.96 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 141.9, 128.6, 127.9, 127.6, 62.6, 19.0, 18.3, 12.0.

J. Mohr and M. Oestreich, Angew. Chem. Int. Ed., 2014, 53, 13278-13281.

(*R*)-*N*-(1-(2-fluorophenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2h): colorless oil, 90.1 mg, 96% yield, 45% ee, $[\alpha]_D^{24} = +14.2$ (*c* 0.50, CHCl₃). IR (film): 2945, 2868, 1492, 1231 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.28 (m, 1H), 7.27-7.17 (m, 1H), 7.14-7.06 (m, 1H), 7.06-7.69 (m, 1H), 4.40 (q, *J* = 6.7 Hz, 1H), 1.41 (d, *J* = 6.8 Hz, 3H), 1.19-1.07 (m, 3H), 1.07-0.99 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.2 (d, *J* = 244.0 Hz), 130.2 (d, *J* = 13.4 Hz), 128.7 (d, *J* = 12.0 Hz), 128.7, 124.2 (d, *J* = 3.4 Hz), 115.6 (d, *J* = 22.4 Hz), 56.5, 18.7, 18.4, 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -113.6; HRMS (ESI) calcd. for C₁₇H₃₁FNOSi (M+H)⁺: 312.2153, Found: 312.2154.

HN^{OSi'Pr}3

(R)-N-(1-(o-tolyl)ethyl)-O-(triisopropylsilyl)hydroxylamine (2i): colorless oil, 85.2 mg, 92%

yield, 52% ee, $[\alpha]_D^{24} = +15.1$ (*c* 1.00, CHCl₃). IR (film): 2943, 2866, 1465, 1090 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.34-7.30 (m, 1H), 7.21-7.11 (m, 3H), 5.00 (s, 1H), 4.38 (q, *J* = 6.6 Hz, 1H), 2.39 (s, 3H), 1.39 (d, *J* = 6.6 Hz, 3H), 1.19-1.12 (m, 3H), 1.12-1.02 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 136.1, 130.5, 127.2, 126.3, 126.0, 58.1, 19.6, 18.4, 18.0, 12.1; HRMS (ESI) calcd. for C₁₈H₃₄NOSi (M+H)⁺: 308.2404, Found: 308.2406.

(*R*)-*N*-(1-(1-methoxyphenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2j): colorless oil, 81.2 mg, 88% yield, 48% ee, $[\alpha]_D^{24} = +17.7$ (*c* 0.50, CHCl₃). IR (film): 2906, 2361, 1634, 1461, 1245 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.26-7.21 (m, 1H), 6.95-6.77 (m, 3H), 5.19 (br s, 1H), 4.10 (q, *J* = 6.6 Hz, 1H), 3.80 (s, 3H), 1.45 (d, *J* = 6.6 Hz, 3H), 1.18-1.09 (m, 3H), 1.09-1.01 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.9, 129.6, 119.9, 113.4, 113.2, 62.6, 55.4, 18.9, 18.3, 12.0; HRMS (ESI) calcd. for C₁₈H₃₄NO₂Si (M+H)⁺: 324.2353, Found: 324.2353.

(*R*)-*N*-(1-(3-fluorophenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2k): colorless oil, 86.9 mg, 93% yield, 61% ee, $[\alpha]_D^{24} = +18.2$ (*c* 0.51, CHCl₃). IR (film): 2946, 2869, 1592, 1317 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.33-7.22 (m, 1H), 7.14-6.89 (m, 3H), 4.10 (q, *J* = 6.5 Hz, 1H), 1.40 (d, *J* = 6.7 Hz, 3H), 1.20-1.09 (m, 3H), 1.09-0.99 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.1 (d, *J* = 243.8 Hz), 145.8 (d, *J* = 6.8 Hz), 129.8 (d, *J* = 8.2 Hz), 123.2 (d, *J* = 2.5 Hz), 114.5 (d, *J* = 5.8 Hz), 114.3 (d, *J* = 5.6 Hz), 62.0, 19.6, 18.4, 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -112.3; HRMS (ESI) calcd. for C₁₇H₃₁FNOSi (M+H)⁺: 312.2153, Found: 312.2153.

