Electronic Supplementary Information

Benzothiazole-based dual reaction site fluorescent probe for the selective detection of hydrazine in water and live cells

Anwesha Maiti,^a Saikat Kumar Manna,^b Satyajit Halder,^c Moumi Mandal,^a Anirban Karak,^a Dipanjan Banik,^a Kuladip Jana,^c and Ajit Kumar Mahapatra ^{a*}

^a Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India, E-mail: akmahapatra@chem.iiests.ac.in

^b Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur-721657, West Bengal, India.

^c Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700054, India.

Table of Contents

- 1. HRMS of probe BTC
- 2. ¹H NMR spectrum of probe **BTC** in CDCl₃
- 3. ¹³C NMR spectrum of probe **BTC**
- 4. Comparative Fluorescence color change
- 5. Comparative bar diagram of change of fluorescence intensity of probe **BTC** in presence of hydrazine and different analytes.
- 6. The fluorescence emission spectrum of probe BTC in presence of hydrazine.
- 7. pH dependent absorbance change of probe BTC in presence of hydrazine.
- 8. Calculation of detection limit
- 9. kinetic study of probe **BTC**
- 10. Computational details
- 11. Calculation of fluorescence quantum yield
- 12. HRMS of BTC-N₂H₄ adduct in assay
- 13. HRMS of reference compound R1
- 14. The summary table of previously reported hydrazine sensors with recent work
- 15. References

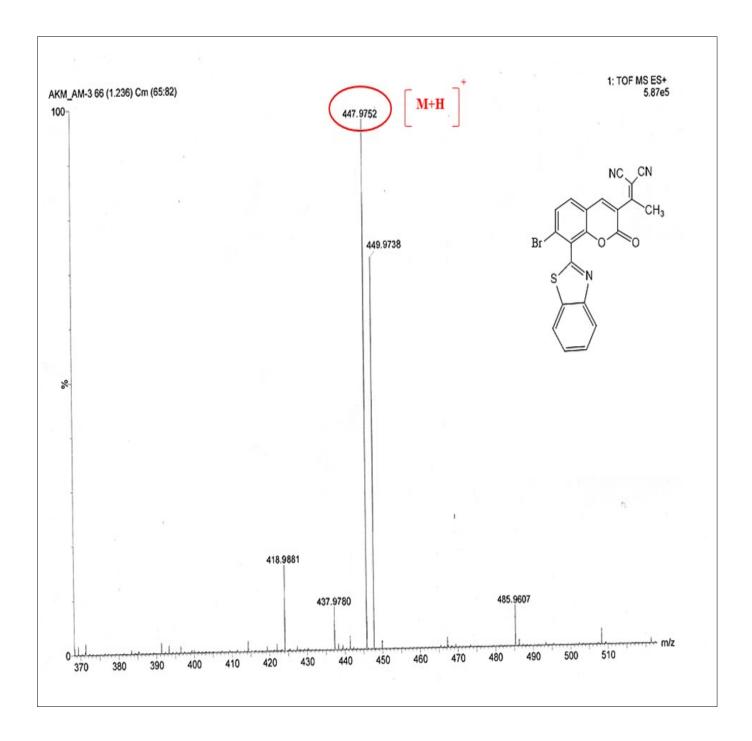


Figure S1: HRMS spectrum of probe BTC.

