Supporting Information

Concise Total Syntheses of Two Flavans and Structure Revision Assisted by Quantum NMR Calculations

Tingting Zhou,^{ac}[†] Anquan Zheng,^{ac}[†] Wenge Zhang,^a Xiuxiang Lu,^a Huiyu Chen^{*cd} and Haibo Tan^{*ab}

^a Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.

^b Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China.

^c School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.

^d School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China. † Co-first authors on the paper.

Contents

1. Experimental Procedures
1.1 General experimental procedures4
1.1.1 Spectra recorded in different deuterium solvents:4
1.1.2 The following is an explanation of the abbreviations:
1.1 X-ray crytallographic data of flavan 15
1.2 X-ray crystallographic analysis of flavan 1
1.3 The synthetic procedures
1.3.1 The synthesis of 2,3-dihydroxycinnamaldehyde 116
1.3.2 The synthesis of flavan 17
1.3.4 The synthesis of cinnamaldehyde 18c
1.3.5 The synthesis of cinnamaldehyde 12
1.3.6 The synthesis of flavan 8 9
2. The Comparison of ¹ H and ¹³ C NMR Data of Natural and Synthetic Flavan 1 in DMSO- d_6 10
3. The Comparison of ¹ H and ¹³ C NMR Data of Flavan 9 and Synthetic Flavan 8 in CDCl ₃ 11
4. (GIAO) DFT ¹³ C NMR Calculations of Flavans 9 and 8
5. The Copies of the NMR Spectra
Figure 1. ¹ H NMR Spectrum (500 MHz, DMSO- <i>d</i> ₆) of Flavan 1
Figure 2. ¹³ C NMR Spectrum (125 MHz, DMSO- <i>d</i> ₆) of Flavan 1
Figure 3. HSQC Spectrum of Flavan 1
Figure 4. ¹ H- ¹ H COSY Spectrum of Flavan 1
Figure 5. HMBC Spectrum of Flavan 117
Figure 6. NOESY Spectrum of Flavan 117
Figure 7. ¹ H NMR Spectrum (500 MHz, CDCl ₃) of Flavan 8
Figure 8. ¹³ C NMR Spectrum (125 MHz, CDCl ₃) of Flavan 8
Figure 9. HSQC Spectrum of Flavan 8
Figure 10. ¹ H- ¹ H COSY Spectrum of Flavan 8
Figure 11. HMBC Spectrum of Flavan 8
Figure 12. NOESY Spectrum of Flavan 8

Figure 13. ¹ H NMR Spectrum (500 MHz, CDCl ₃) of Compound 17c	21
Figure 14. ¹³ C NMR Spectrum (125 MHz, CDCl ₃) of Compound 17c	21
Figure 15. ¹ H NMR Spectrum (500 MHz, CDCl ₃) of Compound 18c	22
Figure 16. ¹³ C NMR Spectrum (125 MHz, CD ₃ OD) of Compound 18c	22
Figure 17. ¹ H NMR Spectrum (500 MHz, CD ₃ OD) of Compound 12	23
Figure 18. ¹³ C NMR Spectrum (125 MHz, CD ₃ OD) of Compound 12	23
Figure 19. ¹ H NMR Spectrum (500 MHz, CD ₃ OD) of Compound 11	24
Figure 20. ¹³ C NMR Spectrum (125 MHz, CD ₃ OD) of Compound 11	24

1. Experimental Procedures

1.1 General experimental procedures

All air and moisture sensitive reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions. All solvents were reagent grade, and used without further purification. Thin layer chromatography (TLC) analysis was performed on a 0.25 mm Qingdao silica gel plate (60 F-254) with ultraviolet irradiation (254 nm) and stained with vanillin. Silica gel (ZCX-II) (200-300 mesh) flash column chromatography using Qingdao Ocean Chemical Co., Ltd., China products. ¹H and ¹³C NMR spectra were recorded on a Brüker Advance 500 MHz spectrometer. (¹H: 500 MHz, ¹³C: 125 MHz). All NMR chemical shifts were referenced to residual solvent peaks as an internal standard and recorded in ppm.

