Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Pd-Catalyzed Carbonylative Lactonization of 2-Halidearomatic

Aldehydes with H₂O as Nucleophile

Min Si,^a Jiaqi Yan,^a Yongzheng Ding^a and Hanmin Huang^{*,a,b}

^aDepartment of Chemistry, School of Chemistry and Material Science, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China.

^bState Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China *Corresponding author: <u>hanmin@ustc.edu.cn</u>

Table of contents

1.	General experiment details and materials	2
2.	Experimental procedure for synthesis of starting material	3
3.	Optimization of the reaction conditions	4
4.	General procedure for carbonylative cyclization	9
5.	Spectral data of products	10
6.	Synthetic transformations of product	20
7.	Control experiments	24
8.	X-ray Single Crystal Data	
9.	References	
10.	Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR of the product	31

1. General experiment details and materials

Experimental: All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before used were dried and degassed by standard methods and stored under nitrogen atmosphere. All reactions were monitored by TLC with silica gel-coated plates. Nuclear magnetic resonance (NMR) spectra were recorded on Bruker 400 or 500 spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (J) were reported in Hz and referred to apparent peak multiplications. All the high-resolution mass spectra (HRMS) were carried out using Bruker Micro TOF-QII mass (ESI). Mass spectra were recorded by the mass spectrometry service at the University of Science and Technology of China. Gas chromatography (GC) analyses were performed on Agilent 7890B instrument with Hp-5 column. GC-MS analysis was performed with Agilent 7890B/5975B GC-MS system. Melting points were determined using a WRS-2A of shanghai INESA Physico optiacal instrument Co.,Ltd and are uncorrected. Infrared (IR) spectra were recorded on a Nicolet 6700 Fourier transform infrared spectrophotometer. All chemicals were purchased from commercial sources.

2. Experimental procedure for synthesis of starting material¹

A mixture of 2-bromo-5-hydroxybenzaldehyde (1.0 g, 4.4 mmol), K_2CO_3 (2.1 g, 15.4 mmol) and pentyl iodide (2.3 mL, 15.4 mmol) in DMF (15 mL) was stirred at 100 °C for 2 hours. The reaction mixture was diluted with ethyl acetate (50 mL), and washed with saturated NH₄Cl solution. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography on a silica gel column (petroleum ether/ethyl acetate = 50/1) to afford 2-bromo-5-(pentyloxy)benzaldehyde **1m** (1.0 g, 85% yield) as a colorless liquid.

2-Bromo-5-(pentyloxy)benzaldehyde (1m): The title compound was prepared

according to the general procedure and purified by column chromatography to give a colorless liquid. (1.0 g, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 7.51 (d, *J* = 8.8

Hz, 1H), 7.39 (d, J = 3.2 Hz, 1H), 7.03 (dd, J = 8.8, 3.2 Hz, 1H), 3.97 (t, J = 6.6 Hz, 2H), 1.82 -1.73 (m, 2H), 1.47 - 1.35 (m, 4H), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.9, 158.9, 134.6, 133.9, 123.6, 117.8, 113.4, 68.7, 28.8, 28.2, 22.5, 14.1. **HRMS** (ESI) calcd. for C₁₂H₁₆BrO₂ [M+H]⁺: 271.0334, found: 271.0331.

3. Optimization of the reaction conditions

In the glove box, a mixture of **1a** (184 mg, 1.0 mmol), Pd catalyst (0.025 mmol, 5 mol%), ligand (0.03 mmol, 6 mol%), base (0.75 mmol, 1.5 equiv.) and solvent (1.5 mL) was added to a dry glass vessel. The glass vessel was put into an autoclave and then taken out from glove box. The autoclave was purged and charged with CO (20 atm). The reaction mixture was stirred at 120 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the well-ventilated fume hood. The dr value of the crude reaction mixture was determined by ¹H NMR. Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (petroleum ether/ethyl acetate/CH₂Cl₂ = 20/1/1 - 1/1/1) to give the desired product **2a**.

Br 1a	+ CO O	PdBr ₂ (5 mol%) Ruphos (6 mol%) base (1.5 equiv.) anisole, 120 °C, 12 h	
Entry	base	<u>yield (%)</u> 2a	dr^b
1	Na ₂ CO ₃	32	2.2:1
2	K_2HPO_4	12	2.4:1
3	NaOH	11	3.1:1
4	NaHCO ₃	trace	-
5	K_2CO_3	trace	-
6	C ₂ H ₅ ONa	0	-
7	Na ₃ PO ₄	27	2.3:1
8	K ₃ PO ₄	21	3.1:1
9	DBU	trace	-
10	(<i>i</i> -Pr) ₂ NEt	0	-
11	K ₃ PO ₄ ·H ₂ O	60	2.6:1
12	NEt ₃	0	-

Table S1. Screening of base^a

^{*a*}Reaction conditions: **1a** (1.0 mmol), PdBr₂ (0.025 mmol, 5 mol%), Ruphos (0.03 mmol, 6 mol%), base (0.75 mmol, 1.5 equiv.), CO (20 atm), anisole (1.5 mL), 120 °C, 12 h. ^{*b*}The dr value of the crude reaction mixture was determined by ¹H NMR.

Table S2. Screening of the catalyst precursor^a

Br	+ CO	[Pd] (5 mol%) Ruphos (6 mol%) √ ₃ PO₄·H₂ 0 (1.5 equiv.)	H, O O () H	
1a		anisole, 120 °C, 12 h		
			2a	
Entry	[Pd]	<u>yield (%)</u> 2a	dr^b	
1	PdBr ₂	60	2.5:1	
2	$Pd(acac)_2$	74	2.6:1	
3	[Pd(allyl)Cl]2	82	2.9:1	
4	$Pd(TFA)_2$	72	4.1:1	
5	Pd(COD)Br ₂	80	2.7:1	
6	$Pd(P(t-Bu)_3)_2$	46	2.1:1	
7	Pd(PPh ₃) ₄	56	2.2:1	
8	$Pd_2(dba)_3$	68	2.1:1	
9	$Pd(OAc)_2$	58	3.4:1	
10	Pd(MeCN) ₂ Cl	2 64	2.9:1	

^{*a*}Reaction conditions: **1a** (1.0 mmol), [Pd] (5 mol%), Ruphos (0.03 mmol, 6 mol%), K₃PO₄·H₂O (0.75 mmol, 1.5 equiv.), CO (20 atm), anisole (1.5 mL), 120 °C, 12 h. ^{*b*}The dr value of the crude reaction mixture was determined by ¹H NMR.