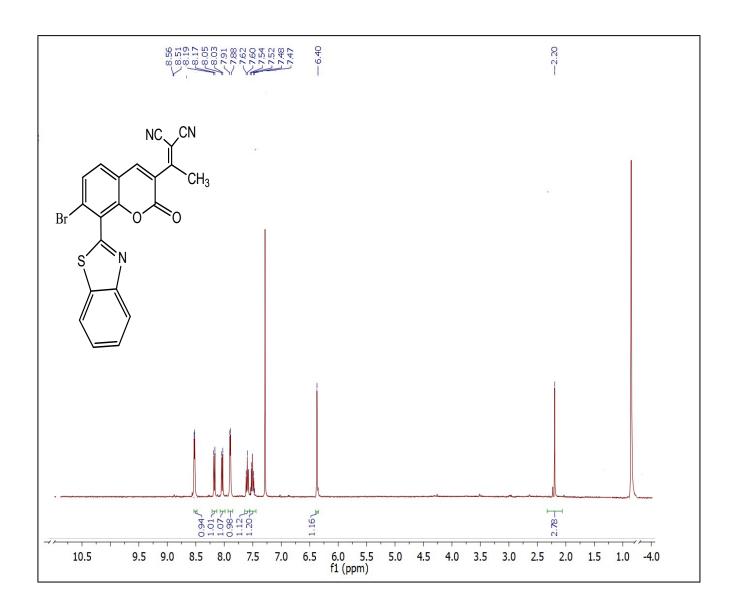


Figure S2: ¹H NMR spectrum of probe BTC in CDCl₃.

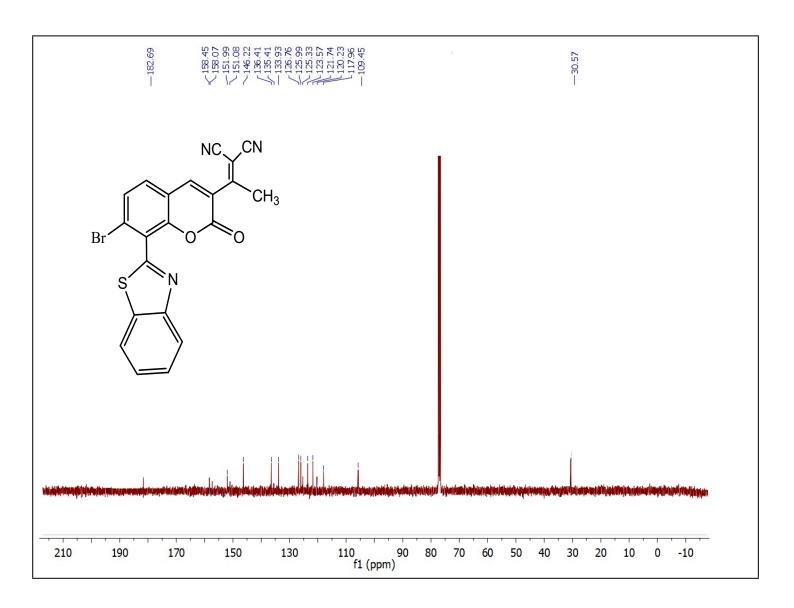
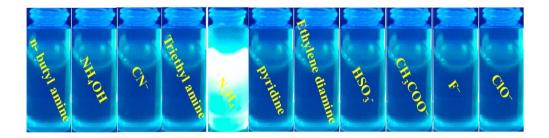



Figure S3: ¹³C NMR spectrum of probe BTC in CDCl₃.

Figure S4: Fluorescence color changes of receptor **BTC** in aq. DMSO (DMSO: $H_2O = 7:3 \text{ v/v}$, 10mM HEPES buffer, pH = 7.4) upon addition of various analytes (1) n-butyl amine; (2) NH₂OH; (3) CN⁻ (4) triethyl amine (5) N₂H₄, (6) pyridine (7) ethylenediamine, (8) HSO₃⁻, (9) CH₃COO⁻ (10) F⁻ (11) ClO⁻.