1.1.1 Spectra recorded in different deuterium solvents:

CDCl₃ (¹H NMR: 7.28 ppm, ¹³C NMR: 77.0 ppm); CD₃OD (¹H NMR: 3.33 ppm, ¹³C NMR: 47.6 ppm); CD₃COCD₃ (¹H NMR: 2.05 ppm, ¹³C NMR: 30.0, 206.3 ppm); DMSO-*d*₆ (¹H NMR: 2.50 ppm, ¹³C NMR: 39.5 ppm).

1.1.2 The following is an explanation of the abbreviations:

Multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. EA = ethyl acetate. ACN = acetonitrile. PTSA = *p*-toluenesulfonic acid. PPTS = pyridinium 4-toluenesulfonate. DMSO = dimethyl sulfoxide. DHP = 3,4-dihydro-2H-pyran. EDDA = ethylenediamine diacetate.

All coupling constants *J* are quoted in Hz. High resolution mass spectra (HRMS) were obtained on an IonSpec QFT mass spectrometer with ESI ionization. Heating mantle was used as the heat source, when reactions required heating.

1.1 X-ray crytallographic data of flavan 1

The single crystal X-ray diffraction data of flavan 1 was collected by the method of CuK α radiation using XtaLAB AFC12 (RINC): Kappa single crystal diffractometer. The crystal was kept at 99.99(10) K during data collection.

1.2 X-ray crystallographic analysis of flavan 1.

Table 1 Crystal data and struct	ture refinement for flavan 1
Identification code	Flavan 1 _collect
Empirical formula	$C_{34}H_{32}O_{10}$
Formula weight	600.59
Temperature/K	99.99(10)
Crystal system	monoclinic
Space group	I2/a
a/Å	15.5676(5)
b/Å	13.8531(3)
c/Å	26.8877(10)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	99.841(3)
$\gamma/^{\circ}$	90
Volume/Å ³	5713.3(3)
Z	8
$ ho_{\rm calc} {\rm g/cm^3}$	1.396
μ/mm^{-1}	0.857
F(000)	2528.0
Crystal size/mm ³	$0.3 \times 0.05 \times 0.05$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)

2Θ range for data collection/°	6.674 to 148.608
Index ranges	$-16 \le h \le 19, -17 \le k \le 13, -33 \le l \le 31$
Reflections collected	15091
Independent reflections	5654 [$R_{int}^{o} = 0.0335$, $R_{sigma}^{o} = 0.0411$]
Data/restraints/parameters	5654/0/469
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	$R_1^{o} = 0.0610, wR_2^{o} = 0.1490$
Final R indexes [all data]	$R_1^{o} = 0.0845, wR_2^{o} = 0.1618$
Largest diff. peak/hole/eÅ ⁻³	0.20/-0.29

1.3 The synthetic procedures

1.3.1 The synthesis of 2,3-dihydroxycinnamaldehyde 11

2,3-Dihydroxybenzaldehyde 14 (500 mg, 3.62 mmol) and formylmethylene triphenylphosphorane 16 (1.32 g, 4.35 mmol) were dissolved in xylene (20 mL). The resulting mixture was heated to 100 °C in an oil bath and stirred for 6 h at that temperature under nitrogen atmosphere. After cooling to room temperature, the reaction mixture was directly purified by 15 cm flash column chromatography (silica gel, hexane:EtOAc = 5:1 to 3:1) to provide the product 11 (237 mg, 40% yield) as a yellow solid powder. ¹H NMR (500 MHz, CD₃OD): δ 9.60 (d, *J* = 7.9 Hz, 1H), 7.92 (d, *J* = 15.9 Hz, 1H), 7.05 (d, *J* = 8.9 Hz, 1H), 6.90-6.79 (m, 2H), 6.72 (s, 1H). ¹³C NMR (125 MHz, CD₃OD): δ 195.5, 150.2, 146.1, 145.4, 128.0, 121.2, 119.4, 119.1, 117.1. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₉H₉O₃, 165.0546, found 165.0546.

