Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl

fluoride

Dong-yu Zhu, Yuan Chen, Xue-jing Zhang*, Ming Yan*

Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of

Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

E-mail: yanming@mail.sysu.edu.cn

Contents

1.	General Information	2
2.	General Procedure	S3
3.	Characterization Data	S6
4.	Scale-up experiments and tansformations of the product 4a	S21
5.	Experiments for Mechanism	S25
6.	References	S31
7.	NMR Spectra	S32
8.	HPLC Spectra	S93
9.	X-Ray Crystallographic Data	S94

1. General Information

¹H NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz or 500 MHz spectrometer in CDCl₃ or DMSO- d_6 with tetramethylsilane (TMS) as the internal standard. Chemical shifts of protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26; DMSO- d_6 : δ 2.50). Chemical shifts of carbon are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.0; DMSO- d_6 : δ 39.5). Peaks are labelled as singlet (s), broad singlet (br), doublet (d), triplet (t), double doublet (dd), multiplet (m). Copies of their ¹H NMR and ¹³C NMR spectra were provided. Melting points were measured on a WRS-2A melting point apparatus and are uncorrected. Highresolution mass spectra (HRMS) were acquired using an electron spray ionization time-of flight (ESI-TOF) mass spectrometer in positive mode. All reagents were used as received from commercial suppliers without further purification unless otherwise noted. All solvents were dried and distilled prior to use according to the standard protocols. Isoxazol-5-ones **1** were synthesized according to the previously reported methods.⁽¹⁾

2. General Procedure

2.1 Preparation of substituted isoxazol-5-ones 1

A round bottom flask was charged with NaH (2.8 equiv.), dimethyl carbonate (2.0 equiv.) and toluene (0.67 M in respect to the methylketone); and was heated to reflux (110 °C). Next, the methylketone **S1** (1.0 equiv.) was added and the reaction was stirred at 110 °C overnight. Then, the reaction mixture was allowed to cool down to room temperature, and was quenched with an aqueous saturated solution of NH₄Cl. The mixture was extracted with AcOEt (2 x 50 mL). The combined organic phases were dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography to afford the corresponding β -ketoester **S2**.

To a solution of hydroxylamine hydrochloride (0.70 g, 10.0 mmol, 1.0 equiv.) and potassium carbonate (0.70 g, 5.0 mmol, 0.5 equiv.) in EtOH/H₂O (v/v 1/1, 20 mL). The mixture was allowed to stir at room temperature for 5 min, then β -ketoester **S2** was added. The reaction was stirred at room temperature overnight. The precipitate was filtered and washed with water to give **S3**.

To a solution of **S3** (5.0 mmol, 1.0 equiv.) and piperidine (0.1 equiv.) in ^{*i*}PrOH (0.4 M) was added the aromatic aldehyde (1.2 equiv.). The reaction mixture was heated at 50 °C for $2\sim6$ h. The precipitate was filtered off, washed with water to give **S4**.

The crude solid **S4** was dissolved in MeOH (0.1 M) and cooled to 0 °C. Then, the sodium borohydride (3.0 equiv.) was added. After all the gas was discharged, the mixture was heated to room temperature and stirred for 6 h. The solution was adjusted to acidity with hydrochloric acid (1.0 M) and was extracted with CH_2Cl_2 . The organic layer was dried over sodium sulfate,

filtered and evaporated. After recrystallization from ethanol, the isoxazol-5-one 1 was obtained. 2.2 General procedure for conjugate addition of isoxazole-5-ones 1a-1q with ethylenesulfonyl fluoride

A solution of isoxazole-5-one **1** (0.1 mmol), ESF (0.1 mmol) and Na₂CO₃ (2.12 mg, 0.02 mmol) in CH₂Cl₂ (1.0 mL) was stirred at room temperature. After the raw materials are consumed, the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography over silica gel (petroleum ether/ethyl acetate) to afford the product **3**.

A solution of isoxazolone **1** (0.1 mmol), ESF (0.1 mmol) and DBU (3.04 mg, 0.02 mmol) in CH_2Cl_2 (1.0 mL) was stirred at 40 °C. After the raw materials were consumed, the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography over silica gel (petroleum ether/ethyl acetate) to afford the product **4**.

2.3 General procedure for asymmetric conjugate addition of isoxazolone 1a with ethylenesulfonyl fluoride

A solution of isoxazole-5-one 1a (0.1 mmol), ESF (0.1 mmol) and catalyst (0.02 mmol) in solvent (1.0 mL) was stirred at rt. After the raw materials were consumed, the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography over silica gel (petroleum ether/ethyl acetate) to afford the chiral product 4a.

Table S1. Screening of the catalysts for the asymmetric transformation to 4a.

entry	Cat	Additive	solvent	T/ºC	4a (yield%) ^[b]	ee (%) ^[c]
1	5a	-	DCM	r.t.	40	41
2 ^[e]	5a	Thiourea	DCM	r.t.	32	27
3 ^[e]	5a	DABCO	DCM	r.t.	50	27
4 ^[e]	5a	Na ₂ CO ₃	DCM	r.t.	45	6
5 ^[e]	5a	K ₃ PO ₄	DCM	r.t.	68	8
6	5a	-	tol	r.t.	38	7
7	5a	-	CHCl ₃	r.t.	35	28
8	5a	-	Et ₂ O	r.t.	17	8
9	5a	-	MeCN	r.t.	86	6
10	5a	-	Acetone	r.t.	95	0
11	5a	-	DCM	40	78	20
12	5b	-	DCM	r.t.	15	32
13 ^[f]	5c	Cs_2CO_3	THF	r.t.	89	0
$14^{[f]}$	5c	Na ₂ CO ₃	THF	r.t.	90	4
15 ^[f]	5c	NaHCO ₃	THF	r.t.	90	4
16 ^[f]	5c	KF	THF	r.t.	91	6
$17^{[f]}$	5c	KF	THF/H ₂ O	r.t.	88	6
$18^{[f]}$	5d	Na ₂ CO ₃	THF	r.t.	78	4
19	5e	-	DCM	r.t.	30	0
20 ^[f]	5f	Na ₂ CO ₃	THF	r.t.	86	0
21	5g	-	DCM	r.t.	n.d ^[g]	-
22	5g	-	MeCN	r.t.	88	0
23	5h	-	DCM	r.t.	$n.d^{[g]}$	-
24	5i	-	THF	r.t.	82	0

^[a]The reactions were conducted with **1a** (0.10 mmol), **ESF** (0.10 mmol), and Catalyst (0.02 mmol) in solvent (1.0 mL) for 24 h. ^[b]Isolated yield. ^[c]Determined by chiral HPLC analysis. ^[e]Additive (0.02 mmol). ^[f]Additive (0.10 mmol). ^[g]Not detected.

