Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

## **Supporting information**

### Highly Diastereo- and Enantioselective Synthesis of Multisubstituted Allylic Amino Acid Derivatives by Allylic Alkylation of a Chiral Glycine-Based Nickel Complex and Vinylethylene Carbonates

Chao Yu,<sup>a</sup> Yuyan Yu,<sup>b</sup> Longwu Sun,<sup>b</sup> Xinzhi Li,<sup>b</sup> Zhigang Liu,<sup>c, d</sup> Miaolin Ke\*,<sup>b</sup> Fener Chen\*a, b, c, d

<sup>a</sup> College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. <sup>b</sup>Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.

<sup>c</sup> Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.

<sup>d</sup> Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.

#### **Table of Content**

| General information:                                                                  | S2  |
|---------------------------------------------------------------------------------------|-----|
| The method for the synthesis of racemic multisubstituted allyl amino acid derivatives | S2  |
| The method for the synthesis of chiral multisubstituted allyl amino acid derivatives  | S2  |
| Characterization of multisubstituted allylic amino acid derivatives                   | S2  |
| Crystal data                                                                          | S26 |
| Spectroscopic data of compounds                                                       | S30 |
| Reference:                                                                            | S54 |

**General information:** all reactions were accomplished in Schlenck tube and round flask. Column chromatograph was performed over silica gel (200-300 mesh). <sup>1</sup>H NMR spectra were recorded on a Bruker AM400 spectrometer, chemical shifts (in ppm) were referred to CDCl<sub>3</sub> ( $\delta$  = 7.26 ppm). <sup>13</sup>C NMR spectrum were obtained by using the same NMR spectrometer and were calibrated with CDCl<sub>3</sub> ( $\delta$  = 77.0 ppm). The following abbreviations have been using to illuminate the diversities:  $\delta$  = chemical shifts, J = coupling constant, s = singlet, d= doublet, t = triplet, q = quartet, m =multiplet. HRMS were recorded on a Bruker micrOTOF spectrometer (ESI). Ee values were determined by Agilent high performance liquid chromatograph (HPLC). All anhydrous solvents were dried by standard treated method. Vinylethylene carbonates<sup>1</sup> and chiral Schiff base Ni(II) complex of glycine **6**<sup>2</sup> were synthesized according to known reference. All materials were obtained commercial suppliers, unless otherwise notice, and most stating material were purchased from Adamas, Bide and Energy Chemical. PE=petroleum ether, DCM=dichloromethane, MeOH=methanol, EA= ethyl acetate.

## The method for the synthesis of racemic multisubstituted allylic amino acid derivatives (3aa-3al, 5aa-5ak, 6aa).

Under nitrogen atmosphere, *rac*-Gly-Ni-BPB (49.7 mg, 1 mmol),  $Pd_2(dba)_3$ •CHCl<sub>3</sub> (5.17 mg, 5 mmol %) and dppe (3.98mg, 10 mmol %) were placed in the Schleck tube. Then, the solution of vinylethylene carbonates **3** (0.12 mmol) in 1 mL of DCE were added sequentially. The mixture was stirred at 30 °C for 12 h. The crude production was purified by flash column chromatograph on silica gel to provide the pure product.

# The method for the synthesis of chiral multisubstituted allylic amino acid derivatives (3aa-3al, 5aa-5ak, 6aa).

Method A: under nitrogen atmosphere, (*L*, *S*)-Gly-Ni-BPB **1a** or **1a'** (49.7 mg, 0.1 mmol),  $Pd_2(dba)_3$ •CHCl<sub>3</sub> (5.1 mg, 5 mmol %) and dppe (4.0 mg, 10 mmol %) were placed in the Schleck tube. Then, the solution of vinylethylene carbonates **2** or **4** (0.12 mmol) in 1.0 mL of DCE were added sequentially. The mixture was stirred at 30 °C for 12 h. The crude production was purified by flash column chromatograph on silica gel to provide the pure product.

#### Characterization of multisubstituted allylic amino acid derivatives.



(*S*, *Z*)-2-Amino-6-hydroxy-5-phenylhex-4-enoic acid-Ni-(*S*)-BPB (**3aa**, 63.6 mg, 99% yield, EA/DCM=3:1, 99% ee, 19:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 99% isolated yield as red solid. [ $\alpha$ ]25 D= +2167 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (d, *J* = 8.6 Hz, 1H), 8.02 (d, *J* = 7.4 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.61 – 7.45 (m, 3H), 7.40 –

7.27 (m, 6H), 7.21 – 7.12 (m, 2H), 7.04 (d, *J* = 7.4 Hz, 1H), 6.86 – 6.78 (m, 1H), 6.71 – 6.63 (m, 2H), 4.49 (d, *J* = 12.4 Hz, 1H), 4.31 – 4.20 (m, 3H), 3.49 (d, *J* = 12.7 Hz,

1H), 3.35 - 3.26 (m, 2H), 2.81 - 2.69 (m, 1H), 2.57 - 2.37 (m, 3H), 2.31 - 2.05 (m, 3H), 1.97 - 1.86 (m, 1H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.6, 144.2, 142.5, 141.8, 133.9, 133.4, 133.1, 132.5, 131.4, 129.9, 129.2, 129.1, 128.8, 128.8, 128.4, 127.7, 127.5, 126.9, 126.4, 123.8, 123.5, 120.7, 71.0, 70.5, 63.3, 59.7, 57.4, 33.3, 30.7, 22.8. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>37</sub>H<sub>35</sub>N<sub>3</sub>NiO<sub>4</sub>Na 666.1879; found: 666.1876. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R} = 14.56$  min (minor), 32.93 min (major).





(*S*, *Z*)-2-Amino-6-hydroxy-5-(*p*-tolyl)hex-4-enoic acid-Ni-(*S*)-BPB (**3ab**, 58 mg, 88% yield, EA/DCM=3:1, 98% *ee*, >20:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 88% isolated yield as red solid. [*a*]25 D= +1300 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (d, *J* = 8.6 Hz, 1H), 8.01 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.52 (m, 4H), 7.51 – 7.46 (m, 1H), 7.35 – 7.27 (m, 3H), 7.21 – 7.14 (m, 4H), 7.04 (d, *J* = 7.4 Hz, 1H), 6.75 (q, *J* = 10.2, 6.4 Hz, 1H), 6.67 (d, *J* = 4.1 Hz, 2H), 4.54 – 4.42 (m,

1H), 4.31 – 4.18 (m, 3H), 3.50 (d, J = 12.7 Hz, 1H), 3.39 – 3.24 (m, 2H), 2.80 – 2.68 (m, 2H), 2.60 – 2.40 (m, 2H), 2.34 (s, 3H), 2.31 – 2.06 (m, 2H), 2.00 – 1.87 (m, 1H), 1.40 – 1.30 (m, 1H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 179.9, 171.5, 144.0, 142.6, 138.8, 137.3, 133.9, 133.4, 133.2, 132.5, 131.4, 129.9, 129.1, 129.1, 128.8, 128.8, 127.7, 127.0, 126.3, 123.5, 122.9, 120.7, 71.0, 70.5, 63.3, 59.7, 57.4, 33.4, 30.8, 22.9, 21.0. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>38</sub>N<sub>3</sub>NiO<sub>4</sub> 658.2210; found: 658.2225. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R} = 12.38$  min (minor), 31.09 min (major).