1.3.2 The synthesis of flavan 1

2,3-Dihydroxycinnamaldehyde **11** (72 mg, 0.44 mmol) and phloroglucinol **13** (68 mg, 0.44 mmol) were dissolved in ACN (3 mL), and PTSA (7.6 mg, 0.04 mmol) were then added. The resulting mixture was heated to 80 °C in an oil bath and stirred for 1 h at that temperature. After most of the starting material was consumed, the mixture was cooled to room temperature, extracted with EtOAc (3×25 mL), washed with brine, and concentrated in vacuum. The crude product was purified by flash column chromatography (silica gel, hexane:CH₂Cl₂ = 3:1) to afford **1** (63 mg, 48% yield) as a white solid powder. ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.00 (s, 1H), 6.80 (d, *J* = 7.1 Hz, 1H), 6.69 (t, *J* = 8.3 Hz, 2H), 6.11 (s, 1H), 5.97 (s, 1H), 5.62 (s, 1H), 5.34 (s, 1H), 3.80 (s, 3H), 3.67 (s, 3H), 2.16 (d, *J* = 14.1 Hz, 1H), 2.09 (d, *J* = 14.1 Hz, 1H). ¹³C NMR (125 MHz, DMSO): δ 161.9, 159.3, 155.0, 146.3, 142.3, 122.5, 121.4, 120.1, 116.6, 103.6, 93.4, 91.9, 67.2, 61.5, 56.2, 55.6, 26.5. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇H₁₇O₅, 301.1071, found 301.1083.

1.3.3 The synthesis of cinnamaldehyde 17c

2,4-Dihydroxybenzaldehyde **15** (500 mg, 3.6 mmol) and PPTS (90 mg, 0.36 mmol) were dissolved in anhydrous CH₂Cl₂ (15 mL). Then, DHP (365 mg, 4.3 mmol) was added. The reaction mixture was stirred at room temperature until most of the ingredients were consumed. The mixture was then extracted with CH₂Cl₂ (3×25 mL), washed with brine, and concentrated in vacuum. The crude product was purified by flash column chromatography (silica gel, hexane:CH₂Cl₂ = 1:2) to afford **17c** (557 mg, 70% yield) as a colorless liquid. ¹H NMR (500 MHz, CDCl₃): δ 11.38 (s, 1H), 9.74 (s, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 6.75-6.48 (m, 2H), 5.52 (s, 1H), 3.98-3.76 (m, 1H), 3.64

(d, J = 10.6 Hz, 1H), 1.86 (t, J = 68.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 194.6, 164.3, 164.1, 135.3, 115.7, 109.4, 103.6, 96.2, 62.2, 29.9, 25.0, 18.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₂H₁₅O₄, 223.0965, found 223.0979.

1.3.4 The synthesis of cinnamaldehyde 18c

THP-ether aldehyde **17c** (557 mg, 2.5 mmol) and formylmethylene triphenylphosphorane **16** (912 mg, 3.0 mmol) were dissolved in xylene (15 mL). The resulting mixture was heated to 100 °C in an oil bath and stirred for 6 h at that temperature under nitrogen atmosphere. After cooling to room temperature, the reaction mixture was directly purified by 15 cm long flash column chromatography (silica gel, hexane:EtOAc = 10:1 to 5:1) to afford the product **18c** (580 mg, 93% yield) as a palm red solid powder. ¹H NMR (500 MHz, CDCl₃): δ 9.64 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 15.9 Hz, 1H), 7.45 (d, *J* = 8.7 Hz, 1H), 7.00-6.81 (m, 1H), 6.70-6.58 (m, 2H), 5.48 (s, 1H), 3.88 (t, *J* = 10.8 Hz, 1H), 3.65 (d, *J* = 11.7 Hz, 1H), 1.87 (t, *J* = 73.9 Hz, 4H). ¹³C NMR (125 MHz, CD₃OD): δ 195.6, 161.3, 158.9, 150.5, 130.5, 125.8, 115.1, 108.3, 103.0, 96.1, 61.8, 29.9, 24.8, 18.4. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₄H₁₆O₄Na, 271.0941, found 271.0940.

1.3.5 The synthesis of cinnamaldehyde 12

Cinnamaldehyde **18c** (580 mg, 2.34 mmol) and PPTS (59 mg, 0.23 mmol) were dissolved in EtOH (15 mL). The reaction mixture was stirred at room temperature until most of the starting materials are consumed. The mixture was then extracted with EA (3×25 mL), washed with brine, and concentrated in vacuum. The crude product was

purified by flash column chromatography (silica gel, hexane:EtOAc = 3:1 to 1:1) to afford **12** (305 mg, 80% yield) as a yellow powder. ¹H NMR (500 MHz, CD₃OD): δ 9.48 (s, 1H), 7.81 (d, *J* = 15.7 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 2H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.35 (s, 3H). ¹³C NMR (125 MHz, CD₃OD): δ 195.9, 162.4, 159. 5, 151.5, 131.0, 124.6, 113.5, 107.9, 102.1. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₉H₉O₃, 165.0546, found 165.0547.