3. Characterization Data

4-(4-Fluorobenzyl)-3-phenylisoxazol-5(4H)-one (1d)

The crude product was purified by recrystallization with ethanol. The ratio of CH:NH tautomers was 5:4. White solid (847.4 mg, 63% yield); m.p. 138.8–139.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.55 (m, 3H, ArH), 7.53–7.43 (m, 4H, ArH), 7.19–7.17 (m, 1H, ArH), 6.95–6.92 (m, 1H, ArH), 6.87–6.81 (m, 4H, ArH), 4.15–4.13 (m, 1H_{imine}, CH), 3.72 (s, 1H_{enamine}, CH₂Ar), 3.35 (dd, *J* = 14.2, 4.6 Hz, 1H_{imine}, CH₂Ar), 3.26 (dd, *J* = 14.2, 5.5 Hz, 1H_{imine}, CH₂Ar); ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 165.6, 162.3 (d, *J* = 198.0 Hz), 162.8, 161.6 (d, *J* = 195.9 Hz), 134.4 (d, *J* = 3.2 Hz), 132.0, 131.6, 130.8 (d, *J* = 8.2 Hz), 130.0 (d, *J* = 3.3 Hz), 129.6 (d, *J* = 7.9 Hz), 129.4 (d, *J* = 11.2 Hz), 127.6 (d, *J* = 11.6 Hz), 126.9, 115.7, 115.5, 115.3, 102.1, 46.57, 33.9, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.41, -116.67; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₃FNO₂ 270.0972, found 270.0963.

4-(4-Bromobenzyl)-3-phenylisoxazol-5(4H)-one (1f)

The crude product was purified by recrystallization with ethanol. The ratio of CH:NH tautomers was 10:7. White solid (937.7 mg, 57% yield); m.p. 130.9–131.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65–7.57 (m, 3H, ArH), 7.57–7.48 (m, 4H, ArH), 7.43–7.41 (m, 1H, ArH), 7.34–7.28 (m, 2H), 7.16–7.15 (m, 1H), 6.78–6.75 (m, 2H), 4.21–4.14 (m, 1H_{imine}, CH), 3.75 (s, 1H_{enamine}, CH₂Ar), 3.37 (dd, *J* = 14.1, 4.6 Hz, 1H_{imine}, CH₂Ar), 3.27 (dd, *J* = 14.1, 5.6 Hz, 1H_{imine}, CH₂Ar); ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 173.7, 165.5, 162.9, 137.8, 133.2, 132.1, 131.91, 131.70, 131.41, 130.8, 129.8, 129.4, 127.6, 127.6, 127.0, 121.9, 120.3, 101.3, 46.3, 34.0, 27.6; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₃BrNO₂ 331.1031, found 331.1034.

4-(3-Methylbenzyl)-3-phenylisoxazol-5(4H)-one (1g)

The crude product was purified by recrystallization with ethanol. The ratio of CH:NH tautomers was 10:3. White solid (331.3 mg, 25% yield); m.p. 100.5–101.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.56 (m, 3H, ArH), 7.54–7.45 (m, 4H, ArH), 7.21–7.17 (m, 1H, ArH), 7.11–7.02 (m, 3H, ArH), 6.72–6.64 (m, 2H, ArH), 4.17–4.14 (m, 1H_{imine}, CH), 3.76 (s, 1H_{enamine}, CH₂Ar), 3.34 (dd, *J* = 14.1, 4.7 Hz, 1H_{imine}, CH₂Ar), 3.27 (dd, *J* = 14.0, 5.6 Hz, 1H_{imine}, CH₂Ar), 2.32 (s, 1H_{enamine}, CH₃), 2.21 (s, 3H_{imine}, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 173.7, 166.0, 162.8, 138.6, 138.3, 134.2, 131.8, 131.5, 129.9, 129.3, 128.9, 128.5, 128.4, 127.9, 127.6, 127.3, 127.0, 126.0, 125.1, 102.9, 46.6, 34.6, 28.0, 21.5, 21.3; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₆NO₂ 266.1176, found 266.1172.

4-(2-Methylbenzyl)-3-phenylisoxazol-5(4H)-one (1h)

The crude product was purified by recrystallization with ethanol. The ratio of CH:NH tautomers was 15:13. White solid (397.5 mg, 30% yield); m.p. 115.5–116.5 °C; ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.35 (m, 11H, ArH), 7.19–7.04 (m, 8H, ArH), 6.98–6.96 (m, 1H, ArH), 4.13–4.10 (m, 1H_{imine}, CH), 3.70 (s, 2H_{enamine}, CH₂Ar), 3.38–3.21 (m, 2H_{imine}, CH₂Ar), 2.28 (s, 3H_{enamine}, CH₃), 2.14 (s, 3H_{imine}, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 174.1, 166.8, 163.1, 136.5, 136.1, 133.4, 131.7, 131.4, 130.7, 130.2, 129.6, 129.3, 129.1, 127.7, 127.5 127.4, 127.2, 126.5, 126.2, 126.2, 100.4, 45.5, 32.2, 25.5, 19.7, 19.4; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₆NO₂ 266.1176, found 266.1181. **4-Benzyl-3-(***o***-tolyl)isoxazol-5(4H)-one (1i)**

The crude product was purified by recrystallization with ethanol. The ratio of CH:NH tautomers was 2:1. White solid (198.8 mg, 15% yield); m.p. 141.6–142.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.48 (m, 2H), 7.40–7.38 (m, 1H), 7.31–7.24 (m, 4H), 7.24–7.13 (m, 4H), 6.91–6.85 (m, 2H), 4.13–4.11 (m, 1H_{imine}, CH), 3.77 (s, 1H_{enamine}, CH₂Ar), 3.37 (dd, J = 14.0, 4.7 Hz, 1H_{imine}, CH₂Ar), 3.28 (dd, J = 14.1, 5.6 Hz, 1H_{imine}, CH₂Ar), 2.44 (s, 3H_{imine}, CH₃), 2.40 (s, 1H_{enamine}, CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 177.7, 165.6, 142.5, 134.4, 130.0, 129.1, 128.6, 128.1, 127.7, 127.4, 126.9, 126.5, 125.0, 102.9, 100.0, 46.6, 34.8, 28.2, 21.6; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₆NO₂ 266.1176, found 266.1171..