Table S3. Screening of ligand^a

Br O 1a	+ CO	[Pd(allyl)Cl] ₂ (2.5 mol%) phosphine-ligand K_3PO_4 ·H ₂ O (1.5 equiv.) anisole, 120 °C, 12 h	
			2a
Entry	ligand	<u>yield (%)</u> 2a	dr^b
1	L1	76	1.9:1
2	L2	78	1.9:1
3	L3	75	2.2:1
4	L4	trace	-
5	L5	82	2.9:1
6	L6	77	2.3:1
7	L7	48	1.5:1
8	L8	65	2.2:1
9	L9	62	2.1:1

^aReaction conditions: 1a (1.0 mmol), [Pd(allyl)Cl]₂ (0.0125 mmol, 2.5 mol%),

phosphine ligand (0.03 mmol, 6 mol%), $K_3PO_4H_2O$ (0.75 mmol, 1.5 equiv.), CO (20 atm), anisole (1.5 mL), 120 °C, 12 h. ^{*b*}The dr value of the crude reaction mixture was determined by ¹H NMR.

Figure S1. The structures of ligands

Table S4	. Scr	eening	of	sol	lvent	.a
----------	-------	--------	----	-----	-------	----

Br		[Pd(allyl)Cl] ₂ (2.5 mol%) Ruphos (6 mol%)	H, O, O	
l 1a	+ 00 -	K ₃ PO₄ [·] H₂ ^O (1.5 equiv.) solvent , 120 ºC, 12 h	O 2a	
Entry	solvent	<u>yield (%)</u> 2a	dr ^b	
1	1,4-dioxane	72	2.0:1	
2	toluene	82	1.5:1	
3	NMP	78	2.1:1	
4	anisole	82	2.9:1	
5	THF	65	1.9:1	
6	DCE	68	2.3:1	

^{*a*}Reaction conditions: **1a** (1.0 mmol), $[Pd(allyl)Cl]_2$ (0.0125 mmol, 2.5 mol%), Ruphos (0.03 mmol, 6 mol%), $K_3PO_4H_2O$ (0.75 mmol, 1.5 equiv.), CO (20 atm), solvent (1.5 mL), 120 °C, 12 h. ^{*b*}The dr value of the crude reaction mixture was determined by ¹H NMR.

[Pd(allyI)Cl]₂ (**x** mol%) Br Ruphos (**y** mol%) CO $K_3PO_4 H_2O$ (1.5 equiv.) anisole, 120 °C, 12 h 1a 2a yield (%) dr^b Entry x mol% y mol% 2a 1 2.5 6 82 2.9:1 2 2.5 11 61 2.1:1

Table S5. Effect on the ratio of palladium to Ruphos^a

^{*a*}Reaction conditions: **1a** (1.0 mmol), $[Pd(allyl)Cl]_2$ (x mol%), RuPhos (y mol%), K₃PO₄·H₂O (0.75 mmol, 1.5 equiv.), CO (20 atm), anisole (1.5 mL), 120 °C, 12 h. ^{*b*}The dr value of the crude reaction mixture was determined by ¹H NMR.

Table S6. Screening of pressures of CO^a

^{*a*}Reaction conditions: **1a** (1.0 mmol), $[Pd(allyl)Cl]_2$ (0.0125 mmol, 2.5 mol%), Ruphos (0.03 mmol, 6 mol%), K₃PO₄·H₂O (0.75 mmol, 1.5 equiv.), CO (x atm), anisole (1.5 mL), 120 °C, 12 h. ^{*b*}The dr value of the crude reaction mixture was determined by ¹H NMR.

Table S7. Screening of temperature^{*a*}

Entry	T (°C)	<u>yield (%)</u> 2a	dr ^b
1	120	83	2.9:1
2	60	trace	-
3	RT	0	-

^{*a*}Reaction conditions: **1a** (1.0 mmol), $[Pd(allyl)Cl]_2$ (0.0125 mmol, 2.5 mol%), Ruphos (0.03 mmol, 6 mol%), K₃PO₄·H₂O (0.75 mmol, 1.5 equiv.), CO (10 atm), anisole (1.5 mL), T/ $^{\circ}$ C, 12 h. ^{*b*}The dr value of the crude reaction mixture was determined by ¹H NMR.

4. General procedure for carbonylative cyclization²

In the glove box, a mixture of **1** (1.0 mmol), K₃PO₄·H₂O (173 mg, 0.75 mmol, 1.5 equiv.), [Pd(allyl)Cl]₂ (4.6 mg, 0.0125 mmol, 2.5 mol%), Ruphos (14.0 mg, 0.03 mmol, 6 mol%) and anisole (1.5 mL) was added to a dry glass vessel. The glass vessel was put into an autoclave and then taken out from glove box. The autoclave was purged and charged with CO (10 atm). The reaction mixture was stirred at 120 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the well-ventilated fume hood. The dr value of the crude reaction mixture was determined by ¹H NMR. The solvent was evaporated under reduced pressure and the resulting residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate/CH₂Cl₂ = 20/1/1 - 1/1/1) to afford the product **2**.

5. Spectral data of products

Rac-3,3'-oxybis(isobenzofuran-1(3H)-one) (2a1): The title compound was prepared

according to general procedure and purified by column chromatography to give a white solid, 87 mg, 62% yield. M. p.: 227-229 °C. **IR** (neat) v(cm⁻¹): 3067, 2923, 1775, 1607, 1460, 1362, 1289, 1057, 935, 892, 752; ¹H NMR (400 MHz,

CDCl₃) δ 7.95 (dt, J = 7.6, 1.1 Hz, 2H), 7.74 - 7.70 (m, 2H), 7.66 - 7.60 (m, 4H), 6.90 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 144.2, 135.0, 131.5, 126.7, 125.9, 124.1, 99.2; **HRMS** (ESI) calcd. for C₁₆H₁₀O₅Na [M+Na]⁺ : 305.0420, found: 305.0427. The compound was confirmed by single-crystal X-ray analysis.

Figure S2. The structure of the product 2a1

Meso-3,3'-oxybis(isobenzofuran-1(3H)-one) (2a2): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 30 mg, 21% yield. M. p.: 204-207 °C. **IR** (neat) $v(cm^{-1})$: 3067, 2924, 1775, 1607, 1467, 1356, 1289, 1060, 935, 895, 751; ¹H NMR (400

MHz, CDCl₃) δ 7.93 (dt, J = 7.6, 1.0 Hz, 2H), 7.82 - 7.74 (m, 4H), 7.68 (td, J = 7.4, 1.2 Hz, 2H), 6.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 144.2, 135.1, 131.6, 127.0, 125.7, 124.6, 98.3; **HRMS** (ESI) calcd. for C₁₆H₁₀O₅Na [M+Na]⁺: 305.0420, found: 305.0429. The compound was confirmed by single-crystal X-ray analysis.

Figure S3. The structure of the product 2a₂

Rac-3,3'-oxybis(4-fluoroisobenzofuran-1(3H)-one) (2b1): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 63 mg, 40% yield. M. p.: 221-223 °C. **IR** (neat) v(cm⁻¹): 3088, 2079, 1787, 1606, 1490, 1368, 1246, 1081, 925, 868, 751; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.68 (td, *J* = 7.9, 4.3 Hz, 2H), 7.39 (t, *J*

= 8.3 Hz, 2H), 6.99 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7 (d, J = 1.6 Hz), 158.9 (d, J = 258.2 Hz), 134.2 (d, J = 6.6 Hz), 130.1 (d, J = 17.2 Hz), 129.6 (d, J = 2.9 Hz), 122.2 (d, J = 19.1 Hz), 121.9 (d, J = 4.3 Hz), 96.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.2; **HRMS** (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0235.