1.3.6 The synthesis of flavan 8

2,4-Dihydroxycinnamaldehyde **12** (126 mg, 0.77 mmol) and phloroglucinol **13** (118 mg, 0.77 mmol) were dissolved in ACN (10 mL), PTSA (15.2 mg, 0.08 mmol) was then added. The resulting mixture was heated to 80 °C in an oil bath and stirred for 4 h at that temperature. After most of the starting material was consumed, the mixture was cooled to room temperature and extracted with EtOAc (3×25 mL), washed with brine, and concentrated in vacuum. The crude product was purified by flash column chromatography (silica gel, hexane:EtOAc = 6:1 to 3:1) to afford **8** (106 mg, 46% yield) as a brown solid powder. ¹H NMR (500 MHz, CDCl₃): δ 7.21 (d, *J* = 8.3 Hz, 1H), 6.40 (d, *J* = 5.8 Hz, 1H), 6.36 (d, *J* = 2.4 Hz, 1H), 6.03 (s, 1H), 5.98 (s, 1H), 5.66 (s, 1H), 5.27 (s, 1H), 3.86 (s, 3H), 3.73 (s, 3H), 2.29 (d, *J* = 13.8 Hz, 1H), 2.18 (d, *J* = 13.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 161.8, 159.1, 157.9, 154.9, 131.7, 113.8, 108.4, 103.5, 93.0, 91.6, 67.5, 62.0, 55.9, 55.3, 26.8. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C_{17H17}O₅, 301.1071, found 301.1076.

2. The Comparison of ¹H and ¹³C NMR Data of Natural and Synthetic

	Nature sample 1Synthetic sample 1 $(500 \text{ MHz})^a$ $(500 \text{ MHz})^b$					
Position	$\delta_{\rm H}$ (mult, <i>J</i> in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{ m C}$	$\Delta \delta_{ m H}$ /ppm	$\Delta \delta_{ m C}$ /ppm
2	5.34 (1H, s)	67.2	5.34 (1H, s)	67.2	0.00	0.0
3a	2.08 (1H, dt, 2.5, 14.0)	26.5	2.09 (1H, dt, 2.5, 14.0)	26.5	+0.01	0.0
3b	2.16 (1H, s)		2.16 (1H, s)		0.00	
4	5.62 (1H, s)	61.5	5.62 (1H, s)	61.5	0.00	0.0
5	—	159.3	—	159.3		0.0
6	6.11 (1H, d, 2.3)	91.8	6.11 (1H, d, 2.3)	91.9	0.00	+0.1
7	—	161.9	—	161.9		0.0
8	5.97 (1H, d, 2.3)	93.4	5.97 (1H, d, 2.3)	93.4	0.00	0.0
9	—	155.0	—	155.0	—	0.0
10	—	103.5	—	103.6		+0.1
1'	—	122.5	—	122.5		0.0
2'	—	146.1	—	146.3		+0.2
3'	—	142.2	—	142.3		+0.1
4'	6.70 (1H, d, 1.6)	116.5	6.70 (1H, d, 1.6)	116.6	0.00	+0.1
5'	6.68 (1H, d, 7.4)	120.1	6.69 (1H, d, 7.4)	120.1	+0.01	0.0
6'	6.80 (1H, dd, 1.5, 7.2)	121.4	6.80 (1H, dd, 1.5, 7.2)	121.4	0.00	0.0
5-0CH ₃	3.67 (3H, s)	56.1	3.67 (3H, s)	56.2	0.00	+0.1
7-OCH ₃	3.80 (3H, s)	55.6	3.80 (3H, s)	55.6	0.00	0.0

Flavan 1 in DMSO-d₆

^aThe ¹H and ¹³C NMR data were recorded on a Bruker Avance 500 spectrometer in DMSO- d_6 and referenced against residual DMSO in DMSO- d_6 as $\delta_H = 2.51$ ppm, $\delta_C = 39.5$ ppm.