(*R*)-*N*-(1-(3-chlorophenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2l): colorless oil, 86.1 mg, 86% yield, 60% ee, [α]_D²⁴ = +20.6 (*c* 0.50, CHCl₃). IR (film): 2943, 2866, 1465 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.31 (s, 1H), 7.25-7.19 (m, 3H), 4.06 (q, *J* = 6.8 Hz, 1H), 1.38 (d, *J* = 6.7 Hz, 3H), 1.19-1.08 (m, 3H), 1.08-0.99 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.2, 134.3, 129.7, 127.8, 127.6, 125.8, 62.0, 19.5, 18.4, 12.0; HRMS (ESI) calcd. for C₁₇H₃₁ClNOSi (M+H)⁺: 328.1858, Found: 328.1857.

(*R*)-*N*-(1-(3-bromophenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2m): colorless oil, 100.3 mg, 89% yield, 62% ee, $[\alpha]_D^{24} = +22.1$ (*c* 0.51, CHCl₃). IR (film): 2943, 2866, 1461 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.50 (s, 2H), 7.28-7.17 (m, 2H), 4.07 (q, *J* = 6.8 Hz, 1H), 1.40 (d, *J* = 6.7 Hz, 3H), 1.21-1.10 (m, 3H), 1.10-1.00 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.5, 130.7, 130.6, 130.0, 126.3, 122.5, 62.0, 19.5, 18.4, 18.3, 12.0; HRMS (ESI) calcd. for C₁₇H₃₁BrNOSi (M+H)⁺: 372.1353, Found: 372.1353.

(*R*)-*N*-(1-(3-(trifluoromethyl)phenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2n): colorless oil, 99.3 mg, 90% yield, 68% ee, $[\alpha]_D^{24} = +23.3$ (*c* 0.50, CHCl₃). IR (film): 2881, 2362, 1328, 1129 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.63-7.37 (m, 4H), 4.15 (q, *J* = 6.9 Hz, 1H), 1.42 (d, *J* = 6.6 Hz, 3H), 1.17-1.08 (m, 3H), 1.08-0.96 (m, 18H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 144.2, 131.0, 130.9 (q, J = 31.8 Hz), 128.8, 124.5 (q, J = 270.3 Hz), 124.5 (q, J = 3.7 Hz), 124.3 (q, J = 3.6 Hz), 62.0, 19.4, 18.3, 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -62.4; HRMS (ESI) calcd. for C₁₈H₃₁F₃NOSi (M+H)⁺: 362.2122, Found: 362.2120.

(*R*)-*N*-(1-(*m*-tolyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (20): colorless oil, 98.5 mg, 99% yield, 60% ee, $[\alpha]_D^{24} = +19.7$ (*c* 0.50, CHCl₃). IR (film): 2943, 2866, 1464 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.24-7.03 (m, 4H), 4.06 (q, *J* = 6.6 Hz, 1H), 2.34 (s, 3H), 1.41 (d, *J* = 6.6 Hz, 3H), 1.20-1.10 (m, 3H), 1.10-1.00 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.7, 138.7, 128.2, 128.1, 124.4, 62.2, 21.5, 19.4, 18.2, 11.9; HRMS (ESI) calcd. for C₁₈H₃₄NOSi (M+H)⁺: 308.2404, Found: 308.2406.

(*R*)-*N*-(1-(3-methoxyphenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2p): colorless oil, 86.6 mg, 84% yield, 57% ee, $[\alpha]_D^{24} = +18.6$ (*c* 0.51, CHCl₃). IR (film): 2904, 2361, 1604, 1041 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.25-7.19 (m, 1H), 6.92-6.77 (m, 3H), 4.08 (q, *J* = 6.6 Hz, 1H), 3.80 (s, 3H), 1.42 (d, *J* = 6.8 Hz, 3H), 1.19-1.11 (m, 3H), 1.11-1.01 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.6, 143.7, 129.3, 119.7, 113.2, 112.9, 62.3, 55.2, 19.0, 18.1, 11.8; HRMS (ESI) calcd. for C₁₈H₃₄NO₂Si (M+H)⁺: 324.2353, Found: 324.2358.

(*R*)-*N*-(1-(4-fluorophenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2q): colorless oil, 85.2 mg, 91% yield, 55% ee, $[\alpha]_D^{24} = +16.3$ (*c* 0.50, CHCl₃). IR (film): 2973, 2872, 1605, 1228 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.34-7.22 (m, 2H), 7.05-6.94 (m, 2H), 4.89 (s, 1H), 4.07 (q, *J* = 5.6 Hz, 1H), 1.39 (d, *J* = 6.6 Hz, 3H), 1.17-1.07 (m, 3H), 1.09-0.97 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.3 (d, *J* = 243.4 Hz), 138.7 (d, *J* = 3.0 Hz), 129.1 (d, *J* = 7.9 Hz), 115.2 (d, *J* = 21.0 Hz), 61.7, 19.6, 18.4, 12.0; ¹⁹F NMR (376 MHz, CDCl₃, ppm) δ -111.9; HRMS (ESI) calcd. for C₁₇H₃₁FNOSi (M+H)⁺: 312.2153, Found: 312.2155.