Meso-3,3'-oxybis(4-fluoroisobenzofuran-1(3H)-one) (2b2): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 53 mg, 33% yield. M. p.: 232-235 °C. **IR** (neat) v(cm⁻¹): 3088, 2923, 1792, 1609, 1482, 1359, 1259, 1078, 932, 859, 748; ¹H NMR (400

MHz, DMSO- d_6) δ 7.84 - 7.77 (m, 4H), 7.76 - 7.71 (m, 2H), 7.35 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 166.6, 158.3 (d, J = 255.0 Hz), 134.8 (d, J = 3.1 Hz), 130.4 (d, J = 17.2 Hz), 128.9, 122.4 (d, J = 18.9 Hz), 121.6, 98.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.0; **HRMS** (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0222.

Rac-3,3'-oxybis(5-fluoroisobenzofuran-1(3H)-one) (2c1): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 79 mg, 50% yield. M. p.: 187-189 °C. **IR** (neat) v(cm⁻¹): 3076, 2969, 1781, 1610, 1488, 1356, 1258, 1051, 929, 843, 769; ¹H NMR (400

MHz, CDCl₃) δ 7.97 (dd, J = 8.4, 4.6 Hz, 2H), 7.37 (td, J = 8.6, 2.2 Hz, 2H), 7.31 (dd, J = 7.3, 2.2 Hz, 2H), 6.85 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.2 (d, J = 257.0 Hz), 166.8, 146.8(d, J = 10.4 Hz), 128.4 (d, J = 10.2 Hz), 122.6 (d, J = 2.2 Hz), 119.9 (d, J = 24.1 Hz), 111.7 (d, J = 24.8 Hz), 98.0 (d, J = 2.8 Hz); ¹⁹**F NMR** (376 MHz,

CDCl₃) δ -100.5; **HRMS** (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0238.

Meso-3,3'-oxybis(5-fluoroisobenzofuran-1(3H)-one) (2c2): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 34 mg, 21% yield. M. p.: 196-198 °C. **IR** (neat) v(cm⁻¹): 3076, 2924, 1781, 1613, 1481, 1353, 1246, 1053, 929, 877, 776; ¹H NMR (400

MHz, DMSO- d_6) δ 7.99 (dd, J = 8.4, 4.7 Hz, 2H), 7.94 (dd, J = 8.1, 2.3 Hz, 2H), 7.60 (ddd, J = 9.2, 8.4, 2.4 Hz, 2H), 7.13 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 167.5 (d, J = 252.3 Hz), 166.7, 147.7 (d, J = 11.0 Hz), 127.9 (d, J = 10.5 Hz), 122.3 (d, J = 1.9 Hz), 119.6 (d, J = 24.3 Hz), 112.2 (d, J = 25.2 Hz), 101.0 (d, J = 2.6 Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -102.7; HRMS (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0230.

Rac-3,3'-oxybis(6-fluoroisobenzofuran-1(3H)-one) (2d1): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid yield, 61 mg, 38% yield. M. p.: 206-208 °C. **IR** (neat) $v(\text{cm}^{-1})$: 3067, 2975, 1781, 1622, 1487, 1359, 1051, 931, 867, 721; ¹H NMR (400 MHz, CDCl₃) δ 7.61 - 7.58 (m, 4H), 7.46 (td, *J* = 8.5, 2.4 Hz,

2H), 6.86 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8 (d, J = 3.8 Hz), 165.9 (d, J = 253.1 Hz), 139.7 (d, J = 2.4 Hz), 129.0 (d, J = 9.3 Hz), 126.0 (d, J = 8.9 Hz), 123.0 (d, J = 24.0 Hz), 112.7 (d, J = 24.2 Hz), 98.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.3; HRMS (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0223.

Meso-3,3'-oxybis(6-fluoroisobenzofuran-1(3H)-one) (2d2): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 27 mg, 17% yield. M. p.: 219-221 °C. **IR** (neat) $v(cm^{-1})$: 3073, 2924, 1763, 1616, 1490, 1359, 1270, 1090, 940, 834, 776; ¹H NMR (400

MHz, CDCl₃) δ 7.74 (dd, J = 8.4, 4.2 Hz, 2H), 7.58 (dd, J = 6.9, 2.3 Hz, 2H), 7.53 (td, J = 8.5, 2.4 Hz, 2H), 6.55 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6 (d, J = 3.8

Hz), 165.9 (d, J = 253.2 Hz), 139.7 (d, J = 2.3 Hz), 129.3 (d, J = 9.3 Hz), 126.5 (d, J= 8.9 Hz), 123.2 (d, J = 23.9 Hz), 112.5 (d, J = 24.2 Hz), 97.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.1; **HRMS** (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0240.

Rac-3,3'-oxybis(7-fluoroisobenzofuran-1(3H)-one) (2e1): The title compound was

н

υН ò

 $2e_2$

prepared according to general procedure and purified by column chromatography to give a white solid, 53 mg, 33% vield. M. p.: 229-231 °C. **IR** (neat) v(cm⁻¹): 3067, 2923, 1778, 1622, 1481, 1311, 1262, 934, 803, 779; ¹H NMR (400 MHz,

DMSO- d_6) δ 7.93 (td, J = 7.9, 4.7 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H), 7.57 - 7.52 (m, 2H), 7.05 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.7 (d, J = 2.6 Hz), 159.5 (d, J = 261.5 Hz), 146.5, 138.5 (d, J = 7.9 Hz), 120.6 (d, J = 4.0 Hz), 118.5 (d, J = 18.4 Hz), 113.5 (d, J = 14.3 Hz), 98.8; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -115.5; HRMS (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0232.

Meso-3,3'-oxybis(7-fluoroisobenzofuran-1(3H)-one) (2e2): The title compound was prepared according to general procedure and purified by column chromatography to give a white solid, 12 mg, 8% yield. M. p.: 210-212 °C. IR (neat) v(cm⁻¹): 3082, 2923, 1778, 1609,

1485, 1359, 1261, 1069, 938, 797, 776; ¹H NMR (400 MHz,

DMSO- d_6) δ 7.97 - δ 7.92 (m, 2H), 7.79 (d, J = 7.5 Hz, 2H), 7.55 (t, J = 8.9 Hz, 2H), 7.15 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.9 (d, J = 2.8 Hz), 159.4 (d, J =259.8 Hz), 147.0, 138.2 (d, J = 7.9 Hz), 121.0 (d, J = 4.1 Hz), 118.4 (d, J = 18.5 Hz), 113.5 (d, J = 14.3 Hz), 100.9; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -115.8; HRMS (ESI) calcd. for C₁₆H₈F₂O₅Na [M+Na]⁺: 341.0232, found: 341.0238.