4-Benzyl-3-(thiophen-2-yl)isoxazol-5(4H)-one (1q)

The crude product was purified by recrystallization with ethanol. The ratio of CH:NH tautomers was 5:4. White solid (321.3 mg, 25% yield); m.p. 96.7–98.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.63–7.62 (m, 2H), 7.58–7.53 (m, 2H), 7.52–7.45 (m, 3H), 7.11–7.08 (m, 1H), 6.89–6.87 (m, 1H), 6.84–6.80 (m, 1H), 6.62–6.61 (m, 1H), 4.14–4.12 (m, 1H_{imine}, CH), 3.89 (s, 1H_{enamine}, CH₂Ar), 3.61 (dd, J = 15.2, 4.4 Hz, 1H_{imine}, CH₂Ar), 3.50 (dd, J = 15.2, 5.3 Hz, 1H_{imine}, CH₂Ar); ¹³C NMR (126 MHz, CDCl₃) δ 177.3, 173.3, 165.6, 162.6, 141.5, 135.4, 132.0, 131.6, 129.4, 127.6, 127.5, 127.3, 127.2, 127.1, 125.3, 125.1, 123.9, 101.5, 46.7, 28.8, 22.9; HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₄H₁₁NO₂SNa 280.0403, found 280.0407.

2-(4-Benzyl-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3a)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (34.3 mg, 95% yield); m.p. 133.1–134.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.50 (m, 3H), 7.42 (dd, J = 8.1, 1.4 Hz, 2H), 7.26 (d, J = 7.3 Hz, 2H), 7.21 (dd, J = 10.1, 4.4 Hz, 3H), 3.81–3.71 (m, 4H), 3.67 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 165.1, 138.3, 131.8, 129.7, 128.8, 128.4, 128.2, 126.7, 126.6, 107.4, 48.4, 47.5 (d, J_{C-F} = 17.8 Hz), 28.44 (s); ¹⁹F

NMR (471 MHz, CDCl₃) δ 58.79; **HRMS** (**ESI**) m/z: [M+H]⁺ calculated for C₁₈H₁₇FNO₄S 362.0857, found 362.0855.

2-(4-(4-Methylbenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3b)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (36.0 mg, 96% yield); m.p. 133.6–134.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65–7.49 (m, 3H), 7.44–7.42 (m, 2H), 7.09–7.07 (m, 4H), 3.83–3.69 (m, 4H), 3.62–3.60 (m, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 165.0, 136.3, 135.3, 131.8, 129.7, 129.5, 128.4, 128.0, 126.7, 107.7, 48.4, 47.5 (d, J_{C-F} = 17.7 Hz), 28.0, 21.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.78; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1014. **2-(4-(4-Methoxybenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3c)**

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (37.5 mg, 96% yield); m.p. 124.4–125.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65–7.52 (m, 3H), 7.46–7.44 (m, 2H), 7.15–7.13 (m, 2H), 6.85–6.83 (m, 2H), 3.84–3.71 (m, 7H), 3.63 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 164.8, 159.4, 132.7, 130.4, 129.9, 127.2, 126.5, 124.1, 114.1, 56.1, 55.2, 46.13 (d, J_{C-F} = 19.6 Hz), 41.5, 29.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.76; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₅S 392.0962, found 392.0960. **2-(4-(4-Fluorobenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3d)**

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (35.6 mg, 94% yield); m.p. 158.0–159.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.50 (m, 3H), 7.43–7.36 (m, 2H), 7.16–7.13 (m, 2H), 6.97–6.93 (m, 2H), 3.80–3.74 (m, 4H), 3.63 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 165.1, 161.7 (d, J_{C-F} = 245.0 Hz), 133.9 (d, J_{C-F} = 3.1 Hz), 131.9, 129.7, 129.7 (d, J_{C-F} = 8.1 Hz), 128.3, 126.5, 115.5 (d, J_{C-F} = 21.4 Hz), 107.2,

48.3, 47.6 (d, $J_{C-F} = 17.9$ Hz), 27.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.78, -116.24; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₆F₂NO₄S 380.0763, found 380.0768.

2-(4-(4-Chlorobenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3e)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (37.1 mg, 94% yield); m.p. 154.1–155.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.52 (m, 3H), 7.44–7.37 (m, 2H), 7.26–7.23 (m, 2H), 7.13–7.11 (m, 2H), 3.80–3.74 (m, 4H), 3.63 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 165.2, 136.8, 132.6, 131.9, 129.8, 129.5, 128.9, 128.3, 126.4, 106.8, 48.3, 47.6 (d, J_{C-F} = 18.0 Hz), 27.9; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.85; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₆ClFNO₄S 396.0467, found 396.0464.

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (41.4 mg, 94% yield); m.p. 140.3–141.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.66 (m, 2H), 7.32–7.26 (m, 4H), 7.24–7.22 (m, 1H), 7.19–7.17 (m, 2H), 3.83–3.79 (m, 2H), 3.72–3.69 (m, 2H), 3.65 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 165.2, 137.3, 131.9, 129.8, 128.3, 126.4, 120.6, 106.7, 48.3, 47.56 (d, J_{C-F} = 17.9 Hz), 27.9; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.83; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₆BrFNO₄S 439.9962, found 439.9970.

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (35.3 mg, 94% yield); m.p. 127.9–128.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.51 (m, 3H), 7.48–7.41 (m, 2H), 7.21–7.17 (m, 1H), 7.06–7.04 (m, 2H), 7.01–6.99 (m, 1H), 3.85–3.72 (m, 4H), 3.66 (s, 2H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 164.9, 138.5, 132.7,

132.1, 130.1, 129.8, 129.0, 128.6, 127.3, 126.5, 126.2, 55.9, 46.1 (d, $J_{C-F} = 19.6$ Hz), 42.1, 29.7, 21.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.85; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1010.

2-(4-(2-Methylbenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3h)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (34.9 mg, 93% yield); m.p. 135.8–136.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.45 (m, 3H), 7.38–7.33 (m, 2H), 7.14–7.07 (m, 3H), 7.06–7.00 (m, 1H), 3.83–3.75 (m, 4H), 3.63 (s, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 165.5, 136.1, 136.0, 131.8, 130.4, 129.7, 128.2, 127.6, 126.7, 126.7, 126.2, 106.7, 48.5, 47.6 (d, J_{C-F} = 17.8 Hz), 25.8, 19.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.77; HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1013.