(*R*)-*N*-(1-(4-chlorophenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2r): colorless oil, 92.1 mg, 92% yield, 56% ee, $[\alpha]_D^{24} = +21.8$ (*c* 0.46, CHCl₃). IR (film): 2944, 2867, 1464, 1087 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.34-7.21 (m, 4H), 4.07 (q, *J* = 6.5 Hz, 1H),1.38 (d, *J* = 6.7 Hz, 3H), 1.20-1.08 (m, 3H), 1.08-0.98 (m, 18H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 141.5, 133.1, 128.9, 128.5, 61.7, 19.5, 18.3, 12.0; HRMS (ESI) calcd. for C₁₇H₃₁ClNOSi (M+H)⁺: 328.1858, Found: 328.1856.

HN^{_OSi'Pr}3

(*R*)-*N*-(1-(4-bromophenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2s): colorless oil, 106.1 mg, 89% yield, 59% ee, $[\alpha]_D^{24} = +21.8$ (*c* 0.52, CHCl₃). ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.44 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.3 Hz, 3H), 4.05 (q, J = 6.8 Hz, 1H), 1.38 (d, J = 6.7 Hz, 3H), 1.19-1.08 (m, 3H), 1.08-0.99 (m, 18H); ¹³C NMR (125 MHz, CDCl₃, ppm) δ 142.1, 131.5, 129.3,

121.3, 61.8, 19.5, 18.4, 18.4, 12.0.

J. Mohr and M. Oestreich, Angew. Chem. Int. Ed., 2014, 53, 13278-13281.

(*R*)-*N*-(1-(*p*-tolyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2t): colorless oil, 84.2 mg, 89% yield, 54% ee, $[\alpha]_D^{24} = +18.7$ (*c* 0.53, CHCl₃). IR (film): 2943, 2866, 1465, 1090 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.29-7.08 (m, 4H), 4.06 (q, *J* = 6.3 Hz, 1H), 2.33 (s, 3H), 1.41 (d, *J* = 6.5 Hz, 3H), 1.19-1.11 (m, 3H), 1.11-1.00 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 139.9, 137.2, 129.2, 127.5, 62.1, 21.3, 19.6, 18.4, 12.1; HRMS (ESI) calcd. for C₁₈H₃₄NOSi (M+H)⁺: 308.2404, Found: 308.2406.

(*R*)-*N*-(1-(4-ethylphenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2u): colorless oil, 91.1 mg, 92% yield, 54% ee, $[\alpha]_D^{24} = +18.9$ (*c* 0.58, CHCl₃). IR (film): 2943, 2866, 1462, 992 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.28-7.21 (m, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 4.08 (q, *J* = 6.4 Hz, 1H), 2.63 (q, *J* = 7.5 Hz, 2H), 1.43 (d, *J* = 6.5 Hz, 3H), 1.23 (t, *J* = 7.6 Hz, 3H), 1.20-1.09 (m, 3H), 1.09-1.00 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.4, 145.4, 134.8, 128.0, 126.2, 28.9, 18.2, 15.7, 12.2, 12.0; HRMS (ESI) calcd. for C₁₉H₃₆NOSi (M+H)⁺: 322.2561, Found: 322.2562.

(R)-N-(1-(4-methoxyphenyl)ethyl)-O-(triisopropylsilyl)hydroxylamine (2v): colorless oil, 84.4

mg, 89% yield, 51% ee, $[\alpha]_D^{24} = +17.0$ (*c* 0.50, CHCl₃). ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.25 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.7 Hz, 3H), 4.87 (s, 1H), 4.05 (q, J = 6.6 Hz, 1H), 3.79 (s, 3H), 1.40 (d, J = 6.6 Hz, 3H), 1.18-1.11 (m, 3H), 1.10-1.00 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.1, 134.9, 128.7, 113.8, 61.7, 55.4, 19.5, 18.4, 12.1.