^bThe ¹H and ¹³C NMR data were recorded on a Bruker Avance 500 spectrometer in DMSO-d₆ and

referenced against residual DMSO in DMSO- d_6 as $\delta_H = 2.51$ ppm, $\delta_C = 39.5$ ppm.

 $^{c}\Delta\delta$ /ppm refers the relative difference of each signal between the synthetic and natural samples.

3. The Comparison of ¹H and ¹³C NMR Data of Flavan 9 and Synthetic Flavan 8 in CDCl₃

	Nature sample Synthetic sample					
Flavan 9 (500 N		Hz) ^a Flavan 8 (500 MHz) ^b		Hz) ^b		
Position	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (mult, J in Hz)	$\delta_{ m C}$	∆∂ _H ∕ppm ^c	$\Delta \partial_{\rm C}$ /ppm ^d
2	5.28 (1H, dd, 1.6, 5.4)	67.4	5.27 (1H, dd, 1.6, 5.4)	67.5	-0.01	+0.1
3a	2.18 (1H, m)	26.7	2.18 (1H, m)	26.8	0.00	+0.1
3b	2.29 (1H, m)		2.29 (1H, m)		0.00	0.0
4	5.67 (1H, dd, 4.4, 2.8)	62.1	5.66 (1H, dd, 4.4, 2.8)	62.0	-0.01	-0.1
5	—	159.1	—	159.1	—	0.0
6	6.04 (1H, d, 2.4)	91.6	6.03 (1H, d, 2.4)	91.6	-0.01	0.0
7	—	161.9	—	161.8	—	-0.1
8	5.99 (1H, d, 2.4)	92.9	5.98 (1H, d, 2.4)	93.0	-0.01	+0.1
9	—	154.8	—	154.9	—	+0.1
10	—	103.3	—	103.5	—	+0.2
1'	—	114.1	—	113.8	—	-0.3
2'	—	154.7	—	154.9	—	+0.2
3'	—	103.4	—	103.5	—	+0.1
4'	6.36 (1H, d, 2.4)	157.4	6.36 (1H, d, 2.4)	157.9	0.00	+0.5
5'	6.40 (1H, dd, 8.4, 2.4)	108.2	6.40 (1H, dd, 8.4, 2.4)	108.4	0.00	+0.2
6'	7.22 (1H, d, 8.4)	131.8	7.21 (1H, d, 8.4)	131.7	-0.01	-0.1
5-OCH ₃	3.87 (3H, s)	55.9	3.86 (3H, s)	55.9	-0.01	0.0
7-OCH3	3.73 (3H, s)	55.3	3.73 (3H, s)	55.3	0.00	0.0

^aThe ¹H NMR data was recorded on a Bruker Avance 400 spectrometer in CDCl₃, the ¹³C NMR data was recorded on a Bruker Avance 100 spectrometer in CDCl₃, both of them were referenced against residual CHCl₃ in CDCl₃.

^bThe ¹H NMR data and ¹³C NMR data were recorded on a Bruker Avance 500 spectrometer in CDCl₃ and referenced against residual CHCl₃ in CDCl₃ as $\delta_{\rm H} = 7.28$ ppm, $\delta_{\rm C} = 77.0$ ppm.

 $^{c}\Delta\delta$ /ppm refers the relative difference of each signal between the synthetic and natural samples.

4. (GIAO) DFT ¹³C NMR Calculations of Flavans 9 and 8

Compound	Conformer	ΔG (kcal/mol)	Population (%)
	9-C1	0	58.54
	9-C2	0.422941336	28.65
9	9-C3	1.089356318	9.29
	9-C4	1.706825568	3.27
	9-C5	3.463224379	0.17

 Table 1. Relative energies (kcal/mol) and conformational population (%) for the most stable conformers of 9 and 8 optimized on B3LYP-D3(BJ)/TZVP (IEF-PCM) level of theory

	9-C6	3.850397678	0.09
8	AFF	0	100

Table 2. Experimental ¹³C NMR data (δ_C in ppm) of **9** (proposed in the previous literature, *J. Asian Nat. Prod. Res.*, **2013**, *15*, 979-984) and shielding tensors (δ_C in ppm) of **9** and **8** calculated on ω B97x-D/6-31G*//B3LYP-D3(BJ)/TZVP (IEF-PCM) level of theory