2-(4-(Naphthalen-2-ylmethyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3i)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (37.8 mg, 92% yield); m.p. 110.4–111.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.74 (m, 3H), 7.60 (s, 1H), 7.58–7.48 (m, 3H), 7.47–7.40 (m, 4H), 7.33 (dd, J = 8.5, 1.6 Hz, 1H), 3.82 (s, 2H), 3.80–3.72 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 165.3, 135.9, 133.6, 132.3, 131.8, 129.7, 128.5, 127.7, 126.6, 126.3, 125.7, 107.2, 48.4, 47.6 (d, J_{C-F} = 17.9 Hz), 28.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.84; HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₂H₁₉FNO₄S 412.1013, found 412.1016.

2-(5-Oxo-3-phenyl-4-(thiophen-2-ylmethyl)isoxazol-2(5H)-yl)ethanesulfonyl fluoride (3j)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (34.1mg, 93% yield); m.p. 101.7–102.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.53 (m, 3H), 7.49 (dd, J = 8.0, 1.4 Hz, 2H), 7.14 (dd, J = 5.1, 1.0 Hz, 1H), 6.92 (dd, J = 5.0, 3.5 Hz, 1H), 6.90–6.82 (m, 1H), 3.83 (s, 2H), 3.78 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 165.0, 140.7, 132.0, 129.8, 128.4, 127.2, 126.4, 125.4, 124.1, 106.9, 48.3, 47.4 (d, J_{C-F} = 17.8 Hz), 23.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.78; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₅FNO₄S₂ 368.0421, found 368.0421.

2-(4-(Furan-2-ylmethyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3k)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (32.3 mg, 92% yield); m.p. 97.3–98.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.54 (m, 5H), 7.32–7.31 (m, 1H), 6.35–6.26 (m, 1H), 6.15–6.14 (m, 1H), 3.82–3.75 (m, 4H), 3.66 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 165.4, 151.0, 141.8, 131.9, 129.7, 128.4, 126.4, 110.6, 106.9, 104.6, 48.3, 47.5 (d, J_{C-F} = 17.8 Hz), 21.9; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.76; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₅FNO₅S 352.0649, found 352.0642.

2-(4-Methyl-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3l)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (25.1 mg, 88% yield); m.p. 107.1–108.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.54 (m, 3H), 7.49–7.47 (m, 2H), 3.81–3.75 (m, 2H), 3.75–3.70 (m, 2H), 1.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 164.2, 131.6, 129.6, 128.3, 127.0, 104.6, 48.6, 47.5 (d, J_{C-F} = 17.8 Hz), 7.9; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.68; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₂H₁₃FNO₄S 286.0544, found 286.0548.

2-(4-Benzyl-5-oxo-3-(p-tolyl)isoxazol-2(5H)-yl)ethanesulfonyl fluoride (3m)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (34.9 mg, 93% yield); m.p. 142.1–143.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.28 (m, 6H), 7.24 (dd, *J* = 6.9, 3.6 Hz, 3H), 3.84–3.73 (m, 4H), 3.69 (s, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 165.4, 142.5, 138.5, 130.4, 128.7, 128.2, 126.7, 123.7, 106.9, 48.4, 47.5 (d, *J*_{C-F} = 17.7 Hz), 28.5, 21.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.69,; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1009.

2-(4-Benzyl-3-(4-methoxyphenyl)-5-oxoisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3n)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (36.4 mg, 93% yield); m.p. 152.1–153.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.7 Hz, 2H), 7.31–7.26 (m, 2H), 7.24–7.17 (m, 3H), 7.02 (d, *J* = 8.7 Hz, 2H), 3.87 (s, 3H), 3.81–3.72 (m, 4H), 3.67 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 165.3, 162.3, 138.5, 130.0, 128.8, 128.1, 126.7, 118.6, 115.1, 106.4, 55.6, 48.7, 47.5 (d, *J*_{C-F} = 17.8 Hz), 28.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.79; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₅S 392.0962, found 392.0958.

2-(4-Benzyl-3-(4-bromophenyl)-5-oxoisoxazol-2(5H)-yl)ethanesulfonyl fluoride (30)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (37.0 mg, 84% yield); m.p. 154.1–155.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H), 7.32–7.26 (m, 4H), 7.23 (d, J = 7.0 Hz, 1H), 7.18 (d, J = 7.4 Hz, 2H), 3.81 (dd, J = 10.5, 5.5 Hz, 2H), 3.72–3.69 (t, J = 6.0 Hz, 2H), 3.65 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 164.0, 138.1, 133.0, 129.8, 128.9, 128.1, 126.9, 126.6, 125.4, 108.0, 48.6, 47.6 (d, J_{C} -

 $_F = 17.8$ Hz), 28.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 59.28,; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₆BrFNO₄S 439.9962, found 439.9965.

2-(4-Benzyl-5-oxo-3-(o-tolyl)isoxazol-2(5H)-yl)ethanesulfonyl fluoride (3p)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (32.6 mg, 87% yield); m.p. 148.5–149.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.46 (m, 1H), 7.37–7.28 (m, 2H), 7.24–7.15 (m, 4H), 7.06 (d, *J* = 6.6 Hz, 2H), 3.84–3.69 (m, 3H), 3.63–3.43 (m, 3H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 164.8, 138.0 , 137.1, 131.4, 129.1, 128.5, 128.4, 128.3, 126.7, 126.6, 125.8, 107.8, 47.6 (d, *J*_{C-F} = 17.8 Hz), 46.8, 28.5, 19.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.37; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1010.

2-(4-Benzyl-5-oxo-3-(thiophen-2-yl)isoxazol-2(5H)-yl)ethanesulfonyl fluoride (3q)

Petroleum ether/ethyl acetate = 6/1 was used as the eluent for column chromatography. White solid (33.4 mg, 91% yield); m.p. 122.5–123.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 5.0, 1.1 Hz, 1H), 7.40 (dd, J = 3.7, 1.1 Hz, 1H), 7.35–7.30 (m, 2H), 7.28–7.22 (m, 4H), 3.92– 3.83 (m, 4H), 3.81 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 165.0, 140.7, 132.0, 129.8, 128.4, 127.2, 126.4, 125.4, 124.1, 106.9, 48.3, 47.4 (d, J_{C-F} = 17.8 Hz), 23.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 58.79; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₅FNO₄S₂ 368.0421, found 368.0429.