(*S*, *Z*)-2-Amino-6-hydroxy-5-(4-methoxyphenyl)hex-4-enoic acid-Ni-(*S*)-BPB (**3ac**, 66.7 mg, 99% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 99% isolated yield as red solid. [ $\alpha$ ]25 D= +1970 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, *J* = 8.6 Hz, 1H), 7.99 (d, *J* = 7.2 Hz, 2H), 7.63 – 7.56 (m, 2H), 7.54 – 7.43 (m, 3H), 7.32 – 7.23 (m, 3H), 7.17 – 7.10 (m, 2H), 7.00

(d, J = 7.4 Hz, 1H), 6.89 – 6.83 (m, 2H), 6.69 – 6.61 (m, 3H), 4.48 – 4.37 (m, 1H), 4.29 – 4.15 (m, 3H), 3.78 (s, 3H), 3.47 (d, J = 12.7 Hz, 1H), 3.34 – 3.23 (m, 2H), 2.81 – 2.64 (m, 2H), 2.64 – 2.47 (m, 1H), 2.48 – 2.34 (m, 1H), 2.32 – 2.06 (m, 2H), 1.96 – 1.85 (m, 1H), 1.42 – 1.30 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 171.5, 159.2, 143.5, 142.5, 134.3, 133.9, 133.4, 133.2, 132.4, 131.4, 129.9, 129.1, 129.0, 128.8, 128.8, 127.7, 127.6, 127.0, 126.3, 123.5, 122.0, 120.7, 113.7, 71.0, 70.5, 63.3, 59.7, 57.3, 55.3, 33.3, 30.8, 22.9. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>38</sub>N<sub>3</sub>NiO<sub>5</sub> 674.2159; found: 674.2166. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 19.95 min (minor), 41.29 min (major).





(*S*, *Z*)-5-([1,1'-Biphenyl]-4-yl)-2-amino-6-hydroxyhex-4-enoic acid-Ni-(*S*)-BPB (**3ad**, 69.8 mg, 97% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 97% isolated yield as red solid. [ $\alpha$ ]25 D= +1170 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.21 (d, *J* = 8.6 Hz, 1H), 8.05 – 7.97 (m, 2H), 7.83 – 7.75 (m, 2H), 7.65 – 7.49 (m, 7H), 7.48 – 7.41 (m, 2H), 7.39 – 7.28 (m, 4H), 7.22 – 7.13 (m, 2H),

7.09 – 7.03 (m, 1H), 6.89 (dd, J = 10.5, 6.2 Hz, 1H), 6.69 (d, J = 4.2 Hz, 2H), 4.53 (d, J = 12.4 Hz, 1H), 4.36 – 4.19 (m, 3H), 3.51 (d, J = 12.7 Hz, 1H), 3.37 – 3.24 (m, 2H), 2.84 – 2.73 (m, 1H), 2.59 – 2.40 (m, 2H), 2.35 – 2.23 (m, 1H), 2.18 – 2.00 (m, 2H), 1.97 – 1.87 (m, 1H), 1.37 – 1.31 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 180.0, 171.7, 143.8, 142.6, 140.8, 140.6, 140.4, 134.0, 133.5, 133.2, 132.6, 131.5, 130.0, 129.2, 129.1, 128.9, 128.8, 127.8, 127.3, 127.1, 127.0, 126.9, 126.9, 126.3, 123.9, 123.5, 120.8, 71.1, 70.5, 63.4, 59.7, 57.4, 33.4, 30.8, 22.9. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>43</sub>H<sub>40</sub>N<sub>3</sub>NiO<sub>4</sub>720.2367; found: 720.2371. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 18.66 min (minor), 48.41 min (major).

3ad





(S, Z)-2-Amino-5-(4-fluorophenyl)-6-hydroxyhex-4-enoic acid-Ni-(S)-BPB (3ae, 64.2 mg, 97% yield, EA/DCM=3:1, 99% ee, 16:1 dr, Z/E >20:1) was synthesized in method A afforded 97% isolated yield as red solid. [α]25 D= +1084 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ8.20 (d, J = 8.7 Hz, 1H), 8.04 – 7.98 (m, 2H), 7.70 – 7.63 (m, 2H), 7.58 – 7.46 (m, 3H), 7.37 – 7.27 (m, 3H), 7.20 – 7.13 (m, 2H), 7.07 – 7.00 (m, 3H), 6.72 – 6.64

(m, 3H), 4.45 (d, J = 12.4 Hz, 1H), 4.27 – 4.17 (m, 3H), 3.52 (d, J = 12.7 Hz, 1H), 3.35 – 3.26 (m, 2H), 2.91 (s, 1H), 2.77 – 2.67 (m, 1H), 2.66 – 2.53 (m, 1H), 2.49 – 2.39 (m, 1H), 2.34 – 2.12 (m, 2H), 1.96 – 1.88 (m, 1H), 1.47 – 1.36 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.3, 180.0, 171.7, 162.4 (d, J = 246.9 Hz), 143.2, 142.5, 138.0 (d, J = 3.4 Hz), 133.9, 133.4, 133.2, 132.6, 131.4, 129.9, 129.2, 129.1, 128.9, 128.8, 128.2, 128.1, 127.7, 127.0, 126.3, 123.7, 122.1 (d, J = 277.8 Hz), 115.1 (d, J = 21.2 Hz), 71.0, 70.5, 63.4, 59.7, 57.2, 33.4, 30.7, 22.9. HRMS (ESI) m/z: [M + H]<sup>+</sup> Calcd for C<sub>37</sub>H<sub>35</sub>FN<sub>3</sub>NiO<sub>4</sub> 662.1960; found: 662.1975. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R} = 13.84$  min (minor), 37.18 min (major).

3ae





(2S, Z)-2-Amino-5-(4-chlorocyclohexa-2,4-dien-1-yl)-6hydroxyhex-4-enoic acid-Ni-(S)-BPB (3af, 65.8 mg, 97% yield, EA/DCM=3:1, 99% ee, 19:1 dr, Z/E >20:1) was synthesized in method A afforded 97% isolated yield as red solid. [α]25 D= +1138 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.19 (d, J = 8.7 Hz, 1H), 8.01 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.59 - 7.53 (m, 2H), 7.53 - 7.47 (m, 1H), 7.37 - 7.27 (m,

5H), 7.21 – 7.13 (m, 2H), 7.02 (d, J = 7.4 Hz, 1H), 6.75 – 6.64 (m, 3H), 4.44 (d, J = 12.2 Hz, 1H), 4.30 – 4.13 (m, 3H), 3.52 (d, J = 12.7 Hz, 1H), 3.38 – 3.22 (m, 2H), 3.03 – 2.89 (m, 1H), 2.78 – 2.67 (m, 1H), 2.67 – 2.53 (m, 1H), 2.51 – 2.40 (m, 1H), 2.35 – 2.12 (m, 2H), 1.97 – 1.87 (m, 1H), 1.48 – 1.35 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.3, 179.9, 171.7, 143.1, 142.5, 140.3, 133.9, 133.4, 133.3, 133.1, 132.5, 131.4, 129.9, 129.2, 129.0, 128.9, 128.8, 128.4, 127.8, 127.7, 126.9, 126.3, 124.3, 123.5, 120.8, 70.9, 70.4, 63.3, 59.5, 57.2, 33.4, 30.7, 22.9. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>37</sub>H<sub>35</sub>ClN<sub>3</sub>NiO<sub>4</sub> 678.1664; found: 678.1687. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 17.30 min (minor), 43.09 min (major).

3af







(*S*, *Z*)-2-Amino-6-hydroxy-5-(4-(trifluoromethyl)phenyl)hex-4-enoic acid-Ni-(*S*)-BPB (**3ag**, 68.2 mg, 96% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 96% isolated yield as red solid. [ $\alpha$ ]25 D= +900 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, *J* = 8.7 Hz, 1H), 8.00 (d, *J* = 7.5 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.65 – 7.53 (m, 4H), 7.38 – 7.29 (m, 3H), 7.24 – 7.15 (m,

2H), 7.04 (d, J = 7.4 Hz, 1H), 6.82 – 6.75 (m, 1H), 6.72 – 6.63 (m, 2H), 4.48 (d, J = 12.5 Hz, 1H), 4.34 – 4.20 (m, 3H), 3.54 (d, J = 12.7 Hz, 1H), 3.36 – 3.20 (m, 2H), 2.83 – 2.67 (m, 1H), 2.59 – 2.41 (m, 2H), 2.34 – 2.08 (m, 3H), 1.98 – 1.87 (m, 1H), 1.40 – 1.35 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.3, 179.9, 171.8, 145.5, 143.2, 142.6, 133.9, 133.5, 133.1, 132.7, 131.4, 130.0, 129.3, 129.1, 128.9, 128.9, 127.7, 127.0, 126.8, 126.0, 125.3 (q, J = 3.7 Hz), 124.2 (d, J = 271.8 Hz), 123.6, 120.8, 70.8, 70.4, 63.4, 59.5, 57.1, 33.5, 30.6, 22.9. HRMS (ESI) *m*/*z*: [M + H]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>35</sub>F<sub>3</sub>N<sub>3</sub>NiO<sub>4</sub> 712.1928; found: 712.1930. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, 45min; *t*<sub>R</sub> = 13.28 min (minor), 31.51 min (major).