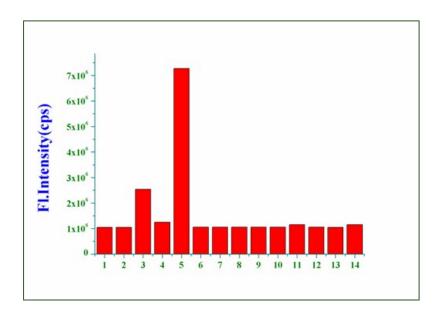
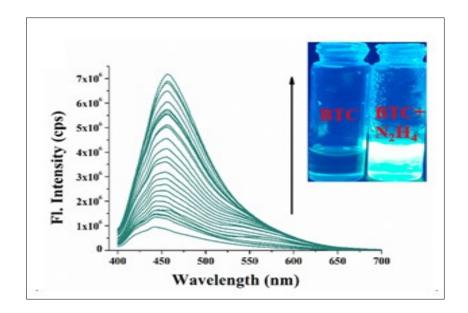
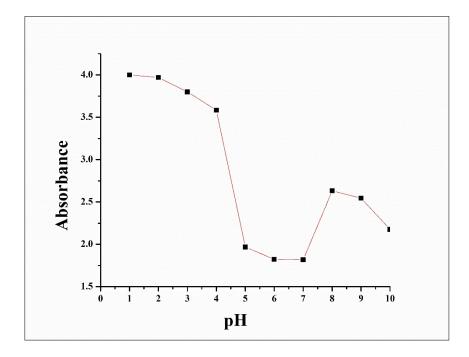




Figure S5: Competitive fluorescence emission spectra of compound BTC in the presence of different anions in aq. DMSO (DMSO $/H_2O$) = 7:3 solution.

Figure S6: Fluorescence emission spectrum obtained of **BTC** ($c = 4 \times 10^{-5}$ M) with N₂H₄ ($c = 4 \times 10^{-4}$ M) in aqueous DMSO (DMSO /H₂O = 7:3 v/v, 10 mM HEPES buffer)

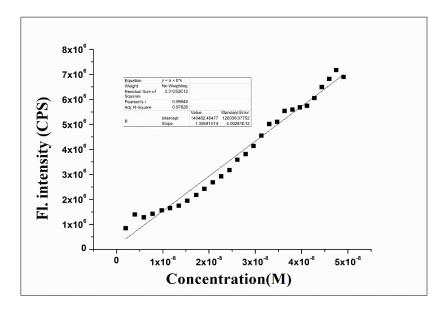

pH effect:

Figure S7: pH-dependent changes in the absorbance of probe **BTC** $(1 \times 10^{-5} \text{ M})$ in presence of hydrazine $(1 \times 10^{-4} \text{ M})$ in DMSO-H₂O (DMSO /H₂O = 7:3 v/v, 10 mM HEPES buffer, pH = 7.4)

Calculation of Detection limit:

The detection limit (DL) of **BTC** for N_2H_4 were determined from the following equation: DL = K*Sb1/S; Where K= 2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

Figure S8 : From the graph we get slope (S) = 1.39591×10^{14} , Standard deviation (Sb1=120036.07752). Thus, using the formula, we get the detection limit = 1.7 nM

Kinetic study of probe BTC:

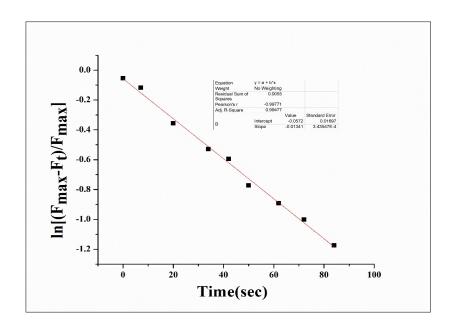


Figure S9 : Pseudo first order kinetic diagram of probe BTC (1×10^{-5} M) with N_2H_4 (1×10^{-4} M) in DMSO-H₂O

Computational details:

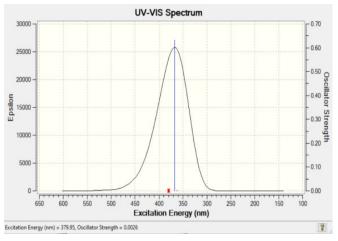


Figure S10 : Absorption spectra of the probe BTC

Table S1: The vertical main orbital transition of probe calculated by TD-DFT method

Energy(eV)	Wavelength (nm)	Osc. strength(f)	Transition
3.2632	379.95	0.0026	HOMO→LUMO
3.3762	367.23	0.6333	HOMO-2→LUMO
3.4207	362.45	0.0015	HOMO-1→LUMO