2-(4-Benzyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4a)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (33.6 mg, 93% yield); m.p. 136.2–137.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.72 (m,

2H), 7.65–7.61 (m, 1H), 7.58–7.55 (m, 2H), 7.25–7.08 (m, 3H), 6.87 (d, J = 7.3 Hz, 2H), 3.44– 3.27 (m, 3H), 3.26–3.14 (m, 1H), 2.87–2.76 (m, 2H); ¹³**C** NMR (101 MHz, CDCl₃) δ 178.7, 164.8, 132.7, 132.2, 129.9, 129.2, 128.8, 128.3, 127.2, 126.5, 55.9, 46.9 (d, $J_{C-F} = 19.6$ Hz), 42.2, 29.7; ¹⁹**F** NMR (376 MHz, CDCl₃) δ 53.81; **HRMS (ESI)** m/z: [M+H]⁺ calculated for C₁₈H₁₇FNO₄S 362.0857, found 362.0851.

2-(4-(4-Methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4b)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (34.5 mg, 92% yield); m.p. 136.2–137.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.74 (m, 2H), 7.62 (d, *J* = 7.3 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 2H), 6.96 (d, *J* = 7.9 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 3.40–3.26 (m, 3H), 3.25–3.14 (m, 1H), 2.85–2.74 (m, 2H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 164.8, 138.1, 132.7, 129.8, 129.5, 129.1, 129.0(8), 127.2, 126.5, 56.0, 46.1 (d, *J*_{C-F} = 19.6 Hz), 41.84, 29.58, 21.08; ¹⁹F NMR (376 MHz, CDCl₃) δ 53.75; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1013.

2-(4-(4-Methoxybenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4c)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (35.8 mg, 91% yield); m.p. 170.3–171.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.75 (m, 2H), 7.65 (d, *J* = 7.3 Hz, 1H), 7.61–7.57 (m, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 6.71 (d, *J* = 8.7 Hz, 2H), 3.75 (s, 3H), 3.42–3.27 (m, 3H), 3.26–3.18 (m, 1H), 2.81 (dd, *J* = 9.5, 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 164.8, 159.4, 132.7, 130.4, 129.9, 127.2, 126.5, 124.1, 114.1, 56.1, 55.2, 46.1 (d, *J*_{C-F} = 19.6 Hz), 41.5, 29.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.76; HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₉H₁₈FNO₅SNa 414.0782, found 414.0791.

2-(4-(4-Fluorobenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4d)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (33.4 mg, 88% yield); m.p. 128.3–129.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.76 (m, 2H), 7.66–7.63 (m, 1H), 7.59–7.56 (m, 2H), 6.92–6.74 (m, 4H), 3.42–3.26 (m, 3H), 3.25–3.15 (m, 1H), 2.86–2.76 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 164.6, 162.6 (d, J_{C-F} = 247.8 Hz), 132.9, 131.0 (d, J_{C-F} = 8.3 Hz), 130.0, 128.0 (d, J_{C-F} = 3.3 Hz), 127.0, 126.4, 115.8 (d, J_{C-F} = 21.5 Hz), 56.0, 46.1 (d, J_{C-F} = 19.7 Hz), 41.3, 29.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.86, - 113.21; HRMS (ESI) m/z: [M+Na]⁺calculated for C₁₈H₁₅F₂NO₄SNa 402.0582, found 402.0578. **2-(4-(4-Chlorobenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl** fluoride (4e)

O N Ph

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (34.8 mg, 88% yield); m.p. 151.9–152.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.78 (m, 2H), 7.69–7.66 (m, 1H), 7.62–7.58 (m, 2H), 7.18–7.16 (m, 2H), 6.83–6.81 (m, 2H), 3.43–3.28 (m, 3H), 3.26–3.18 (m, 1H), 2.90–2.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 164.5, 134.5, 132.9, 130.7, 130.6, 130.0, 129.1, 127.0, 126.4, 55.8, 46.0 (d, J_{C-F} = 19.7 Hz), 41.4, 29.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.91; HRMS (ESI) m/z: [M+NH₄]⁺ calculated for C₁₈H₁₉ClFN₂O₄S 413.0733, found 413.0727.

2-(4-(4-Bromobenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4f)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (39.6 mg, 90% yield); m.p. 145.3–146.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.78 (m, 2H), 7.65–7.63 (m, 1H), 7.60–7.56 (m, 2H), 7.31–7.29 (m, 2H), 6.74–6.72 (m, 2H), 3.39–3.25 (m, 3H), 3.24–3.16 (m, 1H), 2.83–2.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 164.5, 132.9, 132.0, 131.2, 130.9, 130.0, 127.0, 126.4, 122.6, 55.7, 46.0 (d, J_{C-F} = 19.8 Hz), 41.4, 29.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.92; HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₈H₁₅BrFNO₄SNa 461.9781, found 461.9777.

2-(4-(3-Methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4g)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (34.5 mg, 92% yield); m.p. 139.3–140.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.72 (m, 2H), 7.65–7.61 (m, 1H), 7.58–7.54 (m, 2H), 7.07–6.98 (m, 2H), 6.68–6.57 (m, 2H), 3.37–3.27 (m, 3H), 3.26–3.17 (m, 1H), 2.86–2.76 (m, 2H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 165.0, 138.5, 132.7, 132.1, 130.1, 129.8, 129.0, 128.6, 127.3, 126.5, 126.2, 55.9, 46.1 (d, J_{C-F} = 19.6 Hz), 42.1, 29.7, 21.3; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.80; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1011.

2-(4-(2-Methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4h)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (34.61mg, 91% yield); m.p. 142.1–143.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.71 (m, 2H), 7.62–7.58 (m, 1H), 7.56–7.47 (m, 2H), 7.15–7.09 (m, 1H), 7.08–6.98 (m, 2H), 6.86–6.84 (m, 1H), 3.47–3.26 (m, 3H), 3.23–3.14 (m, 1H), 2.92–2.78 (m, 2H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 165.3, 136.9, 132.7, 131.2, 130.9, 129.8, 129.3, 128.2, 127.3,

126.5, 126.2, 55.2, 46.1 (d, $J_{C-F} = 19.6$ Hz), 38.0, 30.0, 19.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.88; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1013. 2-(4-(Naphthalen-2-ylmethyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4i)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (36.6 mg, 89% yield); m.p. 89.7–90.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.70 (m, 3H), 7.67–7.61 (m, 2H), 7.61–7.52 (m, 3H), 7.48–7.37 (m, 2H), 7.30–7.29 (m, 1H), 6.96–6.95 (m, 1H), 3.58–3.45 (m, 2H), 3.39–3.30 (m, 1H), 3.28–3.19 (m, 1H), 2.93–2.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 164.8, 133.1, 132.8, 132.7, 129.9, 129.7, 128.7, 128.6, 127.8, 127.7, 127.3, 126.6, 126.6, 126.5, 126.4, 56.0, 46.1 (d, J_{C-F} = 19.6 Hz), 42.2, 29.8; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.90; HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₂H₁₈FNO₄SNa 434.0833, found 434.0835.