Rac-3,3'-oxybis(5-chloroisobenzofuran-1(3H)-one) (2f1): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 65 mg, 37% yield. M. p.: 222-225 °C. IR (neat) v(cm⁻¹): 3088, 2969, 1772, 1613, 1426, 1344, 1212, 1054, 934, 840, 775; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 2H), 7.64 - 7.60 (m, 4H), 6.84 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 145.6, 141.9, 132.4, 127.1, 125.0, 124.5, 98.1; **HRMS** (ESI) calcd. for C₁₆H₈Cl₂O₅Na [M+Na]⁺: 372.9641, found: 372.9649.

Meso-3,3'-oxybis(5-chloroisobenzofuran-1(3H)-one) (2f2): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 17 mg, 10% yield. M. p.: 228-230 °C. **IR** (neat) $v(\text{cm}^{-1})$: 3082, 2923, 1781, 1609, 1432, 1341, 1215, 1069, 940, 885, 775; ¹H NMR (400

MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 1.7 Hz, 2H), 7.65 (dd, J = 8.2, 1.8 Hz, 2H), 6.56 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 145.7, 142.0, 132.4, 127.0, 125.3, 124.8, 97.7; HRMS (ESI) calcd. for C₁₆H₈Cl₂O₅Na [M+Na]⁺: 372.9641, found: 372.9647.

prepared according to general procedure and purified by column chromatography to give a white solid, 75 mg, 43% yield. M. p.: 228-230 °C. **IR** (neat) $v(cm^{-1})$: 3082, 2923, 1781, 1609, 1432, 1341, 1215, 1069, 940, 885, 775; ¹H

NMR (500 MHz, CDCl₃) δ 7.90 (s, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 6.85 (s, 2H); ¹³C **NMR** (125 MHz, CDCl₃) δ 166.6, 142.2, 138.1, 135.3, 128.5, 125.9, 125.3, 98.8; **HRMS** (ESI) calcd. for C₁₆H₈Cl₂O₅Na [M+Na]⁺: 372.9641, found: 372.9650.

Meso-3,3'-oxybis(6-chloroisobenzofuran-1(3H)-one) (2g2): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 30 mg, 17% yield. M. p.: 208-211 °C. **IR** (neat) $v(cm^{-1})$: 3091, 2923, 1775, 1613, 1420, 1350, 1209, 1051, 923, 837, 776; ¹H

NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 1.9 Hz, 2H), 7.77 (dd, J = 8.2, 1.9 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 6.55 (s, 2H); ¹³C **NMR** (126 MHz, CDCl₃) δ 166.3, 142.2, 138.2, 135.4, 128.7, 125.79, 125.77, 97.8; **HRMS** (ESI) calcd. for C₁₆H₈Cl₂O₅Na [M+Na]⁺: 372.9641, found: 372.9642.

Rac-3,3'-oxybis(7-chloroisobenzofuran-1(3*H*)-one) / *Meso-3,3'-oxybis*(7-

chloroisobenzofuran-1(*3H*)-one) (2h₁ + 2h₂): The title compound was prepared according to general procedure and purified by column chromatography to give a white solid (2h₁ + 2h₂: 106.8 mg, 61% yield, dr = 5.0:1). M. p.: 209-211 °C. IR (neat) v(cm⁻¹): 3085, 2945, 1784, 1594, 1469, 1356, 1209, 1060, 956, 893, 794; ¹H NMR (400 MHz, DMSO- d_6) δ 7.90 -7.83 (m, 2H), 7.79 - 7.73 (m, 4H), 7.11 (s, 0.35H), 7.03 (s,

1.65H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.9, 164.7, 147.1, 146.7, 136.9, 136.7, 132.6, 132.5, 131.3, 131.0, 123.6, 123.2, 122.6, 100.2, 97.9; HRMS (ESI) calcd. for C₁₆H₈Cl₂O₅Na [M+Na]⁺: 372.9641, found: 372.9649.

Rac-3,3'-oxybis(5-methylisobenzofuran-1(3H)-one) (2i1): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 91 mg, 59% yield. M. p.: 184-186 °C. **IR** (neat) v(cm⁻¹): 3061, 2920, 2853, 1771, 1616, 1487, 1353, 1276, 1050, 916, 834, 769; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.44 - 7.40 (m, 4H),

6.84 (s, 2H), 2.47 (s, 6H).; ¹³C NMR (100MHz, CDCl₃) δ 168.3, 146.6, 144.8, 132.5, 125.6, 124.4, 124.1, 99.0, 22.2; **HRMS** (ESI) calcd. for C₁₈H₁₄O₅Na [M+Na]⁺ : 333.0733, found: 333.0742.

Meso-3,3'-oxybis(5-methylisobenzofuran-1(3H)-one) (2i2): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 33 mg, 21% yield. M. p.: 212-214 °C. **IR** (neat) v(cm⁻¹): 3067, 2923, 2853, 1771, 1613, 1487, 1344, 1280, 1050, 934, 843, 769; ¹H **NMR** (400 MHz,

CDCl₃) δ 7.80 (d, J = 7.7 Hz, 2H), 7.54 (s, 2H), 7.46 (d, J = 7.8 Hz, 2H), 6.51 (s, 2H), 2.55 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 146.6, 144.8, 132.6, 125.5, 124.8, 124.4, 98.2, 22.3; **HRMS** (ESI) calcd. for C₁₈H₁₄O₅Na [M+Na]⁺ : 333.0733, found: 333.0735.

Rac-3,3'-oxybis(5-methoxyisobenzofuran-1(3H)-one) (2j1): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 67 mg, 39% yield. M. p.: 226-228 °C. **IR** (neat) v(cm⁻¹): 3073, 2954, 2853, 1784, 1609, 1493, 1356, 1255, 1072, 953, 837, 766; ¹H NMR

(400 MHz, CDCl₃) δ 7.83 (d, J = 8.5 Hz, 2H), 7.13 (dd, J = 8.5, 2.2 Hz, 2H), 7.03 (d, J = 2.2 Hz, 2H), 6.80 (s, 2H), 3.88 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 165.5, 147.2, 127.3, 119.4, 118.6, 107.4, 98.5, 56.2; **HRMS** (ESI) calcd. for C₁₈H₁₄O₇Na [M+Na]⁺: 365.0632, found: 365.0636.

Meso-3,3'-oxybis(5-methoxyisobenzofuran-1(3H)-one) (2j2): The title compound

was prepared according to general procedure and purified by column chromatography to give a white solid, 37 mg, 22% yield. M. p.: 209-212 °C. **IR** (neat) $v(cm^{-1})$: 3070, 2926, 2850, 1778, 1606, 1493, 1353, 1255, 1078, 940, 837, 776;

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 8.4, 0.6 Hz, 2H), 7.16 (d, *J* = 2.2 Hz, 2H), 7.15 (dd, *J* = 8.4, 2.2 Hz, 2H), 6.47 (s, 2H), 3.96 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 167.7, 165.5, 147.2, 127.1, 119.2, 118.9, 108.2, 97.3, 56.3; **HRMS** (ESI) calcd. for C₁₈H₁₄O₇Na [M+Na]⁺: 365.0632, found: 365.0638.