Calculation of fluorescence quantum yield of BTC-N₂H₄ adduct:

Here, the fluorescence quantum yield Φ was calculated by using the following equation:

$$\Phi_{\rm x} = \Phi_{\rm s} \left(F_{\rm x} / F_{\rm s} \right) \left(A_{\rm s} / A_{\rm x} \right) \left(\eta_{\rm x}^2 / \eta_{\rm s}^2 \right)$$

Where,

X and S indicate the unknown and standard solution respectively, $\Phi =$ quantum yield

F = Area under the emission curve, A = Absorbance at the excitation wavelength,

 η = Refractive index of solvent. Here Φ measurements were performed using fluorescein in ethanol as standard [Φ = 0.79]

The fluorescence quantum yield of BTC-N₂H₄ product was calculated by taking fluorescein ($\Phi = 0.79$ in ethanol) as standard.

 η_s = 1.3614 (for ethanol); η_x = 1.479 (for DMSO)

The quantum yield of $BTC-N_2H_4$ adduct was calculated using the above equation and the value is 0.67.

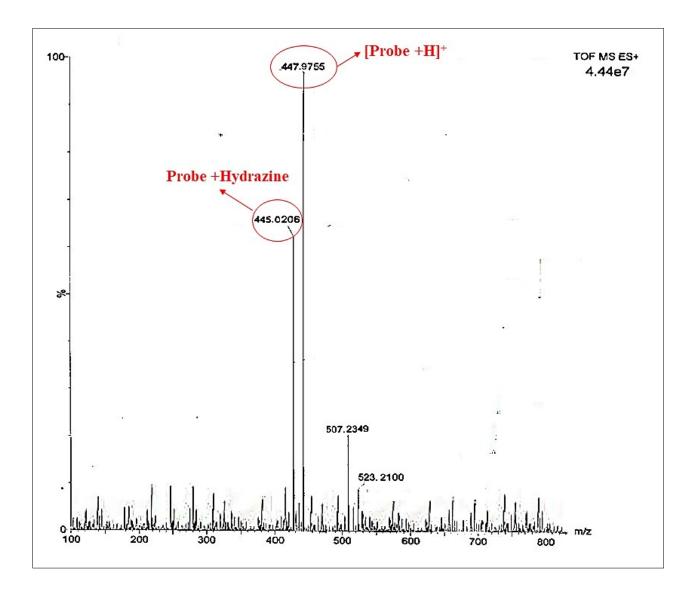


Figure S11: HRMS of BTC-N₂H₄ adduct in assay.

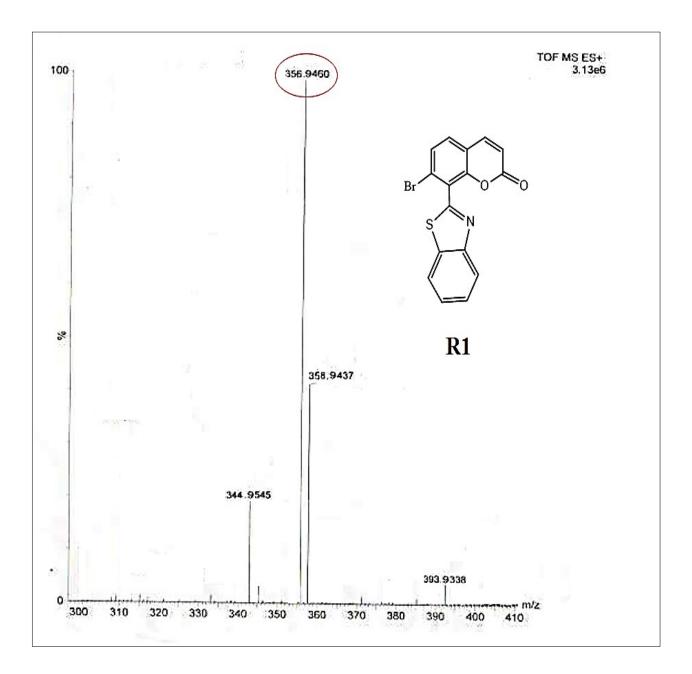
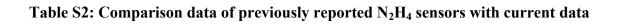



Figure S12: HRMS of reference compound R1.