(*S*, *Z*)-2-Amino-5-(3-bromophenyl)-6-hydroxyhex-4-enoic acid-Ni-(*S*)-BPB (**3ah**, 69.2 mg, 96% yield, EA/DCM=3:1, 99% *ee*, 7:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 96% isolated yield as red solid. [ $\alpha$ ]25 D= +1095 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (d, *J* = 8.7 Hz, 1H), 8.01 (d, *J* = 7.2 Hz, 2H), 7.89 – 7.82 (m, 1H), 7.64 – 7.55 (m, 2H), 7.55 – 7.46 (m, 2H), 7.46 – 7.39 (m, 1H),

7.39 – 7.27 (m, 3H), 7.25 – 7.12 (m, 3H), 7.09 – 6.97 (m, 1H), 6.85 – 6.64 (m, 3H), 4.51 – 4.05 (m, 4H), 3.52 (d, J = 12.7 Hz, 1H), 3.38 – 3.19 (m, 2H), 3.05 – 2.93 (m, 1H), 2.77 – 1.87 (m, 6H), 1.51 – 1.37 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.3, 179.9, 171.7, 144.1, 143.0, 142.6, 133.9, 133.4, 133.2, 132.6, 131.4, 130.4, 123.0, 129.9, 129.4, 129.2, 129.1, 128.9, 128.8, 127.7, 126.9, 126.3, 125.2, 125.1, 123.5, 122.6, 120.7, 70.8, 70.5, 63.3, 59.5, 57.3, 33.4, 30.7, 22.9. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>37</sub>H<sub>35</sub>BrN<sub>3</sub>NiO<sub>4</sub> 722.1159; found: 722.1153. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 13.55 min (minor), 35.23 min (major).







(*S*, *Z*)-2-Amino-6-hydroxy-5-(2-methoxyphenyl)hex-4-enoic acid-Ni-(*S*)-BPB (**3ai**, 66.7 mg, 99% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 99% isolated yield as red solid. [ $\alpha$ ]25 D= +1945 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.26 (d, *J* = 8.7 Hz, 1H), 8.02 (d, *J* = 7.2 Hz, 2H), 7.56 – 7.39 (m, 4H), 7.35 – 7.07 (m, 7H), 7.00 –

6.92 (m, 1H), 6.91 – 6.76 (m, 1H), 6.74 – 6.60 (m, 2H), 6.36 (q, J = 9.4, 6.4 Hz, 1H), 4.50 – 4.30 (m, 1H), 4.29 – 4.03 (m, 2H), 3.82 – 3.63 (m, 4H), 3.54 – 3.28 (m, 3H), 2.95 – 2.59 (m, 2H), 2.59 – 1.88 (m, 5H), 1.67 – 1.45 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 179.2, 171.3, 156.1, 143.0, 142.3, 134.1, 133.4, 133.3, 132.1, 131.9, 131.5, 130.5, 129.6, 129.0, 128.8, 128.7, 128.2, 128.1, 127.1, 126.3, 123.2, 121.2, 120.5, 110.4, 70.1, 67.9, 63.1, 60.4, 57.0, 55.5, 33.5, 30.4, 22.9. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>38</sub>N<sub>3</sub>NiO<sub>5</sub> 674.2159; found: 674.2163. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R} = 20.75$  min (minor), 26.42 min (major).





(*S*, *Z*)-2-Amino-6-hydroxy-5-(naphthalen-2-yl)hex-4-enoic acid-Ni-(*S*)-BPB (**3aj**, 68.7 mg, 99% yield, EA/DCM=3:1, 98% *ee*, >20:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 99% isolated yield as red solid. [ $\alpha$ ]25 D= +1191 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.25 – 8.15 (m, 2H), 8.03 – 7.94 (m, 2H), 7.89 – 7.78 (m, 4H), 7.60 – 7.42 (m, 5H), 7.35 – 7.28 (m, 3H), 7.20 – 7.14 (m, 2H), 7.11 – 7.05

(m, 1H), 6.96 (dd, J = 10.5, 6.3 Hz, 1H), 6.69 (d, J = 4.2 Hz, 2H), 4.59 (d, J = 12.4 Hz, 1H), 4.38 (d, J = 12.4 Hz, 1H), 4.33 – 4.27 (m, 1H), 4.20 (d, J = 12.7 Hz, 1H), 3.47 (d, J = 12.7 Hz, 1H), 3.32 – 3.17 (m, 2H), 2.88 – 2.76 (m, 1H), 2.55 – 2.42 (m, 1H), 2.42 – 2.10 (m, 3H), 1.99 – 1.78 (m, 2H), 1.13 – 0.99 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 180.0, 171.7, 144.2, 142.6, 139.0, 134.0, 133.5, 133.4, 133.1, 132.7, 132.5, 131.4, 130.0, 129.2, 129.1, 128.9, 128.8, 128.3, 128.0, 127.8, 127.4, 127.0, 126.4, 126.2, 125.9, 125.2, 124.7, 124.4, 123.5, 120.7, 71.1, 70.4, 63.3, 59.8, 57.2, 33.5, 30.6, 22.7. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>37</sub>N<sub>3</sub>NiO<sub>4</sub>Na 716.2035; found: 716.2029. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 20.13 min (minor), 50.44 min (major).



|       | VWD1 A, | Wavelength=28 | 54 nm (D:\[ | DATA\KML\DA | TA\NEW FOLDER\K | ML-1433-2.D) |         |      |     |
|-------|---------|---------------|-------------|-------------|-----------------|--------------|---------|------|-----|
| mAU   |         |               |             |             |                 |              |         | 40   |     |
| 120 - | Peak    | RetTime       | Туре        | Width       | Area            | Height       | Area    | 20.2 |     |
| -     | #       | [min]         |             | [min]       | [mAU*s]         | [mAU]        | 010     |      |     |
|       |         |               |             |             |                 |              |         |      |     |
| 100 - | 1       | 15.539        | HB          | 0.5899      | 504.64108       | 12.85674     | 3.0200  |      |     |
| -     | 2       | 20.131        | BB          | 0.7070      | 149.72968       | 3.20532      | 0.8960  |      |     |
| -     | 3       | 50.440        | BB          | 1.9136      | 1.60556e4       | 113.96883    | 96.0840 |      |     |
| 80 -  |         |               |             |             |                 |              |         |      |     |
| -     |         |               |             |             |                 |              |         |      |     |
| -     |         |               |             |             |                 |              |         |      |     |
| 60 -  |         |               |             |             |                 |              |         |      |     |
| -     |         |               |             |             |                 |              |         |      |     |
| -     |         |               |             |             |                 |              |         |      |     |
| 40 -  |         |               |             |             |                 |              |         |      |     |
|       |         |               |             | 0           |                 |              |         |      |     |
| -     |         |               |             | 5.53        |                 |              |         |      |     |
| 20 -  |         |               |             | >1          |                 |              |         |      |     |
|       |         |               |             | 20.         |                 |              |         |      |     |
| -     |         | nnl           |             |             | <u> </u>        |              |         |      |     |
| 1     | L_,,    |               |             |             | -, , , ,        |              |         |      |     |
|       |         | 10            | )           | 20          |                 | 30           | 40      | 50   | min |

(*S*, *E*)-2-Amino-5-(furan-2-yl)-6-hydroxyhex-4-enoic acid-Ni-(*S*)-BPB (**3ak**, 62.8 mg, 99% yield, EA/DCM=3:1, 91% *ee*, >20: 1 *dr*, *E/Z* >20:1) was synthesized in method A afforded 99% isolated yield as red solid. [ $\alpha$ ]25 D= +2215 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 (d, *J* = 8.6 Hz, 1H), 8.01 (d, *J* = 7.6 Hz, 2H), 7.58 – 7.50 (m, 2H), 7.49 – 7.43 (m, 1H), 7.40 (s,