2-(5-Oxo-3-phenyl-4-(thiophen-2-ylmethyl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4j)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (33.8 mg, 92% yield); m.p. 110.3–111.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.67–7.60 (m, 1H), 7.60–7.52 (m, 2H), 7.11–7.09 (m, 1H), 6.85–6.83 (m, 1H), 6.67–6.66 (m, 1H), 3.66–3.55 (m, 2H), 3.37–3.28 (m, 1H), 3.27–3.18 (m, 1H), 2.81–2.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 164.9, 133.2, 132.8, 129.9, 128.0, 127.3, 126.9, 126.5, 125.9, 56.0, 46.0 (d, J_{C-F} = 19.7 Hz), 36.0, 29.4; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.87; HRMS (ESI) m/z: [M+Na]⁺ calculated for C₁₆H₁₄FNO₄S₂Na 390.0240, found 390.0231.

2-(4-(Furan-2-ylmethyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4k)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (31.6 mg, 90% yield); m.p. 103.1–104.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.67 (m, 2H), 7.66–7.57 (m, 1H), 7.55–7.51 (m, 2H), 7.22–7.21 (m, 1H), 6.21–6.19 (m, 1H), 5.99 (d, *J* = 3.2 Hz, 1H), 3.49–3.39 (m, 2H), 3.36–3.27 (m, 1H), 3.27–3.15 (m, 1H), 2.75–2.62 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 165.6, 146.7, 143.0, 132.5, 129.7, 126.9, 126.7, 110.6, 109.2, 54.0, 45.9 (d, *J*_{*C*-*F*} = 19.7 Hz), 34.6, 29.1; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.85; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₅FNO₅S 352.0649, found 352.0643.

2-(4-Methyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (41)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (24.8 mg, 87% yield); m.p. 120.4–121.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.74 (m, 2H), 7.65–7.48 (m, 3H), 3.37–3.23 (m, 2H), 2.65–2.50 (m, 2H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.4, 167.1, 132.7, 129.8, 126.6, 126.5, 48.5, 45.9 (d, J_{C-F} = 19.7 Hz), 29.8, 22.0; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.70; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₂H₁₃FNO₄S 286.0544, found 286.0551.

2-(4-Benzyl-5-oxo-3-(p-tolyl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4m)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (33.8 mg, 90% yield); m.p. 151.0–152.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.71 (m, 2H), 7.40–7.38 (m, 2H), 7.28–7.17 (m, 3H), 6.92–6.90 (m, 2H), 3.46–3.29 (m, 3H), 3.26–3.17 (m, 1H), 2.84–2.79 (m, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 164.6, 143.6,

132.3, 130.6, 129.3, 128.8, 128.3, 126.4, 124.3, 56.0, 46.12 (d, $J_{C-F} = 19.5$ Hz), 42.2, 29.7, 21.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.74; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1005.

2-(4-Benzyl-3-(4-methoxyphenyl)-5-oxo-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4n)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (34.4 mg, 88% yield); m.p. 156.2–157.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.74 (m, 2H), 7.24–7.13 (m, 3H), 7.06–7.04 (m, 2H), 6.89–6.87 (m, 2H), 3.90 (s, 3H), 3.42–3.25 (m, 3H), 3.23–3.14 (m, 1H), 2.85–2.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 164.1, 162.9, 132.4, 129.3, 128.8, 128.3, 128.2, 119.3, 115.3, 56.0, 55.6, 46.1 (d, J_{C-F} = 19.5 Hz), 42.3, 29.7; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.74; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₅S 392.0962, found 392.0964.

2-(4-Benzyl-3-(4-bromophenyl)-5-oxo-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (40)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (35.2 mg, 80% yield); m.p. 158.9–159.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.64 (m, 4H), 7.29–7.18 (m, 3H), 6.89–6.88 (m, 2H), 3.45–3.31 (m, 3H), 3.27–3.16 (m, 1H), 2.88–2.72 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 164.1, 133.2, 132.1, 129.1, 128.9, 128.5, 127.8, 127.6, 126.0, 55.7, 46.0 (d, *J*_{C-F} = 19.7 Hz), 42.1, 29.5; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.97; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₁₆BrFNO₄S 439.9962, found 439.9946.

2-(4-Benzyl-5-oxo-3-(o-tolyl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4p)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (31.9 mg, 85% yield); m.p. 153.1–154.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.71 (m, 2H), 7.62–7.58 (m, 1H), 7.56–7.47 (m, 2H), 7.15–7.09 (m, 1H), 7.08–6.98 (m, 2H), 6.86–6.84 (m, 1H), 3.47–3.26 (m, 3H), 3.23–3.14 (m, 1H), 2.92–2.78 (m, 2H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 165.4, 140.0, 133.3, 132.6, 131.6, 129.1, 128.9, 128.2, 126.7, 126.5, 126.4, 56.8, 46.0 (d, J_{C-F} = 19.5 Hz), 41.5, 30.6, 22.8; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.99; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₉FNO₄S 376.1013, found 376.1019.

2-(4-Benzyl-5-oxo-3-(thiophen-2-yl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4q)

Petroleum ether/ethyl acetate = 20/1 was used as the eluent for column chromatography. White solid (32.3 mg, 88% yield); m.p. 103.1–104.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.78 (m, 2H), 7.67–7.60 (m, 1H), 7.60–7.52 (m, 2H), 7.11–7.09 (m, 1H), 6.85–6.83 (m, 1H), 6.67–6.66 (m, 1H), 3.66–3.55 (m, 2H), 3.37–3.28 (m, 1H), 3.25–3.21 (m, 1H), 2.81 – 2.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.0, 161.1, 132.1, 131.4, 129.4, 129.3, 129.2, 128.9, 128.7, 128.4, 56.1, 46.1 (d, J_{C-F} = 19.6 Hz), 42.3, 29.6; ¹⁹F NMR (471 MHz, CDCl₃) δ 53.86; HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₅FNO₄S₂ 368.0421, found 368.0422.