J. Mohr and M. Oestreich, Angew. Chem. Int. Ed., 2014, 53, 13278-13281.

(*R*)-*N*-(1-(3,4-dimethylphenyl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2w): colorless oil, 91.7 mg, 94% yield, 58% ee, $[\alpha]_D^{24} = +19.2$ (*c* 0.50, CHCl₃). IR (film): 2925, 2865, 1635, 1462, 1085 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.13-7.01 (m, 3H), 4.88 (s, 1H), 4.04 (q, *J* = 6.4 Hz, 1H), 2.25 (s, 3H), 2.24 (s, 3H), 1.40 (d, *J* = 6.5 Hz, 3H), 1.22-1.12 (m, 3H), 1.11-1.00 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 140.3, 136.6, 135.8, 129.7, 128.9, 124.9, 62.1, 20.0, 19.6, 18.4, 12.0; HRMS (ESI) calcd. for C₁₉H₃₆NOSi (M+H)⁺: 322.2561, Found: 322.2566.

(*R*)-*N*-(1-(naphthalen-2-yl)ethyl)-*O*-(triisopropylsilyl)hydroxylamine (2x): colorless oil, 92.9 mg, 92% yield, 64% ee, $[\alpha]_D^{24} = +21.8$ (*c* 0.55, CHCl₃). IR (film): 2943, 2865, 1463, 996 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.84-7.72 (m, 4H), 7.50-7.42 (m, 3H), 4.27 (q, *J* = 6.6 Hz, 1H), 1.51 (d, *J* = 6.6 Hz, 3H), 1.20-1.10 (m, 3H), 1.11-1.01 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 140.4, 133.5, 133.1, 128.0, 128.0, 127.8, 126.2, 126.1, 125.9, 125.8, 62.5, 19.6, 18.4, 12.0; HRMS (ESI) calcd. for C₂₁H₃₄NOSi (M+H)⁺: 344.2407, Found: 344.2409.

(*R*)-*N*-(1-phenylpropyl)-*O*-(triisopropylsilyl)hydroxylamine (2y): colorless oil, 86.3 mg, 90% yield, 60% ee, $[\alpha]_D^{24} = +19.9$. (*c* 0.53, CHCl₃). IR (film): 2943, 2866, 1463 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.34-7.23 (m, 5H), 3.95-3.87 (m, 1H), 1.97-1.82 (m, 1H), 1.70-1.51 (m, 1H), 1.31-1.10 (m, 3H), 1.09-0.97 (m, 18H), 0.88 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 141.8, 128.4, 128.1, 127.5, 69.4, 26.4, 18.4, 12.0, 10.9; HRMS (ESI) calcd. for C₁₈H₃₄NOSi (M+H)⁺: 308.2404, Found: 308.2404.

(*R*)-*N*-(1-(4-methoxyphenyl)propan-2-yl)-*O*-(triisopropylsilyl)hydroxylamine (2z): colorless oil, 88.3 mg, 87% yield, 33% ee, $[\alpha]_D^{24} = -11.9$. (*c* 0.54, CHCl₃). IR (film): 2943, 2865, 1463 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.07-7.01 (m, 2H), 6.64 (d, *J* = 6.6 Hz, 2H), 4.66 (s, 1H), 3.84 (m, 1H), 3.58 (s, 3H), 2.96 (dd, *J* = 13.8, 9.0 Hz, 1H), 2.57 (dd, *J* = 13.8, 5.7 Hz, 1H), 1.19 (d, *J* = 6.3 Hz, 3H), 0.97-0.94 (m, 3H), 0.94-0.80 (m, 18H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.4, 134.4, 128.1, 113.3, 64.0, 55.3, 19.0, 17.9, 11.5; HRMS (ESI) calcd. for C₁₉H₃₆NO₂Si (M+H)⁺: 338.2515, Found: 338.2509.

(*R*)-*N*-methoxy-*N*-(1-(4-methoxyphenyl)propan-2-yl)benzamide: According to the general procedure, (*R*)-2z was converted to the *N*-benzoyl derivative for chiral HPLC analysis. ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.40-7.21 (m, 7H), 7.02 (d, J = 8.4 Hz, 2H), 6.82-6.76 (m, 2H), 4.34 (s,

1H), 3.77 (s, 3H), 3.70 (s, 3H), 3.03 (dd, J = 13.8, 9.0 Hz, 1H), 2.64 (dd, J = 13.8, 5.7 Hz, 1H), 1.36 (d, J = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 170.4, 158.4, 135.2, 130.5, 130.3, 130.2, 128.0, 127.4, 113.8, 64.0, 55.3, 39.2, 18.3.

