Electronic Supplementary Data

A Dual-Channel Chemodosimetric Sensor for Discrimination between Hypochlorite and nerve-agent mimic DCP: Application on Human Breast Cancer Cells

Moumi Mandal^a, Uday Narayan Guria^a, Anirban Karak^a, Satyajit Halder^b, Deepanjan Banik^a Kuladip Jana^b, Arik Kar^a, Ajit Kumar Mahapatra^a*

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India ^bDivision of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700 054, India.

*Author to whom correspondence should be addressed; electronic mail: <u>akar@chem.iiests.ac.in;</u> Tel.: +0091 8334845357

*Author to whom correspondence should be addressed; electronic mail: <u>akmahapatra@chem.iiests.ac.in</u>; Tel.: +91 – 9434508013

Table of contents

1. Comparison of recently reported DCP sensors and OCl ⁻ sensors with our present w	ork (Table
S1and S2)	S2-S3
2. Quantum chemical DFT method	S4-S5
3. Cellular imaging	S5-S6
4. NMR spectra: ¹ H NMR, ¹³ C NMR	S6-S8
5. ESI-MS Spectra	S8-S9
6. Calculation of Limit of Detection (LOD)	S9-S10
7. References	S11

Probe structure	Lod	od Solvent Mode of		Application	Ref.
			sensing		
	10.4	Acetonitrile.	Covalent	TLC based	1
	nM		assembly" and	test strip	
			Lossen		
			rearrangement		
			•		
C ₁₄ H ₂₉	88 nM	Chloroform.	Suppresses of	Polystyrene	2
			the PET	membrane	
0 N O			process	based test	
				surp	
HN					
H ₂ N					
	2.1	CH ₃ CN/H ₂	Blocking of	TLC based	3
	×10-8	O (1 : 1,	ICT	test strip	
N N N	M	v/v)			
0 NH					
ОН	33.5	DMF	Inhibition of	Nano fiber	4
HO	nM.		PET and	based test	
			ESIPI	strip	
S S					
	8.45×	THF/H2O	Enhancement	TLC based	5
	10 ⁻⁸ M	(4/1, v/v)	of ICT	test strip	

 Table S1 Comparison between the previously reported DCP sensors with our current work.

	0.2 μΜ	DCM (with 3% Et3N)	Spirolactam ring opening	TLC based test strip	6
OH OH OH	0.78 μmol/ L	Methanol.	-	Polyethylen e glycol (PEG) membrane- based test strips	7
O ^{r H} N-OH	0.14 μM.	CH ₃ CN- H ₂ O (10 mM HEPES buffer, 4:6 v/v, pH 7.4 at 25 °C)	Inhibition of PET	Filter paper based test strip, Cellular imaging	8
HO	0.186 μM)	CH ₃ CN	ESIPT-OFF	Polystyrene based test strip	9
	(3.56 × 10 ⁻⁸ M	THF- H2O(8:2)	-	TLC based test strip	Our Wor k

 Table S2: Comparison between the previously reported Hypochlorite ion sensors with our current work

L N	0.8 µM.	DMSO-water	Oxidation	Cellular	10
		solution (1:		imaging	
		4, v/v, 50			
		mM PBS			
		buffer			
		solution at			
		pH 7.4).			
N N	7.37 ×	THF (1/1,	C=N	Water	11
	10-7 M.	v/v) solution	isomerization	Test	
N = N − OH					

	64.2 nM	(DMSO)/ H ₂ O (v/v, 5 : 1)	ICT ON	Cellular imaging	12
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	2.4 nM	PBS buffer- MeOH (v/v = 50/50, 50 mM PBS, pH 7.4)	Acid- triggered intramolecular cyclization.	Cellular imaging	13
	7.6 nM	PBS buffer (10 mM, 1% DMSO, pH 7.4),	Inhibition of PET	Cellular imaging	14
	-	PBS buffer containing 50%DMF	FRET	Cellular imaging	15
	2.0×10-7 mol/L	DMF/HEPES buffer (25:75 v/v, 1.0×10-2 mol/	Destroying the π -conjugation	Cellular imaging	16
	7.67 × 10-8 M	THF- H2O(1:9)		Cellular imaging	Our work

2. Theoretical calculations

For the determination of the electronic performance of the probe and the products which are formed after the chemodosimetric reaction with OCl⁻ and DCP, we additionally performed quantum chemical DFT calculation by using the Gaussian 09 program with the help of the Gauss View visualization program. The probes and the products have been optimized by using the B3LYP/6-311G+(d, p) basis set. The geometries are established as suitable minima by frequency calculations. Subsequently we executed the Time dependent density functional theory (TDDFT) at the identical level.

Figure S1 Absorption spectra of the probe TPSZ

Energy (eV)	Wavelength (nm)	Osc. strength (f)	Transition
3.7472	330.88	1.97	HOMO→LUMO
4.1665	297.57	0.0300	HOMO→LUMO+1
4.2977	288.49	0.1555	HOMO-1→LUMO

Table S3. The vertical main orbital transition of the receptor calculated by TDDFT method.

3. Cellular imaging:

Cell line study:

To envision the fluorescence ability of the ligand **TPSA** in the presence of OCl⁻ and DCP fluorescence imaging was performed in cell line MDA-MB 231. Briefly, cells were grown in coverslips for 24 hrs. in a 37 °C humidified incubator containing 5% CO₂ and then either mock-treated or treated with 10 μ M of ligand **TPSA** in the presence or absence of 10 μ M working concentration of OCL and 10 μ M working concentration DCP separately and incubated for the

time period of 15 min and 30 min in dark at 37 °C. The cells were then washed with 1×PBS three times to remove any unbound TPSA or OCl⁻ or DCP and then they were mounted on a glass slide and detected under fluorescence microscope (Olympus) using DAPI filter.