4. Scale-up experiments and tansformations of the product 4a

A solution of isoxazolone **1a** (4.0 mmol), ESF (4.0 mmol), and Na₂CO₃ (84.8 mg, 0.8 mmol) in CH₂Cl₂ (40 mL) was stirred at room temperature. After the raw materials are consumed, the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography over silica gel (petroleum ether/ethyl acetate) to afford the product **3a**.

A solution of isoxazolone **1a** (4.0 mmol), ESF (4.0 mmol), and DBU (121.6 mg, 0.8 mmol), in CH_2Cl_2 (40 mL), was stirred at 40 °C. After the raw materials were consumed, the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography over silica gel (petroleum ether/ethyl acetate) to afford the product **4a**.

To a solution of **4a** (0.2 mmol) in THF (2 mL) was added pyrrolidine (0.3 mmol). ⁽²⁾ The mixture was stirred at room temperature for 12 h. After the reaction was finished, the solvent was removed under vacuum. The residue was then purified by silica gel chromatography (PE:AcOEt = 2:1) to afford **6** with 95% yield.

4-Benzyl-3-phenyl-4-(2-(pyrrolidin-1-ylsulfonyl)ethyl)isoxazol-5(4H)-one (6)

Petroleum ether/ethyl acetate = 2/1 was used as the eluent for column chromatography. White solid (78.3 mg, 95% yield); m.p. 145.8–146.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.72 (m, 2H), 7.62–7.50 (m, 3H), 7.23–7.14 (m, 3H), 6.85 (d, J = 7.1 Hz, 2H), 3.28 (dd, J = 15.4, 9.1 Hz, 6H), 2.93–2.83 (m, 1H), 2.81–2.65 (m, 3H), 1.95–1.84 (m, 4H); ¹³C NMR (101 MHz,

CDCl₃) δ 179.4, 165.7, 132.9, 132.4, 129.7, 129.3, 128.7, 128.1, 127.6, 126.7, 56.6, 47.8, 44.7, 42.2, 30.1, 25.8; **HRMS (ESI)** m/z: [M+H]⁺ calculated for C₂₂H₂₅N₂O₄S 413.1530, found 413.1536.

To a solution of **4a** (0.2 mmol) in THF (2 mL) was added morpholine (0.3 mmol). The mixture was stirred at 60 °C for 12 h. The solvent was then removed under vacuum. The residue was purified by silica gel chromatography (PE:AcOEt = 1:1) to afford **7** with 92% yield.

4-Benzyl-4-(2-(morpholinosulfonyl)ethyl)-3-phenylisoxazol-5(4H)-one (7)

Petroleum ether/ethyl acetate = 1/1 was used as the eluent for column chromatography. White solid (78.8 mg, 92% yield); m.p. 153.6–154.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.74 (m, 2H), 7.64–7.51 (m, 3H), 7.23–7.14 (m, 3H), 6.85 (d, *J* = 7.1 Hz, 2H), 3.75–3.65 (m, 4H), 3.37–3.28 (m, 2H), 3.23–3.13 (m, 4H), 2.87–2.65 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 179.3, 165.5, 132.7, 132.5, 129.7, 129.2, 128.7, 128.1, 127.6, 126.7, 66.4, 56.5, 45.7, 44.3, 42.2, 29.8; HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₂H₂₅N₂O₅S 429.1479, found 429.1474.

To a solution of **4a** (0.2 mmol), tetrabutylammonium fluoride (TBAF) (0.02 mmol) in THF (2 mL) was added *p*-methoxyphenyl TBS ether (0.3 mmol). ⁽³⁾ The mixture was stirred at room temperature for 6 h. The solvent was removed under vacuum. The residue was then purified by silica gel chromatography (PE:AcOEt = 15:1) to afford **8** with 80% yield.

4-Methoxyphenyl 2-(4-benzyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonate

Petroleum ether/ethyl acetate = 15/1 was used as the eluent for column chromatography. White solid (74.4 mg, 80% yield); m.p. 153.6–154.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.69 (m, 2H), 7.64–7.61 (m, 1H), 7.58–7.54 (m, 2H), 7.24–7.13 (m, 3H), 7.12–7.01 (m, 2H), 6.95–6.74 (m, 4H), 3.80 (s, 3H), 3.38 (q, *J* = 13.7 Hz, 2H), 3.19–3.07 (m, 1H), 3.06–2.94 (m, 1H), 2.93–2.79 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 179.1, 165.0, 158.6, 142.2, 132.6, 132.5, 129.8, 129.2, 128.7, 128.2, 127.4, 126.6, 122.9, 115.0, 56.3, 55.7, 45.0, 42.3, 30.2; HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₅H₂₃NO₆SNa 488.1138, found 488.1133.

5. Experiments for Mechanism

5.1 Verification experiments of reverse aza-Michael addition

A solution of 3a (0.1 mmol) and DBU (0.02 mmol) in CH₂Cl₂ (1.0 mL) was stirred at room temperature. After 1.5 h, the reaction mixture was neutralized by HCl (1 M). Starting material 1a and product 4a were detected from TLC. The signals of the hydrogens of 1a, 3a and 4a were found by ¹H NMR (400 MHz, CDCl₃) analysis (as indicated by the red marks).

5.2 Kinetic experiments

Using trifluorotoluene as the internal standard, the conversion rate of **3a** to **4a** was determined by ¹⁹F NMR spectroscopy. The F signals of **3a** and **4a** together with a small amount of ESF were detected. The reaction was determined to be first order in **3a**.

5 min:

15 min:

25 min:

30 min:

Figure S1: First-order kinetics

6. References

(1) Hellmuth, T.; Frey, W.; Peters, R. Regioselective catalytic asymmetric C-alkylation of isoxazolinones by a base-free palladacycle-catalyzed direct 1,4-addition. *Angew. Chem. Int. Ed. Engl.* **2015**, 54, 2788-2791.

(2) Zhu, D. Y.; Zhang, X. J.; Yan, M. Enantioselective Addition of Azlactones to Ethylene Sulfonyl Fluoride via Dual Catalysis. *Org. Lett.* **2021**, 23, 4228-4232.

(3) Chen, J.; Huang, B. Q.; Wang, Z. Q.; Zhang, X. J.; Yan, M. Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. *Org. Lett.* **2019**, 21, 9742-9746.