Rac-3,3'-oxybis(5-(benzyloxy)isobenzofuran-1(3H)-one) (2k1): The title compound

was prepared according to general procedure and purified by column chromatography to give a white solid, 81 mg, 33% yield. M. p.: 246-248 °C. **IR** (neat) v(cm⁻¹): 3030, 2935, 1778, 1490, 1322, 1259, 1072, 931, 852, 767; ¹H NMR

(400 MHz, CDCl₃) δ 7.84 (d, J = 8.5 Hz, 2H), 7.42 - 7.33 (m, 10H), 7.20 (dd, J = 8.5, 2.2 Hz, 2H), 7.13 (d, J = 2.2 Hz, 2H), 6.80 (s, 2H), 5.16 - 5.10 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 164.6, 147.1, 135.5, 128.9, 128.6 127.7, 127.4, 119.9, 118.8, 108.4, 98.5, 70.9; **HRMS** (ESI) calcd. for C₃₀H₂₂O₇Na [M+Na]⁺ : 517.1258, found: 517.1266.

Meso-3,3'-oxybis(5-(benzyloxy)isobenzofuran-1(*3H*)-one) (2k₂): The title compound was prepared according to general procedure and purified by column

chromatography to give a white solid, 50 mg, 20% yield. M. p.: 201-203 °C. **IR** (neat) ν(cm⁻¹): 3067, 2923, 1768, 1616, 1493, 1350, 1256, 1078, 934, 867, 775; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.48 - 7.35 (m, 10H),

7.24 - 7.19 (m, 4H), 6.47 (s, 2H), 5.24 - 5.16 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.6, 147.1, 135.5, 128.9, 128.7, 127.8, 127.2, 119.8, 119.1, 109.1, 97.4, 71.0; HRMS (ESI) calcd. for C₃₀H₂₂O₇Na [M+Na]⁺: 517.1258, found: 517.1260.

Rac-3,3'-oxybis(5-(pentyloxy)isobenzofuran-1(3H)-one) (2l1): The title compound

was prepared according to general procedure and purified by column chromatography to give a white solid, 90 mg, 40% yield. M. p.: 75-77 °C. **IR** (neat) $v(cm^{-1})$: 3088, 2957, 2871,

1771, 1606, 1493, 1322, 1261, 1072, 934, 840, 776; ¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.11 (dd, *J* = 8.5, 2.1 Hz, 2H), 7.01 (d, *J* = 2.2 Hz, 2H), 6.79 (s, 2H), 4.02 (t, *J* = 6.5 Hz, 4H), 1.83 - 1.76 (m, 4H), 1.47 - 1.32 (m, 8H), 0.92 (t, *J* = 7.0 Hz, 6H); ¹³**C** NMR (100 MHz, CDCl₃) δ 168.1, 165.1, 147.2, 127.2, 119.6, 118.2, 107.9, 98.5, 69.1, 28.7, 28.1, 22.4, 14.1; **HRMS** (ESI) calcd. for C₂₆H₃₀O₇Na [M+Na]⁺: 477.1884, found: 477.1884.

Meso-3,3'-oxybis(5-(pentyloxy)isobenzofuran-1(3H)-one (2l₂): The title compound

was prepared according to general procedure and purified by column chromatography to give a white solid, 28 mg, 12% yield. M. p.: 107-109 °C. **IR** (neat) v(cm⁻¹): 3064, 2954, 2868, 1765, 1606, 1490, 1347, 1261, 1078,

937, 773; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 2.2 Hz, 2H), 7.12 (dd, J = 8.4, 2.2 Hz, 2H), 6.46 (s, 2H), 4.12 - 4.06 (m, 4H), 1.89 - 1.82 (m, 4H), 1.50 - 1.38 (m, 8H), 0.96 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 165.1, 147.1, 127.0, 119.4, 118.6, 108.6, 97.3, 69.2, 28.7, 28.2, 22.5, 14.1;
HRMS (ESI) calcd. for C₂₆H₃₀O₇Na [M+Na]⁺: 477.1884, found: 477.1895.

Rac-3,3'-oxybis(6-methylisobenzofuran-1(3H)-one) (2m1): The title compound was

prepared according to general procedure and purified by column chromatography to give a white solid, 72 mg, 46% yield. M. p.: 169-171 °C. **IR** (neat) v(cm⁻¹): 3055, 2926, 2865, 1781, 1619, 1496, 1347, 1298, 1054, 943, 816, 773; ¹H

NMR (400 MHz, CDCl₃) δ 7.71 (s, 2H), 7.53 (q, J = 7.8 Hz, 4H), 6.85 (s, 2H), 2.48 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 142.0, 141.6, 135.9, 126.8, 125.7, 123.6, 99.1, 21.5; **HRMS** (ESI) calcd. for C₁₈H₁₄O₅Na [M+Na]⁺ : 333.0733, found: 333.0745.

Meso-3,3'-oxybis(6-methylisobenzofuran-1(3H)-one) (2m2): The title compound

was prepared according to general procedure and purified by column chromatography to give a white solid, 21 mg, 14% yield. M. p.: 158-161 °C. **IR** (neat) v(cm⁻¹): 3021, 2923, 2856, 1763, 1628, 1496, 1283, 1054, 932, 825, 776; ¹H NMR (500

MHz, CDCl₃) δ 7.69 (s, 2H), 7.63 (q, J = 7.9 Hz, 4H), 6.51 (s, 2H), 2.49 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 142.2, 141.7, 136.1, 127.2, 125.7, 124.3, 98.2, 21.6; HRMS (ESI) calcd. for C₁₈H₁₄O₅Na [M+Na]⁺: 333.0733, found: 333.0738.

Rac-3,3'-oxybis(6-methoxyisobenzofuran-1(3H)-one) (2n1): The title compound

was prepared according to general procedure and purified by column chromatography to give a white solid, 66 mg, 39% yield. M. p.: 217-219 °C. **IR** (neat) $v(cm^{-1})$: 3070, 2963, 2835, 1781, 1622, 1496, 1359, 1292, 1047, 937, 819, 773; ¹H NMR (400 MHz, CDCl₃)

δ 7.49 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 2.3 Hz, 2H), 7.25 (dd, J = 8.4, 2.4 Hz, 2H), 6.81 (s, 2H), 3.89 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 162.4 136.6, 128.4, 124.9, 123.3, 108.0, 99.2, 56.1; **HRMS** (ESI) calcd. for C₁₈H₁₄O₇Na [M+Na]⁺ : 365.0632, found: 365.0638.