Sl. No.	Probe structure	Excitation	Emissioon in presence of hydrazine	Detec tion limit	Response time	Application	Reference
1.		370 nm	415 nm ² (N [*] form) and 540 nm ² (T [*] form)	10 μΜ	60 min	Live stem cell and <i>in</i> <i>vivo</i> zebrafish imaging	[1]
2.		480 nm	542 nm₽	5.4 ppb	10 min	Live HeLa cell and <i>in</i> <i>vivo</i> zebrafish imaging	[2]
3.		540 nm and 730 nm	662 nm to 825 nm?	2.56 ppb	7 min	Live cell, kidney and in vivo mouse body imaging	[3]
4.	Br C C C S C C S	300 nm	368 nm to 458 nm?	0.78 ppb	1 h	Live cell imaging	[4]
5.	Br	460 nm	516 nm₽	3.2 ppb	30s	No application	[5]

6.		405 nm	467 nm⊡to 528 nm⊡	4.2 nM	15 min	Live HeLa cell imaging	[6]
7.		365 nm	414 nm to 460 nm?	0.22 ppb	5 min	No application	[7]
8.		510 nm	639 nm to 564 nm	0.43 μM	20 min	Live HeLa cell imaging	[8]
9.		320 nm₽ and 470 nm₽	435 nm₂ to 560 nm₂	36 nM	5 min	Live cell imaging and vapor phase detection by test strips.	[9]
10.		400 nm	471 nm₽ to 560 nm₽	0.203 2 μM	10 min	Live cell imaging and vapor phase detection by test strips.	[10]
11.	$Br \xrightarrow{NC \subset CN}_{CH_3}$	390 nm	446 nm?	1.7 nM	1 min	Live cell imaging and vapor phase detection by test strips.	Our Work

References:

[1] B. Liu, Q. Liu, M. Shah, J. Wang, G. Zhang and Y. Pang, *Sens. Actuators, B*, 2014, **202**,194–200.

[2] Q. Fang, L. Yang, H. Xiong, S. Han, Y. Zhang, J. Wang, W. Chen and X. Song, *Chinese Chem. Lett.*, 2019, 2–5.

- [3] Y. Song, G. Chen, X. Han, J. You and F. Yu, Sens. Actuators, B, 2019, 286, 69-76.
- [4] S. Goswami, S. Das, K. Aich, B. Pakhira, S. Panja, S.K. Mukherjee and S. Sarkar, *Org. Lett.*, 2013, **15**, 5412–5415.
- [5] S. Goswami, K. Aich, S. Das, S. Basu Roy, B. Pakhira and S. Sarkar, *RSC Adv.*, 2014, 4, 14210–14214.
- [6] M.V. Ramakrishnam Raju, E. Chandra Prakash, H.C. Chang and H.C. Lin, *Dyes Pigm.*, 2014, **103**, 9–20.
- [7] S. Yu, S. Wang, H. Yu, Y. Feng, S. Zhang, M. Zhu, H. Yin and X. Meng, *Sens. Actuators, B*, 2015, **220**, 1338–1345.
- [8] J. Fan, W. Sun, M. Hu, J. Cao, G. Cheng, H. Dong, K. Song, Y. Liu, S. Sun and X. Peng, *Chem. Commun.*, 2012, **48**, 8117–8119.
- [9] W. Zhang, F. Huo, T. Liu and C.Yin, J. Mater. Chem. B, 2018, 6, 8085.
- [10] X. Shi, C. Yin, Y. Zhang, Y. Wen and F. Huo, Sens. Actuators, B, 2019, 285, 368-374.