Supporting Information

Dipeptide self-assembly into water-channels and gel biomaterial

Ottavia Bellotto,^a Giovanni Pierri,^b Petr Rozhin,^a Maurizio Polentarutti,^c Slavko Kralj,^{d,e} Paola D'Andrea,^f Consiglia Tedesco,^{*b} and Silvia Marchesan ^{*a}

* ctedesco@unisa.it, smarchesan@units.it

^a University of Trieste, Chem. Pharm. Sc. Dept., Via L. Giorgieri 1, 34127 Trieste, Italy.

^b University of Salerno, Chemistry and Biology Dept. "A. Zambelli", Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.

^c Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy

^d Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia

^e University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia

^f University of Trieste, Life Sciences Dept., Via L. Giorgieri 5, 34127 Trieste, Italy

Table of Contents

S1.	D-Phe-L-Val spectroscopic data	2
S2.	D-Val-L-Phe spectroscopic data	5
S3.	HPLC traces	8
S4.	CD spectra	8
S5.	Thioflavin T fluorescence assay	9
S6.	Single-crystal XRD data	. 10
S7.	Oscillatory rheometry data	. 14
S8.	Thermoreversibility test	14

¹**H NMR** (400 MHz, DMSO-*d*₆, TMS) δ (ppm): 8.59 (d, J = 8.6 Hz, 1H), 7.36 – 7.23 (m, 5H), 4.23 – 4.13 (m, 2H), 3.05 (dd, J = 13.8, 6.7 Hz, 1H), 2.97 (dd, J = 13.8, 7.9 Hz, 1H), 2.01 – 1.88 (m, 1H), 0.75 (d, J = 6.8 Hz, 3H), 0.73 (d, J = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆, TMS) δ (ppm): 172.4, 168.3 (2 x CO); 134.9, 129.5, 128.5, 127.1 (Ar); 57.3, 53.2 (2 x αC); 37.6, 30.1 (2 x βC); 18.8, 17.7 (2 x γC). **MS (ESI):** m/z 265.1 (M+H)⁺, 287.1 (M+Na) ⁺, 263 (M-H)⁻.

Fig. S1. ¹H-NMR spectrum of D-Phe-L-Val.

Fig. S3. ¹³C-NMR spectrum of D-Phe-L-Val.

Fig. S4. ESI-MS spectrum of D-Phe-L-Val (positive ion mode).

Fig. S5. ESI-MS spectrum of D-Phe-L-Val (negative ion mode).

¹**H NMR** (400 MHz, DMSO-*d*₆, TMS) δ (ppm): 8.69 (d, J = 8.4 Hz, 1H), 7.31 – 7.15 (m, 5H), 4.59 (ddd, J = 10.3, 8.4, 4.4 Hz, 1H), 3.57 (d, J = 4.6 Hz, 1H), 3.16 (dd, J = 13.9, 4.4 Hz, 1H), 2.83 (dd, J = 13.9, 10.4 Hz, 1H), 1.94 – 1.80 (m, 1H), 0.72 (d, J = 6.9 Hz, 3H), 0.51 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆, TMS) δ (ppm): 172.6, 167.9 (2 x CO); 137.3, 129.1, 128.2, 126.5 (Ar); 57.3, 53.5 (2 x αC); 37.1, 29.7 (2 x βC); 18.3, 16.6 (2 x γC). **MS (ESI):** m/z 265.1 (M+H)⁺, 287.1 (M+Na)⁺, 263 (M-H)⁻.

Fig. S6. ¹H-NMR spectrum of D-Val-L-Phe.

Fig. S7. gCOSY 2D-NMR spectrum of D-Val-L-Phe.

Fig. S8. ¹³C-NMR spectrum of D-Val-L-Phe.

Fig. S9. ESI-MS spectrum of D-Val-L-Phe (positive ion mode).

Fig. S10. ESI-MS spectrum of D-Val-L-Phe (negative ion mode).

S3. HPLC traces

Fig. S11. HPLC traces of D-Phe-L-Val (left) and D-Val-L-Phe (right) in water/MeCN gradient system from 5% of MeCN with 0.1% formic acid over 17 min (C-18 Luna Column, 5 µm, 100 Å, 150 x 2 mm, Phenomenex).

S4. CD spectra

Fig. S12. CD spectra (top) and corresponding HT (bottom) of D-Phe-L-Val (left) and D-Val-L-Phe (right) in solution at 1 mM.

S5. Thioflavin T fluorescence assay

Fig. S13. Thioflavin T fluorescence assay for D-Phe-L-Val reveals lack of fluorescence with a signal intensity (I) that is not significant different relative to the control without peptide (I_0) across all concentrations tested, both in solution and gel phase (mgc = 40 mM).