Commonia	Nucleur	$\delta_{\rm C} \exp$	Shielding	Shielding
Compound	Inucleus	(CDCl ₃)	tensor of 9	tensor of 8
	2	67.4	117.1556781	127.2923
	3	26.7	159.2900575	169.2824
3'	4	62.1	132.815813	132.5099
HO 4' OH	5	159.1	41.67643849	41.8487
MeO 7 8 0 1 5	6	91.6	106.3062955	106.9832
9^{2} $6'$	7	161.9	40.87334304	39.4635
5 5 3	8	92.9	104.5759509	107.5406
OMe OH	9	154.8	45.18514977	44.2498
9	10	103.3	91.38900668	96.4145
8 1	1'	114.1	83.8109682	85.5897
MeO 7 0 2 6'	2'	154.7	43.02193345	44.2371
	3'	103.4	96.85620967	97.2474
⁵ 4 0 2 3' OH	4'	157.4	43.57126478	43.3194
	5'	108.2	93.83536937	93.7141
8	6'	131.8	69.61627622	66.6211
	5-OMe	55.9	141.1875069	141.3806
	7-OMe	55.3	141.5587912	141.5492

<u>85</u> No.	Exptl.	Cald. 9	dev	Cald. 8	dev
2	67.4	76.37	8.97	68.68	1.28
3	26.7	30.57	3.87	24.98	1.72
4	62.1	59.35	2.75	63.25	1.15
5	159.1	158.61	0.49	157.80	1.30
6	91.6	93.01	1.41	94.52	2.92
7	161.9	159.45	2.45	160.17	1.73
8	92.9	94.72	1.82	94.00	1.10
9	154.8	154.97	0.17	155.42	0.62
10	103.3	107.01	3.71	103.57	0.27
1'	114.1	114.87	0.77	114.33	0.23
2'	154.7	157.22	2.52	155.43	0.73
3'	103.4	102.33	1.07	103.72	0.32
4'	157.4	156.65	0.75	156.34	1.06
5'	108.2	105.31	2.89	107.06	1.14
6'	131.8	129.21	2.59	132.65	0.85
5-OMe	55.9	50.68	5.22	54.43	1.47
7-OMe	55.3	50.27	5.03	54.25	1.05
		MAE	2.73	MAE	1.11
		RMS	3.47	RMS	1.28
		P_{mean}	0.56%	P_{mean}	39.26%
		P_{rel}	0.00%	P_{rel}	100.00%

Table 3. Experimental ¹³C NMR data (δ_C in ppm) of **9** (proposed in the previous literature, *J. Asian Nat. Prod. Res.*, **2013**, *15*, 979-984) and calculated chemical shifts (δ_C in ppm) of **9** and **8** with STS strategy

5. The Copies of the NMR Spectra

Figure 1. ¹H NMR Spectrum (500 MHz, DMSO-d₆) of Flavan 1

Figure 2. ¹³C NMR Spectrum (125 MHz, DMSO-d₆) of Flavan 1

Figure 4. ¹H-¹H COSY Spectrum of Flavan 1

Figure 5. HMBC Spectrum of Flavan 1

Figure 6. NOESY Spectrum of Flavan 1

Figure 7. ¹H NMR Spectrum (500 MHz, CDCl₃) of Flavan 8

Figure 8. ¹³C NMR Spectrum (125 MHz, CDCl₃) of Flavan 8

Figure 9. HSQC Spectrum of Flavan 8

Figure 10. ¹H-¹H COSY Spectrum of Flavan 8

Figure 11. HMBC Spectrum of Flavan 8

Figure 12. NOESY Spectrum of Flavan 8

Figure 13. ¹H NMR Spectrum (500 MHz, CDCl₃) of Compound 17c

Figure 14. ¹³C NMR Spectrum (125 MHz, CDCl₃) of Compound 17c

Figure 15. ¹H NMR Spectrum (500 MHz, CDCl₃) of Compound 18c

Figure 16. ¹³C NMR Spectrum (125 MHz, CD₃OD) of Compound 18c

Figure 17. ¹H NMR Spectrum (500 MHz, CD₃OD) of Compound 12

Figure 18. ¹³C NMR Spectrum (125 MHz, CD₃OD) of Compound 12

Figure 19. ¹H NMR Spectrum (500 MHz, CD₃OD) of Compound 11

Figure 20. ¹³C NMR Spectrum (125 MHz, CD₃OD) of Compound 11