1H), 7.35 - 7.27 (m, 3H), 7.20 - 7.12 (m, 2H), 7.03 (d, J = 7.5 Hz, 1H), 6.94 - 6.86 (m, 1H), 6.68 - 6.62 (m, 2H), 6.55 - 6.50 (m, 1H), 6.46 - 6.40 (m, 1H), 4.45 - 4.35 (m, 1H), 4.31 - 4.17 (m, 3H), 3.54 (d, J = 12.7 Hz, 1H), 3.42 - 3.30 (m, 2H), 2.95 - 2.69 (m, 3H), 2.68 - 2.56 (m, 1H), 2.42 - 2.26 (m, 2H), 2.04 - 1.92 (m, 1H), 1.67 - 1.52 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 180.0, 171.7, 154.2, 142.6, 141.8, 134.2, 134.0, 133.4, 133.2, 132.4, 131.4, 129.9, 129.1, 129.0, 128.8, 128.8, 127.7, 126.8, 126.3, 123.5, 120.7, 119.9, 111.7, 107.2, 71.0, 70.5, 63.3, 57.6, 57.2, 32.0, 30.8, 22.7. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>34</sub>N<sub>3</sub>NiO<sub>5</sub>634.1846; found: 634.1855. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_R = 15.256$  min (minor), 34.96 min (major).

3ak







(*S*, *E*)-2-amino-6-hydroxy-5-(thiophen-2-yl)hex-4-enoic acid-Ni-(*S*)-BPB (**3al**, 64.2 mg, 99% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *E*/*Z* >20:1) was synthesized in method A afforded 99% isolated yield as red solid. [ $\alpha$ ]25 D= +3297 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, *J* = 8.6 Hz, 1H), 8.03 (d, *J* = 7.4 Hz, 2H), 7.59 – 7.45 (m, 3H), 7.36 – 7.27 (m, 4H), 7.21 – 7.13 (m, 3H), 7.07 – 6.98 (m, 2H), 6.67 (d, *J* = 4.3 Hz, 2H), 6.62

(dd, J = 10.2, 6.8 Hz, 1H), 4.51 – 4.41 (m, 1H), 4.36 – 4.25 (m, 2H), 4.24 – 4.16 (m, 1H), 3.50 (d, J = 12.7 Hz, 1H), 3.46 – 3.39 (m, 1H), 3.39 – 3.29 (m, 1H), 2.92 – 2.81 (m, 1H), 2.81 – 2.66 (m, 2H), 2.50 – 2.38 (m, 2H), 2.33 – 2.20 (m, 1H), 2.06 – 1.95 (m, 1H), 1.61 – 1.48 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 179.9, 171.6, 145.1, 142.5, 138.4, 133.9, 133.4, 133.2, 132.5, 131.4, 129.9, 129.1, 129.1, 128.8, 128.8, 127.6, 127.6, 126.9, 126.2, 124.6, 124.2, 123.5, 122.1, 120.7, 70.9, 70.4, 63.3, 59.7, 57.6, 33.0, 30.4, 23.0. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>34</sub>N<sub>3</sub>NiO<sub>4</sub>S 650.1618; found: 650.1614. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 14.35 min (minor), 32.59 min (major).







(*S*, *E*)-2-Amino-6-hydroxy-4-phenylhex-4-enoic acid-Ni-(*S*)-BPB (**5aa**, 63.7 mg, 99% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *E*/*Z* >20:1) was synthesized in method A afforded 99% isolated yield as red solid. [ $\alpha$ ]25 D= +2332 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 – 7.96 (m, 3H), 7.50 – 7.36 (m, 2H), 7.35 – 7.27 (m, 3H), 7.20 – 6.97 (m, 6H), 6.97 – 6.87

(m, 1H), 6.86 - 6.73 (m, 2H), 6.67 - 6.55 (m, 1H), 6.55 - 6.42 (m, 1H), 6.05 - 5.89 (m, 1H), 6.05 - 5.89 (m, 1H), 6.05 - 6.42 (m, 1H), 6.05 (m, 1H)1H), 4.43 – 4.22 (m, 2H), 4.15 – 3.97 (m, 1H), 3.98 – 3.83 (m, 2H), 3.82 – 3.65 (m, 1H), 3.56 – 3.42 (m, 3H), 2.87 – 2.61 (m, 3H), 2.59 – 2.42 (m, 1H), 2.32 – 2.19 (m, 1H), 2.14 – 2.03 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 178.3, 170.3, 142.0, 140.9, 136.6, 133.4, 133.1, 133.0, 132.1, 131.4, 131.1, 129.8, 129.0, 128.9, 128.8, 128.0, 127.6, 127.3, 126.9, 126.4, 126.2, 123.7, 120.7, 70.1, 69.0, 63.2, 58.6, 57.5, 36.8, 30.6, 24.2. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>37</sub>H<sub>35</sub>N<sub>3</sub>NiO<sub>4</sub>Na 666.1879; found: 666.1889. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, 55:45, 26.21 Hex:IPA = = 13.37 min (minor), min (major).  $t_{\rm R}$ 







(*S*, *E*)-2-Amino-6-hydroxy-4-(4-methoxyphenyl)hex-4-enoic acid-Ni-(*S*)-BPB (**5ab**, 41 mg, 61% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *E*/*Z* >20:1) was synthesized in method A afforded 61% isolated yield as red solid. [ $\alpha$ ]25 D=+2571(c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 – 7.99 (m, 3H), 7.56 – 7.40 (m, 3H), 7.39 – 7.29 (m, 3H), 7.21 – 7.07 (m, 3H), 7.00 – 6.94 (m, 1H), 6.77 – 6.69 (m, 2H), 6.66 – 6.49 (m, 4H), 6.01 – 5.88

(m, 1H), 4.46 - 4.26 (m, 2H), 4.12 - 4.00 (m, 1H), 3.97 - 3.84 (m, 2H), 3.75 (s, 3H), 3.57 - 3.44 (m, 3H), 2.78 - 2.64 (m, 2H), 2.59 - 2.43 (m, 2H), 2.33 - 2.23 (m, 1H), 2.15 - 2.04 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 178.4, 170.2, 158.6, 142.0, 136.3, 133.3, 133.1, 133.1, 132.1, 131.4, 129.7, 129.7, 129.1, 129.0, 128.9, 128.8, 127.7, 127.5, 127.3, 126.5, 123.7, 120.7, 113.4, 70.0, 63.1, 58.6, 57.5, 55.2, 36.8, 30.7, 24.3. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>37</sub>N<sub>3</sub>NiO<sub>5</sub>Na 696.1984; found: 696.1987. HPLC conditions: IA column, 254nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R}$  = 19.31 min (minor), 33.19 min (major).







(*S*, *E*)-2-Amino-4-(4-(tert-butyl)phenyl)-6-hydroxyhex-4-enoic acid-Ni-(*S*)-BPB (**5ac**, 57.3 mg, 82% yield, EA/DCM=3:1, 96% *ee*, >20:1 *dr*, *E*/*Z* >20:1) was synthesized in method A afforded 82% isolated yield as red solid. [ $\alpha$ ]25 D= +2148 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 – 7.95 (m, 3H), 7.53 – 7.39 (m, 3H), 7.36 – 7.27 (m, 3H), 7.20 – 6.95 (m, 6H), 6.75 (d, *J* = 7.9 Hz, 2H), 6.66 – 6.59 (m, 1H), 6.54 – 6.47 (m,

1H), 6.08 – 5.93 (m, 1H), 4.45 – 4.29 (m, 2H), 4.13 – 4.03 (m, 1H), 3.98 – 3.83 (m, 2H), 3.59 – 3.44 (m, 3H), 2.82 – 2.65 (m, 2H), 2.60 – 2.41 (m, 2H), 2.33 – 2.21 (m, 1H), 2.15 – 2.05 (m, 1H), 1.27 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 178.4, 170.2, 149.6, 141.9, 137.8, 136.5, 133.3, 133.1, 133.0, 132.1, 131.4, 130.3, 129.7, 129.0, 128.8, 128.8, 127.7, 127.5, 126.5, 125.7, 125.0, 123.7, 120.7, 70.0, 69.1, 63.1, 58.6, 57.4, 36.8, 34.2, 31.2, 30.6, 24.2. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>43</sub>N<sub>3</sub>NiO<sub>4</sub>Na 722.2505; found: 722.2500. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 12.55 min (minor), 19.55 min (major).