Meso-3,3'-oxybis(6-methoxyisobenzofuran-1(3*H*)-one) (2n₂): The title compound was prepared according to general procedure and purified by column chromatography to give a white solid, 23 mg, 13% yield. M. p.: 157-160 °C. **IR** (neat) v(cm⁻¹): 3076,

2954, 2850, 1778, 1619, 1496, 1322, 1249, 1053, 943, 837, 773; ¹H NMR (400 MHz, CDCl₃) δ 7.62 - 7.60 (m, 2H), 7.32 - 7.30 (m, 4H), 6.50 (s, 2H), 3.89 (s, 6H); ¹³C NMR (100MHz, CDCl₃) δ 168.1, 162.5, 136.5, 128.7,

125.5, 123.5, 107.8, 98.2, 56.1; **HRMS** (ESI) calcd. for $C_{18}H_{14}O_7Na$ [M+Na]⁺ : 365.0632, found: 365.0633.

6. Synthetic transformations of product³

6.1. Large scale synthesis of 2a

In the glove box, a mixture of **1a** (2.56 g, 14.0 mmol), K₃PO₄·H₂O (2.42 g, 10.5 mmol, 1.5 equiv.), [Pd(allyl)Cl]₂ (64 mg, 0.175 mmol, 2.5 mol%), Ruphos (196 mg, 0.42 mmol, 6 mol%) and anisole (15.0 mL) was added to a dry glass vessel. The glass vessel was put into an autoclave and then taken out from glove box. The autoclave was purged and charged with CO (15 atm). The reaction mixture was stirred at 120 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the well-ventilated fume hood with an outlet system. The dr value of the crude reaction mixture was determined by ¹H NMR. The solvent was evaporated under reduced pressure and the resulting residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate/CH₂Cl₂ = 20/1/1 - 1/1/1) to afford the product **2a** (1.3 g, 68% yield, dr = 2.1:1).

6.2. General procedure for the synthesis of 3-substituted phthalides

Magnesium turnings (110 mg, 4.5 mmol) and LiCl (153 mg, 3.6 mmol) were placed in a dry 25 mL Schlenk tube equipped with a magnetic stirrer under argon. After adding THF and I₂, the mixture was activated by adding BrCH₂CH₂Br (11.3 mg, 0.06 mmol, 2.0 mol%) followed by gently heating. Aryl or alkyl bromide/iodide (3.0 mmol) was then added in one portion, the mixture was then allowed to reflux for 2 hours. After resulting mixture was stirred to be cooled to room temperature, the resulting Grignard reagent was transferred with a syringe into a solution of ZnCl₂ (3.6 mL, 1M in THF, 3.6 mmol). This mixture was stirred at room temperature for 3 hours and the resulting organozinc reagent was titrated with iodine prior to use.

A dry and argon-flushed 25 mL Schlenk-tube was equipped with a stirring bar and a septum. Aryl or alkylzinc reagent (0.9 mmol) was transferred to the Schlenk-tube. Then, **2a** (84.6 mg, 0.3 mmol) was added in one portion at room temperature. Subsequent removal of THF in vacuum, toluene (1.0 mL) was added and the reaction mixture was heated typically at 80 °C for 1 hour. The reaction mixture was finally quenched with saturated NH₄Cl solution. The aqueous phase was extracted with ethyl acetate (3×10 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Finally, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 5/1) to give the desired product **3**.

3-Butylisobenzofuran-1(3H)-one (3a): (colorless oil, 37.6 mg, 66% yield). ¹H NMR

(400 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 1H), 7.70 (td, J = 7.5, 1.1 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 5.50 (dd, J = 7.9, 4.1 Hz, 1H), 2.10 - 2.01 (m, 1H), 1.81 - 1.72 (m, 1H), 1.53 - 1.29 (m, 4H), 0.91 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃)

δ 170.8, 150.2, 134.1, 129.1, 126.3, 125.8, 121.8, 81.6, 34.6, 27.0, 22.6, 14.0; **HRMS** (ESI) calcd. for C₁₂H₁₅O₂ [M+H]⁺: 191.1072, found: 191.1063.

3-Methylisobenzofuran-1(3H)-one (3b): (colorless oil, 39.1 mg, 88% yield). ¹H

NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.7 Hz, 1H), 7.71 (td, J = 7.6, 1.2 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 7.7, 0.9 Hz, 1H), 5.60 (q, J = 6.7 Hz, 1H), 1.66 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 151.3, 134.2, 129.2, 125.9, 125.8,

121.7, 77.9, 20.5; **HRMS** (ESI) calcd. for $C_9H_9O_2$ [M+H]⁺ : 149.0603, found: 149.0595.

3-(But-3-en-1-yl)isobenzofuran-1(3*H***)-one (3c)**: (colorless oil, 42.9 mg, 76% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.71 (td, *J* = 7.5, 1.1 Hz, 1H),

7.54 (t, J = 7.5 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 5.89 - 5.79 (m, 1H), 5.52 (dd, J = 8.4, 3.7 Hz, 1H), 5.11 - 5.02 (m, 2H), 2.33 - 2.20 (m, 2H), 2.19 - 2.11 (m, 1H), 1.89 - 1.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 150.0, 136.9, 134.1, 129.2, 126.2, 125.8, 121.8, 116.1, 80.7, 34.1, 29.2; **HRMS** (ESI) calcd. for

 $C_{12}H_{13}O_2 [M+H]^+$: 189.0916, found: 189.0914.

3-(3-Methoxyphenyl)isobenzofuran-1(3H)-one (3d): (colorless oil, 67.0 mg, 93%

yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (dd, *J* = 7.5, 2.8 Hz, 1H), 7.68 - 7.63 (m, 1H), 7.58 - 7.53 (m, 1H), 7.37 - 7.34 (m, 1H), 7.32 - 7.26 (m, 1H), 6.92 - 6.87 (m, 2H), 6.79 (d, *J* = 2.2 Hz, 1H), 6.37 (s, 1H), 3.77 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃)

δ 170.6, 160.1, 149.7, 138.1, 134.4, 130.2, 129.5, 125.8, 125.6, 123.0, 119.2, 114.8, 112.5, 82.6, 55.4; **HRMS** (ESI) calcd. for C₁₅H₁₃O₃ [M+H]⁺ : 241.0865, found: 241.0854.

3-(o-Tolyl)isobenzofuran-1(3H)-one (3e): (colorless oil, 61.2 mg, 91% yield). ¹H

NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 1H), 7.69 (td, *J* = 7.5, 1.2 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.29 - 7.24 (m, 1H), 7.14 (td, *J* = 6.9, 6.0, 2.7 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.68 (s, 1H), 2.49 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 170.7, 149.4, 137.2, 134.3, 134.2, 131.2, 129.44, 129.41, 127.3, 126.50, 126.46, 125.8, 123.1, 80.6, 19.4; **HRMS** (ESI) calcd. for C₁₅H₁₃O₂ [M+H]⁺ : 225.0916, found: 225.0908.

3-(4-Fluorophenyl)isobenzofuran-1(3H)-one (3e): (white solid, 65.7 mg, 96% yield).