Cytotoxicity assay:

MTT cell proliferation assay¹⁷ was performed to assess the cytotoxic effect of the ligand in **TPSZ** both the cancer cell line MDA-MB-231 and normal cell line WI-38. In brief, cells were first seeded in 96-well plates at a concentration of 1×10^4 cells per well for 24 h and exposed to the different working concentration of ligand **TPSZ** in Tetrahydrofuran (0 μ M, 10 μ M, 20 μ M, 40 μ M, 80 μ M, 100 mM) for 24 hrs. After incubation cells were washed with 1×PBS and MTT solution (0.5 mg/ml) were added to each well and incubated for 4 h and the resulting formazan crystals were dissolved in DMSO and the absorbance was measured at 570 nm by using a microplate reader. Cell viability was expressed as a percentage of the control experimental setup.¹⁸

4. NMR spectra: ¹H NMR, ¹³C NMR

Figure S2: ¹H NMR spectrum of TPSZ in CD₃CN(400 MHz, 298 K).

Figure S3: ¹³C NMR spectrum of TPSZ in CD₃CN (100 MHz, 298 K).

Figure S4: ¹H NMR spectrum of TPSZ-OCl in CD₃CN (400 MHz, 298 K).

Figure S5: ¹H NMR spectrum of TPSZ-DCP in CD₃CN (400 MHz, 298 K).

5. ESI-MS Spectra

Figure S6. ESI-MS of TPSZ

Figure S7. ESI-MS of TPSZ-OCI after protonation.

Figure S8. ESI-MS of TPSZ-DCP after protonation.

5. Calculation of Limit of Detection (LOD)

The limit of detection value of the probe **TPSZ** was obtained from a plot of two fluorescence intensity (I_{505} and I_{460}) vs. concentration of DCP and OCl⁻ respectively. The S/N ration was determined by the 10 times measurable emission intensity of the **TPSZ** without addition of analytes. and standard deviation of blank measurements was calculated. The LOD value of **TPSZ** for DCP and OCl⁻ was determined by the following equation:

$LOD = K \times \delta/m$

Where K= 2 or 3 (We take 3 in this case)

 δ is the standard deviation of the blank solution and m is the slope the calibration curve.

Figure S9. Calibration curve of TPSZ at (I₅₀₅) depending on DCP concentration

Figure S10. Calibration curve of TPSZ at (I₅₀₅) depending on OCI⁻ concentration

References:

- 1. B.Huo, M.Du, A.Shen, M. Li, Y. Lai, X.Bai, A. Gong, and Y. Yang, *Anal. Chem.* 2019, **91**, 10979–10983.
- 2. L.Zeng, H. Zeng, L. Jiang, S. Wang, Ji-T. Hou, and J.Yoon, *Anal. Chem.* 2019, **91**, 12070–12076.
- 3. S. Goswami, S. Das and K.Aich, RSC Adv., 2015, 5, 28996.
- 4. U. N. Guria, K. Maiti, S. S. Ali, A.Gangopadhyay, S. K.Samanta, K. Roy, Dipankar Mandal, and A.K. Mahapatra, *ChemistrySelect*. 2020, **5**, 3770–3777.
- 5. K. Aich, S. Das, S. Gharami, L. Patra and T. K. Mondal, New J. Chem., 2017, 41, 12562.
- 6. S. Goswami, A.Manna and S. Paul, RSC Adv., 2014, 4, 21984
- T.Qin, Y. Huang, K. Zhu, J. Wang, C. Pan, B.Liu, L.Wang, *Analytica Chimica Acta*. 2019, 1076, 125-130
- 8. S. S. Ali, A. Gangopadhyay, A. K.r Pramanik, U. N.Guria, S. K. Samanta, A. K.Mahapatra, *Dyes and Pigments*. 2019, **170**, 107585.
- 9.X.Hua, H. Zengb, T. Chenb, H.-Q. Yuanc, L.Zengb, G.-M. Baoc, Sensors & Actuators: B. Chemical. 2020, **319**, 128282.
- 10. Y.Jiang , S. Zhang, B. Wang, T. Qian, C.Jin, , S. Wu, J. Shen, *Tetrahedron*. 2018,74,5733-5738.
- 11. X.-x. Xu, Y. Qian, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017,**183**,356–361.
- 12. X.He, C. Xu, W. Xiong, Y.Qian, J. Fan, F. Ding, H.Deng, H.Chen and J. Shen, *Analyst*, 2020, **145**, 29.
- 13. W.C. Chen, P.Venkatesan, S.-P. Wu, Analytica Chimica Acta. 2015, 882, 68-75.
- 14. X.-H. Zhou, Y.-R. Jiang, X.-J. Zhao, D. Guo, Talanta. 2016,160, 470-474.
- 15. M. Ren, J. Nie, B.Deng, K. Zhou, J.-Y. Wang and W. Lin, New J. Chem., 2017, 41, 5259.
- 16. H.Yua, Y. Wuc, Y. Hua, X.Gaoa, Q.Lianga, J. Xua, S.Shaoa, Talanta. 2017,165, 625-631.
- ¹⁷.P. R.Twentyman, M. Luscombe, Br. J. Cancer. 1987, 56, 279–285.
- ¹⁸. M.Mandal, D. Sain, Md. M. Islam, D. Banik, M. Periyasamy, S. Mandal, A. K. Mahapatra and A. Kar, *Anal.Methods*. 2021,**13**, 3922.