(*S*, *E*)-4-([1,1'-Biphenyl]-4-yl)-2-amino-6-hydroxyhex-4enoic acid-Ni-(*S*)-BPB (**5ad**, 58.9 mg, 82% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *E/Z* >20:1) was synthesized in method A afforded 82% isolated yield as red solid. [ $\alpha$ ]25 D= +2041 (c=0.04, CDCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 – 8.00 (m, 3H), 7.57 – 7.52 (m, 2H), 7.49 – 7.42 (m, 4H), 7.39 – 7.31 (m, 4H), 7.30 – 7.26 (m, 2H), 7.22 – 7.09 (m, 3H), 7.03 –

6.95 (m, 1H), 6.89 (d, J = 7.9 Hz, 2H), 6.64 (t, J = 7.6 Hz, 1H), 6.58 – 6.50 (m, 1H), 6.11 – 6.02 (m, 1H), 4.46 – 4.32 (m, 2H), 4.16 – 4.07 (m, 1H), 4.04 – 3.89 (m, 2H), 3.87 – 3.74 (m, 1H), 3.60 – 3.47 (m, 3H), 2.84 – 2.69 (m, 2H), 2.62 – 2.48 (m, 2H), 2.37 – 2.23 (m, 1H), 2.17 – 2.05 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 178.4, 170.3, 142.0, 140.6, 139.8, 139.7, 136.3, 133.3, 133.2, 133.0, 132.2, 131.4, 131.0, 129.7, 129.1, 129.0, 128.8, 128.7, 127.6, 127.5, 127.2, 126.8, 126.6, 126.5, 123.8, 120.8, 70.1, 69.0, 63.1, 58.6, 57.5, 36.9, 30.7, 24.3. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>43</sub>H<sub>39</sub>N<sub>3</sub>NiO<sub>4</sub>Na 742.2192; found: 742.2193. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 22.18 min (minor), 34.57 min (major).







(*S*, *E*)-2-Amino-6-hydroxy-4-(*m*-tolyl)hex-4-enoic acid-Ni-(*S*)-BPB (**5ae**, 61.8 mg, 94% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *E/Z* >20:1) was synthesized in method A afforded 94% isolated yield as red solid. [ $\alpha$ ]25 D= +2761 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 - 8.00 (m, 3H), 7.54 - 7.37 (m, 3H), 7.36 - 7.29 (m, 3H), 7.20 - 7.08 (m, 3H), 6.96 - 6.86 (m, 4H), 6.66 - 6.60 (m, 1H), 6.56 - 6.46 (m, 2H), 5.98 - 5.91 (m,

1H), 4.41 (d, J = 12.6 Hz, 1H), 4.33 – 4.21 (m, 1H), 4.02 (dd, J = 12.3, 6.3 Hz, 1H), 3.93 – 3.83 (m, 2H), 3.56 – 3.44 (m, 3H), 2.79 – 2.46 (m, 4H), 2.29 – 2.19 (m, 4H), 2.16 – 2.04 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 178.5, 170.3, 142.0, 141.2, 137.4, 137.1, 133.3, 133.2, 132.9, 132.1, 131.4, 131.0, 129.7, 128.8, 128.8, 128.8, 127.9, 127.8, 127.5, 127.3, 126.4, 123.7, 123.1, 120.7, 70.1, 69.2, 63.1, 58.6, 57.4, 37.1, 30.6, 24.2, 21.4. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>37</sub>N<sub>3</sub>NiO<sub>4</sub>Na 680.2035; found: 680.2028. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R} = 10.87$  min (minor), 22.47 min (major).







(*S*, *E*)-2-Amino-4-(3,4-dimethoxyphenyl)-6-hydroxyhex-4enoic acid-Ni-(*S*)-BPB (**5af**, 64 mg, 91% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *E/Z* >20:1) was synthesized in method A afforded 91% isolated yield as red solid. [ $\alpha$ ]25 D= +2812 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 – 7.99 (m, 3H), 7.52 – 7.36 (m, 3H), 7.34 – 7.28 (m, 3H), 7.19 – 7.07 (m, 3H), 6.95 – 6.88 (m, 1H), 6.68 – 6.59 (m, 2H), 6.54 – 6.49

(m, 1H), 6.45 (d, J = 8.3 Hz, 1H), 6.17 – 6.11 (m, 1H), 5.95 – 5.87 (m, 1H), 4.39 (d, J = 12.6 Hz, 1H), 4.31 – 4.23 (m, 1H), 4.07 – 3.98 (m, 1H), 3.95 – 3.86 (m, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 3.53 – 3.45 (m, 3H), 2.75 – 2.45 (m, 4H), 2.29 – 2.20 (m, 1H), 2.14 – 2.04 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 178.5, 170.2, 148.4, 148.2, 142.0, 136.6, 134.0, 133.3, 133.1, 132.9, 132.1, 131.4, 130.0, 129.6, 128.8, 128.8, 127.6, 127.4, 126.4, 123.7, 120.7, 118.2, 110.4, 110.3, 70.1, 69.1, 63.1, 58.5, 57.4, 55.8, 55.8, 37.4, 30.6, 24.2. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>39</sub>H<sub>39</sub>N<sub>3</sub>NiO<sub>6</sub>Na 726.2090; found: 726.2088. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 16.56 min (minor), 31.53 min (major).



S19





(*S*, *Z*)-2-Amino-4-(2-hydroxyethylidene)octanoic acid-Ni-(*S*)-BPB (**5ag**, 49.3 mg, 79% yield, EA/DCM=3:1, 99% *ee*, 13:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 79% isolated yield as red solid. [ $\alpha$ ]25 D= +2245 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 – 8.03 (m, 3H), 7.60-7.42 (m, 4H), 7.40 – 7.28 (m, 3H), 7.22 – 7.09 (m, 2H), 6.98 (d, *J* = 7.7 Hz,

1H), 6.71 – 6.58 (m, 2H), 5.65 – 5.41 (m, 1H), 4.43 (d, J = 12.5 Hz, 1H), 4.16 – 4.04 (m, 1H), 3.98 – 3.73 (m, 3H), 3.59 – 3.43 (m, 4H), 2.73 (dq, J = 14.3, 8.5, 6.8 Hz, 1H), 2.61 – 2.48 (m, 1H), 2.30 – 2.20 (m, 2H), 2.17 – 1.96 (m, 2H), 1.70 – 1.47 (m, 1H), 1.36 – 1.27 (m, 1H), 1.14 – 0.99 (m, 4H), 0.79 (t, J = 6.6 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 179.0, 170.1, 142.1, 136.9, 133.2, 133.2, 133.1, 132.2, 131.4, 129.9, 129.0, 129.0, 128.9, 128.5, 127.7, 127.5, 126.4, 123.8, 120.8, 70.1, 63.1, 58.4, 57.4, 37.2, 36.4, 30.7, 30.2, 24.1, 22.2, 13.8. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>40</sub>N<sub>3</sub>NiO<sub>4</sub> 624.2367; found: 624.2371. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 10.81 min (minor), 18.44 min (major).