M. p.: 99-101 °C. **IR** (neat) v(cm⁻¹): 3064, 2923, 1753, 1603, 1509, 1292, 1066, 978, 831, 736; ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 7.7 Hz, 1H), 7.69 (td, J = 7.5, 1.2 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.34 (dd, J = 7.7, 1.0 Hz, 1H), 7.28 - 7.24 (m, 2H), 7.09 - 7.05 (m, 2H), 6.40 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.4,

164.5 (d, J = 248.7 Hz), 149.5, 134.6, 132.4 (d, J = 3.2 Hz), 129.6, 129.2 (d, J = 8.5 Hz), 125.8, 125.7, 123.0, 116.2 (d, J = 21.9 Hz), 82.1; ¹⁹F NMR (376 MHz, CDCl₃) δ

-111.8; **HRMS** (ESI) calcd. for C₁₄H₁₀FO₂ [M+H]⁺: 229.0665, found: 229.0656.

3-([1,1'-Biphenyl]-4-yl)isobenzofuran-1(3H)-one (3g): (white solid, 76.4 mg, 89%

yield). M. p.: 211-213 °C. **IR** (neat) v(cm⁻¹): 3064, 2923, 1753, 1598, 1283, 1066, 968, 830, 721; ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.6 Hz, 1H), 7.70 (td, *J* = 7.5, 1.2 Hz, 1H), 7.61 - 7.56 (m, 4H), 7.46 - 7.42 (m, 2H), 7.40 - 7.34 (m, 4H), 6.46 (s, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 170.7, 149.7, 142.4, 140.4, 135.4,

134.5, 129.6, 129.0, 127.9, 127.8, 127.6, 127.3, 125.9, 125.8, 123.0, 82.7; **HRMS** (ESI) calcd. for C₂₀H₁₅O₂ [M+H]⁺: 287.1072, found: 287.1064.

3-(Thiophen-2-yl)isobenzofuran-1(3H)-one (3h): (light yellow oil, 23.3 mg, 36%

yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 5.1 Hz, 1H), 7.16 (d, J = 3.6 Hz, 1H), 7.05 – 7.02 (m, 1H), 6.68 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.9, 148.8,

139.0, 134.5, 123.0, 128.1, 127.7, 127.2, 126.1, 125.9, 123.3, 78.0; **HRMS** (ESI) calcd. for C₁₂H₉O₂ [M+H]⁺: 217.0323, found: 217.0312.

7. Control experiments

7.1. H₂¹⁸O labeling experiments

A mixture of **1a** (184 mg, 1.0 mmol), NEt₃ (76 mg, 0.75 mmol, 1.5 equiv.), H₂O (18 mg, 1.0 mmol, 2.0 equiv.), [Pd(allyl)Cl]₂ (4.6 mg, 0.0125 mmol, 2.5 mol%), Ruphos (14.0 mg, 0.03 mmol, 6 mol%) and anisole (1.5 mL) was added to a dry glass vessel. The glass vessel was put into an autoclave. The autoclave was purged for three times and charged with CO (10 atm). The reaction mixture was stirred at 120 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the well-ventilated fume hood. The dr value of the crude reaction mixture was determined by ¹H NMR. The solvent was evaporated under reduced pressure and the resulting residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate/CH₂Cl₂ = 20/1/1 - 1/1/1) to **2a** (85 mg, 60% yield, dr = 2.7:1).

A mixture of **1a** (184 mg, 1.0 mmol), K_3PO_4 (160 mg, 0.75 mmol, 1.5 equiv.), $H_2^{18}O$ (20 mg, 1.0 mmol, 2.0 equiv.), $[Pd(allyl)Cl]_2$ (4.6 mg, 0.0125 mmol, 2.5 mol%), Ruphos (14.0 mg, 0.03 mmol, 6 mol%) and anisole (1.5 mL) was added to a dry glass vessel. The glass vessel was put into an autoclave. The autoclave was purged for three times and charged with CO (10 atm). The reaction mixture was stirred at 120 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the well-ventilated fume hood. The dr value of the crude reaction mixture was determined by ¹H NMR. The solvent was

evaporated under reduced pressure and the resulting residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate/CH₂Cl₂ = 20/1/1 - 1/1/1) to ¹⁸O-**2a** (116 mg, 82% yield, dr = 3.2:1). **HRMS** (ESI) calcd. for C₁₆H₁₀¹⁸O₅Na [M+Na]⁺: 307.0463, found: 307.0467.

Figure S4. HRMS of H_2^{18} O labeling experiment product ¹⁸O-2a.

7.2. Cross-over experiment

In the glove box, a mixture of **D** (75 mg, 0.5 mmol), **1j** (54 mg, 0.5 mmol), $K_3PO_4H_2O$ (173 mg, 0.75 mmol, 1.5 equiv.), $[Pd(allyl)Cl]_2$ (4.6 mg, 0.0125 mmol, 2.5 mol%), Ruphos (14.0 mg, 0.03 mmol, 6 mol%) and anisole (1.5 mL) was added to

a dry glass vessel. The glass vessel was put into an autoclave and then taken out from glove box. The autoclave was purged and charged with CO (10 atm). The reaction mixture was stirred at 120 °C for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released in the well-ventilated fume hood. he solvent was evaporated under reduced pressure and the resulting residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate/CH₂Cl₂ = 20/1/1 - 1/1/1) to **2j**₁ (26 mg, 30% yield), **2j**₂ (12 mg, 14% yield) and cross-over product **4**.

Rac-5-methoxy-3-((3-oxo-1,3-dihydroisobenzofuran-1-yl)oxy)isobenzofuran-

1(3*H***)-one (4')**: (a white solid, 37 mg, 26% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.66 - 7.61 (m, 2H), 7.13 (dd, J = 8.5, 2.2 Hz, 1H), 7.02 (d, J = 2.2 Hz, 1H), 6.89 (s, 1H), 6.81

(s, 1H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 167.9, 165.5, 147.1, 144.3, 135.0, 131.5, 127.3, 126.7, 125.8, 124.1, 119.4, 118.6, 107.4, 99.2, 98.5, 56.2.
HRMS (ESI) calcd. for C₁₇H₁₂O₆ [M+Na]⁺: 335.0526, found: 335.0530.

Figure S5. HRMS spectrum of the cross-over product 4'

${\it Meso-5-methoxy-3-((3-oxo-1,3-dihydroisobenzofuran-1-yl)oxy)} is obenzofuran-1-yl) oxy) is oxy)$

1(3H)-one (4''): (a white solid, 12 mg, 8% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 1H), 7.82 - 7.76 (m, 3H), 7.68 (td, J = 7.4, 1.3 Hz, 1H), 7.15 - 7.13 (m, 2H), 6.58 (s, 1H), 6.46 (s, 1H), 3.96 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ

168.0, 167.7, 165.5, 147.1, 144.3, 135.1, 131.6, 127.2, 127.0, 125.7, 124.7, 119.2, 118.9, 108.1, 98.2, 97.3, 56.3. **HRMS** (ESI) calcd. for C₁₇H₁₂O₆ [M+Na]⁺: 335.0526, found: 335.0535.