Fig. S14. Thioflavin T fluorescence assay for D-Val-L-Phe reveals lack of fluorescence with a signal intensity (I) that is not significant different relative to the control without peptide (I_0) across all concentrations tested.

S6. Single-crystal XRD data

D-Phe-L-Val (CCDC 2160978) and D-Val-L-Phe (CCDC 2160976).

Crystals of D-Phe-L-Val (CCDC 2160978) and D-Val-L-Phe (CCDC 2160976) were mounted on the diffractometer at the synchrotron Elettra, Trieste (Italy), beamline XRD1 and measured at 100 K. Data collection were performed using synchrotron radiation ($\lambda = 0.7000$ Å) with the rotating crystal method (0.5°/image) for a total of 720 images. Data indexing were performed using MOSFLM,¹ while space groups were determined using POINTLESS.² The software AIMLESS³ was used for scaling the data. The structures were solved using the software SHELXT⁴ and refined through full matrix least-squares based on F^2 using the program SHELXL⁵ and OLEX2⁶ as a GUI. For both crystal structures, non-hydrogen atoms were refined anisotropically, hydrogen atoms were positioned geometrically and included in structure factors calculations but not refined. In the case of D-Val-L-Phe crystal structure, it was possible to localise and refine the water molecules' hydrogen atoms. On the contrary, for the crystal structure of D-Phe-L-Val, it was not possible to do that or add them automatically.

ORTEP diagrams (**Figure S15**) were drawn using OLEX2. Crystallographic data and refinement details are reported in **Table S1**.

(a)

Figure S15. ORTEP diagrams of **(a)** D-Phe-L-Val (CCDC 2160978) and **(b)** D-Val-L-Phe (CCDC 2160976). Atom types: C grey, H white, O red, N blue. Ellipsoids are drawn at 20% probability level. Water molecules were omitted for clarity.

Figure S16. (a) The figure shows the water channels in the crystal structure of D-Phe-L-Val (shown in blue) surrounded by four dipeptides arranged head-to-tail. **(b)** Anphipathic layers in crystal structure of D-Val-L-Phe (hydrophilic regions with solvent molecules are shown in light blue and hydrophobic areas in pink). Atom types: C grey, H white, O red, N blue. Water molecules are depicted in ball-and-stick style.

Figure S17. Typical hydrogen bond pattern of Phe-Phe dipeptide group. Only the interacting water molecule O3W is reported in ball-and-stick style.

Table S1. Crystallographic data and refinement details for the crystal structures of	D-
Phe-L-Val (CCDC 2160978) and D-Val-L-Phe (CCDC 2160976).	

	D-Phe-L-Val (CCDC 2160978)	D-Val-L-Phe
T (17)	(CCDC 2100970)	(CCDC 2100970)
I (K)	100	100
Formula	4(C ₁₄ H ₂₀ N ₂ O ₃), 4(H ₂ O)	2(C ₁₄ H ₂₀ N ₂ O ₃), 5(H ₂ O)
Formula weight	1129.34	618.72
System	tetragonal	monoclinic
Space group	<i>I</i> 4	C2
a (Å)	22.947(3)	19.615(4)
b (Å)	22.947(3)	6.7520(14)
<i>c</i> (Å)	5.6120(11)	13.402(3)
α (°)	90	90
β (°)	90	114.86(3)
y (°)	90	90
V (ų)	2955.1(10)	1610.5(7)
Z	2	2
<i>D</i> _x (g cm⁻³)	1.260	1.276
λ (Å)	0.70000	0.70000
μ (mm⁻¹)	0.090	0.095
F 000	1200.0	668.0
R1 (I > 2σI)	0.0661(2954)	0.0262(4354)
wR2	0.1921(4314)	0.0714(4372)
N. of param.	140	219
GooF	1.043	1.065
$oldsymbol{ ho}_{ extsf{min}}, oldsymbol{ ho}_{ extsf{max}}$ (eÅ ⁻³)	-0.37, 0.53	-0.27, 0.23
Restraints	/	/

[1] T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell and A. G. W. Leslie, *Acta Crystallogr., Sect. D*, 2011, **67**, 271–281.

[2] P. R. Evans, Acta Crystallogr., Sect. D, 2006, 62, 72-82.

[3] P. R. Evans and G. N. Murshudov, Acta Crystallogr., Sect. D, 2013, 69, 1204–1214.

[4] G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, **71**, 3-8.

[5] G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, **71**, 3-8.

[6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.

S7. Oscillatory rheometry data

Fig. S18. Frequency sweep for D-Phe-L-Val at 40 mM.

Fig. S19. Time sweep for D-Val-L-Phe at 40 mM.

S8. Thermoreversibility test

Fig. S20. Thermoreversibility test for D-Phe-L-Val hydrogel