(2*S*, *E*)-2-Amino-4-(2-hydroxyethylidene)-5-methylheptanoic acid-Ni-(*S*)-BPB (**5ah**, 47.4 mg, 76% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *E/Z* >20:1) was synthesized in method A afforded 76% isolated yield as red solid. [ $\alpha$ ]25 D= +2317 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 – 8.00 (m, 3H), 7.59 – 7.41 (m, 4H), 7.40 – 7.28 (m, 3H), 7.22 – 7.09 (m, 2H), 6.99 (d, *J* =

7.3 Hz, 1H), 6.71 – 6.59 (m, 2H), 5.59 – 5.49 (m, 1H), 4.49 – 4.38 (m, 1H), 4.14 – 3.97 (m, 1H), 3.91 – 3.75 (m, 3H), 3.73 – 3.62 (m, 1H), 3.59 – 3.47 (m, 3H), 2.77 – 2.66 (m, 1H), 2.60 – 2.50 (m, 1H), 2.40 – 1.90 (m, 5H), 1.10 – 0.87 (m, 2H), 0.80 – 0.77 (m, 1H), 0.68 – 0.57 (m, 4H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 142.1, 141.6, 141.3, 133.4, 133.1, 132.2, 131.5, 129.8, 129.2, 128.9, 127.6, 127.5, 127.0, 126.6, 126.4, 123.9, 120.8, 70.2, 69.6, 63.2, 58.4, 57.5, 41.3, 37.3, 30.7, 27.6, 24.2, 20.2, 12.0. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>40</sub>N<sub>3</sub>NiO<sub>4</sub> 624.2367; found: 624.2376. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45, *t*<sub>R</sub> = 9.72 min (minor), 26.67 min (major).





(*S*, *Z*)-2-Amino-6-hydroxyhex-4-enoic acid-Ni-(*S*)-BPB (**5ai**, 46.0 mg, 81% yield, EA/DCM=3:1, 99% *ee*, 2:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 81% isolated yield as red solid. [*a*]25 D= +2645 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 – 7.98 (m, 3H), 7.53 – 7.37 (m, 3H), 7.34 – 7.27 (m, 2H), 7.24 – 7.18 (m, 1H), 7.18 – 7.04 (m, 2H), 6.97 – 6.83

(m, 1H), 6.65 - 6.55 (m, 2H), 6.22 - 5.56 (m, 1H), 6.12 - 6.00 (m, 1H), 4.32 (t, J = 11.6 Hz, 1H), 4.16 - 4.07 (m, 1H), 4.05 - 3.88 (m, 2H), 3.58 - 3.35 (m, 4H), 2.88 (s, 1H), 2.77 - 2.64 (m, 1H), 2.59 - 2.34 (m, 3H), 2.14 - 1.96 (m, 2H). <sup>13</sup>C NMR (100 MHz,

 $CDCl_3$ )  $\delta$  180.2, 178.8, 170.6, 142.0, 134.0, 133.5, 133.1, 132.0, 131.3, 129.6, 128.9, 128.8, 128.6, 127.4, 126.8, 126.1, 124.8, 124.1, 123.4, 120.5, 70.1, 62.9, 62.5, 57.0, 37.4, 30.5, 23.4. HRMS (ESI) m/z:  $[M + Na]^+$  Calcd for C<sub>31</sub>H<sub>31</sub>N<sub>3</sub>NiO<sub>4</sub>Na 590.1566; found: 590.1558. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R}$  = 22.18 min (minor), 34.57 min (major).40 min; 99% ee(major).



9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4 5 6 7 2 3 8



(S, Z)-2-Amino-6-hydroxy-4-methyl-5-(naphthalen-2-yl)hex-4-enoic acid-Ni-(S)-BPB (5aj, 50.2 mg, 71% yield, EA/DCM=3:1, 99% ee, >20:1 dr, Z/E >20:1) was synthesized in method A afforded 71% isolated yield as red solid.  $[\alpha]25$ D = +1420 (c=0.04, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 -8.01 (m, 3H), 7.82 - 7.72 (m, 3H), 7.61 - 7.49 (m, 2H), 7.48-7.35 (m, 6H), 7.34 - 7.27 (m, 2H), 7.24 - 7.13 (m, 2H), 7.04

-6.98 (m, 1H), 6.77 - 6.62 (m, 2H), 4.47 (dd, J = 29.1, 12.3 Hz, 2H), 4.15 - 4.02 (m, 2H), 3.89 - 3.73 (m, 2H), 3.63 - 3.44 (m, 3H), 2.78 - 2.68 (m, 1H), 2.61 - 2.21 (m, 4H), 2.14 – 2.02 (m, 1H), 1.06 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 179.2, 170.2, 142.1, 139.8, 139.0, 133.2, 133.2, 133.1, 132.2, 132.1, 131.5, 129.9 129.7, 129.0, 128.9, 128.9, 127.8, 127.6, 127.5, 127.4, 127.4, 127.2, 126.4, 125.7, 125.4, 123.9, 120.8, 70.0, 69.0, 63.0, 62.8, 57.4, 41.0, 30.6, 29.6, 24.1, 19.8. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for  $C_{42}H_{39}N_3NiO_4Na$  730.2192; found: 730.2192. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R}$  = 15.62 min (minor), 28.77 min (major).







(*S*, *Z*)-2-Amino-5-(4-chlorophenyl)-6-hydroxy-4-methylhex-4enoic acid-Ni-(*S*)-BPB (**5ak**, 53.2 mg, 77% yield, EA/DCM=3:1, 99% *ee*, >20:1 *dr*, *Z/E* >20:1) was synthesized in method A afforded 77% isolated yield as red solid. [ $\alpha$ ]25 D= +2401 (c=0.04, CHCl<sub>3</sub>).<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 – 8.00 (m, 3H), 7.60 – 7.43 (m, 3H), 7.43 – 7.30 (m, 3H), 7.25 – 7.12 (m, 4H), 7.12 – 6.96 (m, 3H), 6.74 – 6.61 (m, 2H), 4.43 (t,

J = 13.2 Hz, 2H), 4.07 - 3.87 (m, 2H), 3.84 - 3.69 (m, 2H), 3.64 - 3.46 (m, 3H), 2.83 - 2.68 (m, 1H), 2.64 - 2.46 (m, 1H), 2.37 - 2.23 (m, 2H), 2.15 - 1.93 (m, 2H), 0.99 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  180.5, 179.2, 170.4, 142.2, 140.0, 139.0, 133.3, 133.2, 132.4, 131.6, 130.2, 130.0, 129.2, 129.1, 129.0, 129.0, 128.2, 127.7, 127.6, 126.4, 124.0, 120.9, 70.2, 69.0, 63.2, 62.8, 57.4, 40.9, 30.8, 24.2, 19.8. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>36</sub>N<sub>3</sub>NiO<sub>4</sub>Na 714.1646; found: 714.1644. HPLC conditions: IA column, 254 nm, 30 °C, flow rate: 0.7 mL/min, Hex:IPA = 55:45,  $t_{\rm R} = 16.16$  min (minor), 24.92 min (major).





The method for the synthesis of 8aa.

MeO



The compound **3aa** (64.3 mg, 0.1 mmol) were dissolved in 2.5 mL of MeOH and 1.2 mL of H<sub>2</sub>O and stirred at room temperature. After adding conc. HCl (34  $\mu$ L, 4.0 equiv.), the temperature was heated to 70 °C and stirred at the same temperature for 10 min. The mixture was cooled to room temperture and concentrated to provide the mixture. Then water (2 mL) was added to the mixture, and extracted with DCM (three times). The organic phase and the aqueous were concentrated to provide (S)-BPB (98% yield) and the crude product **7aa**, which was directly dissolved in 1 mL of dry MeOH and stirred at 0 °C. After adding SOCl<sub>2</sub> (24.0 mg, 2 equiv.), the temperature was heated to room temperature and stirred overnight. The crude product **8aa**.

 $\begin{array}{c} O \\ Ph \\ H_2 N \\ Baa \end{array}$  Methyl (S, Z)-2-amino-6-hydroxy-5-phenylhex-4-enoate (8aa, 11.7 mg, 50% yield, DCM/MeOH=30:1, 90% ee, Z/E >20:1) as colorless liquid. [a]25 D= -22.561 (c=0.16, CHCl\_3). <sup>1</sup>H NMR (400 MHz, CDCl\_3)  $\delta$  7.55 - 7.48 (m, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.31

-7.27 (m, 1H), 5.83 (t, J = 8.5 Hz, 1H), 4.44 (dd, 2H), 3.80 (s, 3H), 3.65 -3.58 (m, 1H), 2.90 (s, 3H), 2.81 -2.72 (m, 1H), 2.67 -2.57 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.1, 145.0, 141.9, 128.3, 127.2, 126.0, 125.8, 59.4, 52.5, 52.1, 33.8. HPLC conditions: AD-H column, 254nm, 30 °C, flow rate: 0.8 mL/min, Hex:IPA = 70:30,  $t_{\rm R} = 8.04$  min (minor), 9.32 min (major).