Figure S6. HRMS spectrum of the cross-over product 4"

8. X-ray Single Crystal Data

Sample preparation: To a 10 mL sample vial, compound **2a**₁ (20 mg), ethyl acetate (1 mL) was added successively at room temperature. The resulting solution was left open at room temperature until the colorless crystals precipitated.

Table S8. Crystal data and structure refinement for product 2a1

	2a ₁
The ellipsoid conto	our percent probability lever is 50%
Identification code	SM-UP_auto
Empirical formula	$C_{16}H_{10}O_5$
Formula weight	282.255
Temperature/K	298
Crystal system	monoclinic
Space group	I2/a
a/Å	15.3058(5)
b/Å	6.1080(2)
c/Å	28.2912(9)
α/°	90
β/°	101.503(3)
$\gamma/^{o}$	90
Volume/Å ³	2591.76(15)
Z	8
$\rho_{calc}g/cm^3$	1.447
μ/mm^{-1}	0.915
F(000)	1172.4
Crystal size/mm ³	$0.2 \times 0.15 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	11.8 to 145.82
Index ranges	$-18 \le h \le 17, -7 \le k \le 5, -32 \le l \le 34$
Reflections collected	4845
Independent reflections	2523 [$R_{int} = 0.0210, R_{sigma} = 0.0300$]
Data/restraints/parameters	2523/0/190
Goodness-of-fit on F ²	1.049
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0382, wR_2 = 0.0985$
Final R indexes [all data]	$R_1 = 0.0444, wR_2 = 0.1044$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.21

Sample preparation: To a 10 mL sample vial, compound $2a_2$ (20 mg), ethyl acetate (1 mL) was added successively at room temperature. The resulting solution was left open at room temperature until the colorless crystals precipitated.

Table S9. Crystal data and structure refinement for product $2a_2$

	$2a_2$
The ellipsoid contour	percent probability lever is 50%
Identification code	SM-DOWN_auto
Empirical formula	$C_{16}H_{10}O_5$
Formula weight	282.255
Temperature/K	298
Crystal system	monoclinic
Space group	Pn
a/Å	4.4392(1)
b/Å	6.5027(1)
c/Å	22.2547(3)
α/\circ	90
β/°	91.313(1)
$\gamma/^{\circ}$	90
Volume/Å ³	642.25(2)
Z	2
pcalcg/cm ³	1.460
μ/mm^{-1}	0.923
F(000)	293.1
Crystal size/mm ³	$0.2 \times 0.15 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.94 to 146
Index ranges	$-4 \le h \le 5, -8 \le k \le 8, -27 \le l \le 27$
Reflections collected	8918
Independent reflections	2317 [Rint = 0.0175, Rsigma = 0.0115]
Data/restraints/parameters	2317/2/190
Goodness-of-fit on F ²	1.155
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0283, wR_2 = 0.0744$
Final R indexes [all data]	$R_1 = 0.0284, wR_2 = 0.0747$
Largest diff. peak/hole / e Å ⁻³	0.10/-0.16
Flack parameter	0.35(13)

9. References

- 1. B. H. Ahn, I. Y. Lee and H. N. Lim, Org. Biomol. Chem., 2018, 16, 7851.
- 2. (a) B. Gao, S. Zou, G. Yang, Y. Ding and H. Huang, *Chem. Commun.*, 2020, 56, 12198; (b) S. Wang, Y. Zhou and H. Huang, *Org. Lett.*, 2021, 23, 2125; (c) Y. Ding, M. Si and H. Huang, *Org. Chem. Front.*, 2022, 9, 715.
- 3. B. Wei, Q. Ren, T. Bein and P. Knochel, Angew. Chem. Int. Ed., 2021, 60, 10409.

10. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR of the product

S32

SM-X21y09-stad-down HNMR (400MHz) CDCl3

.,	otuu	
3	% 4	000000000000000000000000000000000000000
3	$\circ \infty$	4 - 6 6 6 6 9 9 6 6 6 6 6 6 6 6 6 6 6 6 6
$\tilde{\mathbf{\omega}}$	500	-1000000000000000000000000000000000000
6	66	22666666777788889999
~	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

sm-x210903-6-F-up HNMR (400MHz CDCl3)

--0.0000

sm-x21y07-5-F-up HNMR (400 MHz CDCl3)

-0.0001

...........

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ (ppm)

....

---100.5

<u></u> 10	-10	-30	-50	-70	-90 δ (μ	-110 opm)	-130	-150	-170	-190	-210

SM-X21Z07-5-F-down FNMR (376MHz DMSO-d6)

---102.7

v & 0 0 0 1 L 0 v 0 1 4 0 0 0 0
0 8 8 1 0 9 6 1 1 - 9 0 4 6 4 6
000000000000000000000000000000000000
<u> </u>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-0.0000



SM-X21X27-4-F-down FNMR(376MHz DMSO-d6)



---107.1







SM-X21Z04-3-F-up FNMR(376MHz DMSO-d6)







10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
					δ (p	opm)					







.8656 .8453 .8453 .7195 .7152 .6540 .6540 .6336 .6336 .6292 .6292	5610
	- 0



-0.0000











210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10  $\delta$  (ppm)







--0.0000









S71



S72






sm-x210829-5-5-OMe HNMR (400MHz CDCl3)





sm-x21y03-5-OMe-down HNMR(400MHz CDCl3)







-0.0001











210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10  $\delta$  (ppm)









S88





sm-x21x22-4-OMe-up HNMR (400MHz CDCl3)









SM-X220108-nBu HNMR (400MHz CDCl3)

 .4336 .2702 .4972 .4870 .4870 .4775 .4775 .0768 .0768 .00480 .0460 .0354 .0354 .0206	7835 7777 7697 7666 7581 7581 7581 7582 4955 4955 4955 4955 4955 4959 4539 4539	
ししていいいいこうこうこう		
	<u> </u>	

# 

















9718 9645 9527 9527 9459 66734 66734 66734 66734 66734 66734 66734 66734 66735 66533 66755 66533 66775 66533 66775 66533 66575 6533 65375 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387 65387	5393 5325 5325 5325 3648 3627 3627 3512 3512 3512 3512 3512 3512 3512 3512	9131 9066 9014 8982 8923 8855 8785 8785 8773 8723 8723 8723 8723 8723 8723 8723
		-0.666.666.666.666.666.666.666.666.666.6











SM-X220105-Ph-4F HNMR (400MHz CDCl3)

-0.0001









M-X220110-PhPh HNMR (400MHz CDCl3)	
978 9978 9950 9950 9957 9957 9957 9956 9956 9956 9956 9956	219
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	6.4
	-

-0.0000




SM-X220125-saifen HNMR (400MHz CDCl3)











## S114