J. Mas-Rosello, T. Smejkal and N. Cramer, Science, 2020, 368, 1098.

(*R*)-*N*-(1-(4-chlorophenyl)ethyl)hydroxylamine (5): white solid, 44.1 mg, 86% yield, 55% ee, $[\alpha]_D^{25} = +8.7. (c \ 0.52, CHCl_2) ([\alpha]_D^{22} = -47.0 (c \ 2.0, CHCl_2) \text{ for } S\text{-isomer})^{\text{lit}}; {}^1\text{H} \text{ NMR} (300 \text{ MHz}, CDCl_3, ppm) \delta 7.36-7.27 (m, 4H), 4.12 (q,$ *J*= 6.7 Hz, 1H), 1.33 (d,*J* $= 6.7 Hz, 3H); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, CDCl_3) \delta 141.4, 133.4, 128.9, 128.7, 61.4, 19.8.$

D. A. Tickell, M. F. Mahon, S. D. Bull and T. D. James, Org. Lett., 2013, 15, 860-863.

(*R*)-*N*-(benzoyloxy)-*N*-(1-(4-chlorophenyl)ethyl)benzamide: According to the general procedure, **5** was converted to the *N*-benzoyl derivative for chiral HPLC analysis. colorless oil, 26.3 mg, 69% yield, 55% ee. IR (film): 2987, 2874, 1724, 1137 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.83-7.73 (m, 2H), 7.58-7.46 (m, 3H), 7.39-7.21 (m, 9H), 5.70 (q, *J* = 6.9 Hz, 1H), 1.60 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 170.4, 168.0, 134.0, 133.9, 133.8, 130.9, 129.7, 128.7, 128.7, 128.3, 127.5, 126.8, 120.5, 57.8, 29.7, 17.3; HRMS (ESI) calcd. for C₂₂H₁₈O₃NClNa (M+Na)⁺: 402.0867, Found: 402.0871.

(*R*)-*N*-(1-(4-bromophenyl)ethyl)hydroxylamine (6): white solid, 56.7 mg, 88% yield, 61% ee, $[\alpha]_D^{25} = +9.6. (c \ 0.60, CHCl_2).$ ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 4.10 (q, *J* = 6.7 Hz, 1H), 1.34 (d, *J* = 6.7 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 141.8, 131.8, 129.1, 121.5, 61.4, 19.7.

G. Zeng, H. Li, Y. Wei, W. Xuan, R. Zhang, L. E. Breden, W. Wang and F.-S. Liang, ACS Synth. Biol., 2017, 6, 921–927.

N-(benzoyloxy)-*N*-(1-(4-bromophenyl)ethyl)benzamide: According to the general procedure, **6** was converted to the *N*-benzoyl derivative for chiral HPLC analysis. colorless oil; 24.3 mg, 57% yield, 61% ee. IR (film): 2987, 2874, 1725, 1139 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.92-7.80 (m, 2H), 7.67-7.59 (m, 3H), 7.53-7.27 (m, 9H), 5.75 (q, *J* = 6.7 Hz, 1H), 1.67 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 173.6, 171.2, 134.0, 133.9, 131.7, 131.0, 129.7, 128.9, 128.7, 128.4, 128.3, 127.5, 126.8, 121.9, 57.9, 17.3; HRMS (ESI) calcd. for C₂₂H₁₈O₃NBrNa (M+Na)⁺: 446.0362, Found: 446.0366.

The chromatography for the determination of enantiomeric excess

2f

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

2j

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (95/5); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (92/8); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (96/4); flow rate: 1.0 mL/min; detection: UV 210 nm

21

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

2n

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (92/8); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

2r

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (98/2); flow rate: 1.0 mL/min; detection: UV 210 nm

2t

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (98/2); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (95/5); flow rate: 1.0 mL/min; detection: UV 210 nm

2v

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (92/8); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (95/5); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (97/3); flow rate: 1.0 mL/min; detection: UV 210 nm

2z

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (80/20); flow rate: 1.0 mL/min; detection: UV 210 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (90/10); flow rate: 1.0 mL/min; detection: UV 210 nm

8

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent**: Hexanes/IPA (90/10); flow rate: 1.0 mL/min; detection: UV 210 nm

Racemic	Chiral
mAU 400 300 200 0 2.5 5 7.5 10 12.5 min	mAU 400 300 200 0 0 5 10 15 20 25 min
Peak RT Area Area % # [min] 1 8.551 1.600e3 49.741 2 11.208 1.617e3 50.259	Peak RT Area Area % # [min] 1 8.570 3.800e3 80.382 2 11.551 927.444 19.618

S60

S62

S90

S98

S111

S122