**→**-8.046

9 10 Time [min]

11 12

40-

20-0-

3 4



#### Crystal data

Crystallographic datas for compound **3aa** and **3aa'** (CCDC- 2165884 and CCDC- 2165885) have been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:deposit@ccdc.cam.ac.uk).



The ellipsoid is shown at the 50% probability level

#### Datablock: compound 3aa

| Bond precision:                                                                       | C-C = 0.0036 A           | Wavelength=0.71073      |                                 |  |  |
|---------------------------------------------------------------------------------------|--------------------------|-------------------------|---------------------------------|--|--|
| Cell:                                                                                 | a=10.3298(4)<br>alpha=90 | b=13.1904(4)<br>beta=90 | c=22.5489(6)<br>gamma=90        |  |  |
| Temperature:                                                                          | 170 K                    |                         |                                 |  |  |
|                                                                                       | Calculated               | Reported                |                                 |  |  |
| Volume                                                                                | 3072.38(17)              | 3072.38(17              | 7)                              |  |  |
| Space group                                                                           | P 21 21 21               | P 21 21 21              |                                 |  |  |
| Hall group                                                                            | P 2ac 2ab                | P 2ac 2ab               |                                 |  |  |
| Moiety formula                                                                        | C37 H35 N3 Ni O4         | C37 H35 N3              | 3 Ni 04                         |  |  |
| Sum formula                                                                           | C37 H35 N3 Ni O4         | C37 H35 N3              | 3 Ni 04                         |  |  |
| Mr                                                                                    | 644.37                   | 644.39                  |                                 |  |  |
| Dx,g cm-3                                                                             | 1.393                    | 1.393                   |                                 |  |  |
| Z                                                                                     | 4                        | 4                       |                                 |  |  |
| Mu (mm-1)                                                                             | 0.678                    | 0.678                   |                                 |  |  |
| F000                                                                                  | 1352.0                   | 1352.0                  |                                 |  |  |
| F000'                                                                                 | 1353.85                  |                         |                                 |  |  |
| h,k,lmax                                                                              | 13,16,28                 | 13,16,28                |                                 |  |  |
| Nref                                                                                  | 6793[ 3813]              | 6782                    |                                 |  |  |
| Tmin, Tmax                                                                            | 0.922,0.941              | 0.692,0.74              | 46                              |  |  |
| Tmin'                                                                                 | 0.885                    |                         |                                 |  |  |
| Correction method= # Reported T Limits: Tmin=0.692 Tmax=0.746<br>AbsCorr = MULTI-SCAN |                          |                         |                                 |  |  |
| Data completeness= 1.78/1.00 Theta(max)= 27.107                                       |                          |                         |                                 |  |  |
| R(reflections)=                                                                       | 0.0247( 6389)            |                         | wR2(reflections) = 0.0580(6782) |  |  |
| S = 1.033                                                                             | Npar= 407                |                         |                                 |  |  |



The ellipsoid is shown at the 50% probability level

#### Datablock: compound 3aa'

| Cell:  a=9.4827(4)<br>alpha=90<br>beta=90<br>gamma=90  c=32.8524(18)<br>gamma=90    Temperature:  170 K    Calculated  Reported    Volume  3052.1(3)    Space group  P 21 21 21    Hall group  P 2ac 2ab    Moiety formula  C37 H35 N3 Ni 04    C37 H35 N3 Ni 04  C37 H35 N3 Ni 04    Sum formula  C37 H35 N3 Ni 04    Calculated  C37 H35 N3 Ni 04    Mi formula  C37 H35 N3 Ni 04    Calculated  Calculated    Mu (mm-1)  0.682    P000  1352.0    F000  1352.0    F000  1352.0    F000'  1353.85    h,k,lmax  12,12,42    Nref  6786[ 3848]    6763    Tmin, Tmax  0.952,0.973    0.804    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746    AbsCorr = MULTI-SCAN    Data completenes= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416( 5489)  wR2(reflections)= 0.0794( 6763)    S = 1.023  Npar= 407 | Bond precision:                      | C-C = 0.0058 A               | A Wavelength=0.71073           |                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------|--------------------------------|-----------------------------------|--|
| Temperature:  170 K    Calculated  Reported    Volume  3052.1(3)  3052.1(3)    Space group  P 21 21 21  P 21 21 21    Hall group  P 2ac 2ab  P 2ac 2ab    Moiety formula  C37 H35 N3 Ni 04  C37 H35 N3 Ni 04    Sum formula  C37 H35 N3 Ni 04  C37 H35 N3 Ni 04    Mr  644.37  644.39    Dx,g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  1    h,k,lmax  12,12,42  12,12,42    Nref  6786[ 3848]  6763    Tmin, Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  1    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746  AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416( 5489)  0.0794( 6763)    S = 1.023  Npar= 407                                                                                     | Cell:                                | a=9.4827(4)<br>alpha=90      | b=9.7970(5) c=3<br>beta=90 gar | 32.8524(18)<br>nma=90             |  |
| Calculated  Reported    Volume  3052.1(3)  3052.1(3)    Space group  P 21 21 21  P 21 21 21    Hall group  P 2ac 2ab  P 2ac 2ab    Moiety formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Mr  644.37  644.39    Dx, g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  1    h,k,lmax  12,12,42  12,12,42    Nref  6786[ 3848]  6763    Tmin, Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804                                                                                                                                                                                                                                                                              | Temperature:                         | 170 K                        |                                |                                   |  |
| Volume  3052.1(3)  3052.1(3)    Space group  P 21 21 21  P 21 21 21    Hall group  P 2ac 2ab  P 2ac 2ab    Moiety formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Mr  644.37  644.39    Dx,g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  12,12,42    Nref  6786[ 3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746    AbsCorr = MULTI-SCAN  MR2 (reflections)=    Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416( 5489)  wR2 (reflections)=    S = 1.023  Npar= 407                                                                                                                                        |                                      | Calculated                   | Reported                       |                                   |  |
| Space group  P 21 21 21  P 21 21 21    Hall group  P 2ac 2ab  P 2ac 2ab    Moiety formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Mr  644.37  644.39    Dx,g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  12,12,42    h,k,lmax  12,12,42  12,12,42    Nref  6786[ 3848]  6763    Tmin/  0.804  0.682,0.746    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746  AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416( 5489)  wR2(reflections)=    S = 1.023  Npar= 407                                                                                                                                    | Volume                               | 3052.1(3)                    | 3052.1(3)                      |                                   |  |
| Hall group  P 2ac 2ab  P 2ac 2ab    Moiety formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Mr  644.37  644.39    Dx,g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  12,12,42    h,k,lmax  12,12,42  12,12,42    Nref  6786[ 3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746    AbsCorr = MULTI-SCAN  Theta(max)= 27.152    R(reflections)=  0.0416( 5489)  wR2(reflections)=    S = 1.023  Npar= 407                                                                                                                                                                                | Space group                          | P 21 21 21                   | P 21 21 21                     |                                   |  |
| Moiety formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Mr  644.37  644.39    Dx,g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  12,12,42    Nref  6786[ 3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746    AbsCorr = MULTI-SCAN  Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416( 5489)  wR2 (reflections)=    S = 1.023  Npar= 407                                                                                                                                                                                                                                                                         | Hall group                           | P 2ac 2ab                    | P 2ac 2ab                      |                                   |  |
| Sum formula  C37 H35 N3 Ni O4  C37 H35 N3 Ni O4    Mr  644.37  644.39    Dx,g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  12,12,42    Nref  6786[3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  0.804    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746  AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416(5489)  wR2(reflections)= 0.0794(6763)    S = 1.023  Npar= 407                                                                                                                                                                                                                                                                                                            | Moiety formula                       | C37 H35 N3 Ni O4             | C37 H35 N3                     | Ni 04                             |  |
| Mr  644.37  644.39    Dx,g cm-3  1.402  1.402    Z  4  4    Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  1    h,k,lmax  12,12,42  12,12,42    Nref  6786[ 3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  0.682    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746  AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416( 5489)  wR2(reflections)= 0.0794( 6763)    S = 1.023  Npar= 407                                                                                                                                                                                                                                                                                                                                   | Sum formula                          | C37 H35 N3 Ni O4             | C37 H35 N3                     | Ni 04                             |  |
| Dx,g cm-3 1.402 1.402<br>Z 4 4<br>Mu (mm-1) 0.682 0.682<br>F000 1352.0 1352.0<br>F000' 1353.85<br>h,k,lmax 12,12,42 12,12,42<br>Nref 6786[3848] 6763<br>Tmin,Tmax 0.952,0.973 0.682,0.746<br>Tmin' 0.804<br>Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746<br>AbsCorr = MULTI-SCAN<br>Data completeness= 1.76/1.00 Theta(max) = 27.152<br>R(reflections) = 0.0416(5489) WR2(reflections) = 0.0794(6763)<br>S = 1.023 Npar= 407                                                                                                                                                                                                                                                                                                                                                                                    | Mr                                   | 644.37                       | 644.39                         |                                   |  |
| Z 4 4<br>Mu (mm-1) 0.682 0.682<br>F000 1352.0 1352.0<br>F000' 1353.85<br>h,k,lmax 12,12,42 12,12,42<br>Nref 6786[ 3848] 6763<br>Tmin,Tmax 0.952,0.973 0.682,0.746<br>Tmin' 0.804<br>Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746<br>AbsCorr = MULTI-SCAN<br>Data completeness= 1.76/1.00 Theta(max)= 27.152<br>R(reflections)= 0.0416( 5489) WR2(reflections)=<br>0.0794( 6763)<br>S = 1.023 Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                          | Dx,g cm-3                            | 1.402                        | 1.402                          |                                   |  |
| Mu (mm-1)  0.682  0.682    F000  1352.0  1352.0    F000'  1353.85  12,12,42    Nref  6786[3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  0.682    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746  AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416(5489)  wR2(reflections)= 0.0794(6763)    S = 1.023  Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                    | 4                            | 4                              |                                   |  |
| F000  1352.0  1352.0    F000'  1353.85    h,k,lmax  12,12,42  12,12,42    Nref  6786[3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  0.682,0.746    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746  AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00  Theta(max) = 27.152    R(reflections)= 0.0416(5489)  wR2(reflections)= 0.0794(6763)    S = 1.023  Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                         | Mu (mm-1)                            | 0.682                        | 0.682                          |                                   |  |
| F000'  1353.85    h,k,lmax  12,12,42    Nref  6786[3848]    6763  6763    Tmin,Tmax  0.952,0.973    0.682,0.746    Tmin'  0.804    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746    AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00    Theta(max) = 27.152    R(reflections) = 0.0416(5489)    S = 1.023    Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F000                                 | 1352.0                       | 1352.0                         |                                   |  |
| h,k,lmax 12,12,42 12,12,42<br>Nref 6786[3848] 6763<br>Tmin,Tmax 0.952,0.973 0.682,0.746<br>Tmin' 0.804<br>Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746<br>AbsCorr = MULTI-SCAN<br>Data completeness= 1.76/1.00 Theta(max) = 27.152<br>R(reflections) = 0.0416(5489) wR2(reflections) = 0.0794(6763)<br>S = 1.023 Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F000'                                | 1353.85                      |                                |                                   |  |
| Nref  6786[ 3848]  6763    Tmin,Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804  0.682,0.746    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746  AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00  Theta(max)= 27.152    R(reflections)= 0.0416( 5489)  wR2(reflections)= 0.0794( 6763)    S = 1.023  Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | h,k,lmax                             | 12,12,42                     | 12,12,42                       |                                   |  |
| Tmin, Tmax  0.952,0.973  0.682,0.746    Tmin'  0.804    Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746    AbsCorr = MULTI-SCAN    Data completeness= 1.76/1.00    Theta(max)= 27.152    R(reflections)= 0.0416(5489)    S = 1.023    Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nref                                 | 6786[ 3848]                  | 6763                           |                                   |  |
| Tmin' 0.804<br>Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746<br>AbsCorr = MULTI-SCAN<br>Data completeness= 1.76/1.00 Theta(max) = 27.152<br>R(reflections) = 0.0416(5489) wR2(reflections) = 0.0794(6763)<br>S = 1.023 Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tmin, Tmax                           | 0.952,0.973                  | 0.682,0.74                     | 6                                 |  |
| Correction method= # Reported T Limits: Tmin=0.682 Tmax=0.746<br>AbsCorr = MULTI-SCAN<br>Data completeness= 1.76/1.00 Theta(max) = 27.152<br>R(reflections) = 0.0416( 5489)<br>& wR2(reflections) = 0.0794( 6763)<br>S = 1.023 Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tmin'                                | 0.804                        |                                |                                   |  |
| Data completeness= 1.76/1.00 Theta(max) = 27.152<br>R(reflections) = 0.0416(5489) WR2(reflections) = 0.0794(6763)<br>S = 1.023 Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Correction metho<br>AbsCorr = MULTI- | d= # Reported T Lim.<br>SCAN | its: Tmin=0.682 Tma:           | x=0.746                           |  |
| R(reflections) = 0.0416(5489)<br>S = 1.023 Npar= 407 WR2(reflections) = 0.0794(6763)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Data completenes                     | s= 1.76/1.00                 | Theta(max) = 27.152            |                                   |  |
| S = 1.023 Npar= 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R(reflections)=                      | 0.0416( 5489)                |                                | wR2(reflections)=<br>0.0794(6763) |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S = 1.023                            | Npar= 407                    |                                | 0.0194( 0103)                     |  |

### Spectroscopic data of compounds





<sup>13</sup>C NMR spectrum of **3aa** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ab** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3ab** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ac** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3ac** in CDCl<sub>3</sub>


<sup>1</sup>H NMR spectrum of **3ad** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3ad** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ae** in CDCl<sub>3</sub>







<sup>1</sup>H NMR spectrum of **3af** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3af** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ag** in CDCl<sub>3</sub>





<sup>13</sup>C NMR spectrum of **3ag** in CDCl<sub>3</sub>

<sup>1</sup>H NMR spectrum of **3ah** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3ah** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ai** in CDCl<sub>3</sub>





<sup>13</sup>C NMR spectrum of **3ai** in CDCl<sub>3</sub>

200



<sup>1</sup>H NMR spectrum of **3aj** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3aj** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **3ak** in CDCl<sub>3</sub>







<sup>1</sup>H NMR spectrum of **3al** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **3al** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5aa** in CDCl<sub>3</sub>

 $\begin{array}{c} 8.09\\ 8.07\\ 8.04\\ 8.07\\ 8.04\\ 8.04\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.45\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\$ 2.70 2.25 98 97 96 4.304.283.3923.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3893.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.3993.39933 33 512 44 is is is 4 4 ∽он 5aa



<sup>13</sup>C NMR spectrum of **5aa** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5ab** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5ab** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5ac** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5ac** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5ad** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5ad** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5ae** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5ae** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5af** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5af** in CDCl<sub>3</sub>


<sup>1</sup>H NMR spectrum of **5ag** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5ag** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5ah** in CDCl<sub>3</sub>







<sup>1</sup>H NMR spectrum of **5ai** in CDCl<sub>3</sub>





<sup>13</sup>C NMR spectrum of **5ai** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5aj** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5aj** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of **5ak** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of **5ak** in CDCl<sub>3</sub>





S85



## **Reference:**

- a) M. Ke, G. Huang, L. Ding, J. Fang, F. Chen, *ChemCatChem*, 2019, **11**, 4720-4724; b) M. Ke, Z. Liu, G. Huang, J. Wang, Y. Tao, F. Chen, *Org. Lett.* 2020, **22**, 4135-4140.
- a) F. Traverse, Y. Zhao, H. Hoveyda, L. Snapper, *Org. Lett.*, 2005, 7, 3151-3154;
  b) Y. Xu, I. Correia, T. Duong, N. Kihal, J. Soulier, J. Kaffy, B. Crousse, O. Lequin, S. Ongeri, *Beilstein J. Org. Chem.*, 2017, 13, 2842-2853; c) V. Ng, A. Kuehne, C. Chan, *Chem. Eur. J*, 2018, 24, 9136-9147.