7. NMR Spectra

4-(4-Fluorobenzyl)-3-phenylisoxazol-5(4H)-one (1d)

¹**H NMR** (400 MHz, CDCl₃)

¹⁹F NMR (471 MHz, CDCl₃)

5.0 4.5 f1 (ppm) -0.5 10.0 9.5 9.0 8.5 8.0 7.5 6.0 5.5 2.0 1.5 1. 0 0.5 0. 0 7.0 6.5 4.0 3.5 3.0 2.5

4-(3-Methylbenzyl)-3-phenylisoxazol-5(4H)-one (1g)

¹H NMR (400 MHz, CDCl₃)

4-(2-Methylbenzyl)-3-phenylisoxazol-5(4H)-one (1h)

¹**H NMR** (400 MHz, CDCl₃)

000000000000000000000000000000000000000	4222833334
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 00 0 0 0 0 0 0 0
	/ /////////////////////////////////////






4-Benzyl-3-(thiophen-2-yl)isoxazol-5(4H)-one (1q)







2-(4-Benzyl-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3a)

000000000000000000000000000000000000000







### 2-(4-(4-Methylbenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3b)





2-(4-(4-Methoxybenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3c)

6.83 6.83 6.83 6.83 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	3.3.79 3.779 3.774 3.774 3.774 3.774
MeO- O- O-N- SO ₂ F	
Helded H → JH 5000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00	7/1 ₩ 5.0 × 2 × 2 5.0 4.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 .0 -0.5







170.79 164.88 158.38	131.76 130.33 129.65 129.67 128.37 126.67 114.14 107.93	55.28 48.36 47.44	27.60
215			Î



# 2-(4-(4-Fluorobenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3d)

#### ¹**H NMR** (400 MHz, CDCl₃)

	0000040
00000000077777777	0 ~ ~ ~ ~ ~ ~ 0
<u> </u>	ຕ່ຕ່ຕ່ຕ່ຕ່ຕ່









2-(4-(4-Chlorobenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3e)

#### ¹H NMR (400 MHz, CDCl₃)

77.77.756 77.60 77.55 77.55 77.55 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 77.75 75 75 75 75 75 75 75 75 75 75 75 75 7
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

63.80 3.79 3.77 3.75 3.77 3.63









170.57	165.18	136.75 132.57 132.57 129.75 129.53 128.86 128.86 128.29 126.43	106.81	85 70	47.64	27.87
<u> </u>	<b>—</b>					(1)
				L. L	$\checkmark$	1



### 2-(4-(4-Bromobenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3f)

#### ¹**H NMR** (400 MHz, CDCl₃)







### ¹⁹F NMR (471 MHz, CDCl₃)

---58.83



110 100

90 80

70

50 40 30 20

60

10 0 f1 (ppm)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110



2-(4-(3-Methylbenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3g)

0,20000,004400042000420	0075081-90	3
0000000000000044401-00000	0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0	2.3





--58.75

Ph OCO_N_SO2F





—170.80 —165.12	-138.41 -138.27 -131.729.63 -128.95 -128.95 -128.95 -107.51 -107.51	48.38 47.64 47.47	—28.34 —21.44
--------------------	------------------------------------------------------------------------------------------	-------------------------	------------------





#### 2-(4-(2-Methylbenzyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3h)

#### ¹**H NMR** (400 MHz, CDCl₃)





### ¹⁹F NMR (471 MHz, CDCl₃)

--58.77







2-(4-(Naphthalen-2-ylmethyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride

(**3i**)

#### ¹H NMR (400 MHz, CDCl₃)





---58.84

Lon-so₂F



- 170.84 - 165.32 - 165.32 - 165.32 - 133.55 - 107.17 - 107.17	48.36 47.64 47.46	
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------	--





#### 2-(5-Oxo-3-phenyl-4-(thiophen-2-ylmethyl)isoxazol-2(5H)-yl)ethanesulfonyl fluoride (3j)

#### ¹H NMR (400 MHz, DMSO)



### ¹³C NMR (101 MHz, DMSO)



2-(4-(Furan-2-ylmethyl)-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3k)

-0000r0n0n0-00n4	0 0 0 0
ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	00, h-, h-, 00,
NNNNNNNNN00000	0000
	$\checkmark$





### ¹⁹F NMR (471 MHz, DMSO)

--58.76





—170.14 —165.35	-151.00		∑131.90 ∑129.70 ∑128.42 ∑126.35	∕_110.64 ∕_106.86 ∕_104.59	
--------------------	---------	--	------------------------------------------	----------------------------------	--



### 2-(4-Methyl-5-oxo-3-phenylisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3l)

#### ¹**H NMR** (400 MHz, CDCl₃)

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	881 122 125 125 125 125 125 125 125 125 12	97
NNNNNNNNNNN	00000000	<u></u>
		1

O N SO₂F



# ¹⁹F NMR (471 MHz, CDCl₃)

---58.68





S56

---58.69











### 2-(4-Benzyl-3-(4-methoxyphenyl)-5-oxoisoxazol-2(5H)-yl)ethanesulfonyl fluoride (3n)

¹**H NMR** (400 MHz, CDCl₃)











2-(4-Benzyl-3-(4-bromophenyl)-5-oxoisoxazol-2(5H)-yl)ethanesulfonyl fluoride (30)

#### ¹H NMR (400 MHz, CDCl₃)

7.28 7.28 7.28 7.22 7.22 7.19 7.19 3.83 3.81 3.80 3.72 3.65 3.65



---59.28





170.53	164.02	138.05 133.05 129.83 128.86 128.10 126.62 125.42	107.96	48.59 47.70 47.52	28.45
ì	ì		ì		Ĩ



#### 2-(4-Benzyl-5-oxo-3-(o-tolyl)isoxazol-2(5H)-yl)ethanesulfonyl fluoride (3p)

¹**H NMR** (400 MHz, CDCl₃)





¹⁹F NMR (471 MHz, CDCl₃)

---58.37





2-(4-Benzyl-5-oxo-3-(thiophen-2-yl)isoxazol-2(5H)-yl)ethanesulfonyl fluoride (3q)

7777 7777 7777 7777 7777 7777 7777 7777 7777	3.85 3.85 3.85 3.85 3.85 3.84 3.85
----------------------------------------------------------------------	------------------------------------------------------



---58.79



-170.56	-159.11	137.81 137.81 131.24 130.82 128.79 126.83 126.43	 49.80 47.73 47.55	28.71
			18	



#### 2-(4-Benzyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4a)





2-(4-(4-Methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4b)

rel ph $rel ph $ $rel$
H H H H H   00 0 000 000 000   00 0 000 000 000
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

--53.75







2-(4-(4-Methoxybenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride

(**4**c)





2-(4-(4-Fluorobenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride

#### (**4d**)

0000400000000000000	0 ~ 4 ~ 0 0 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~
00 N N N N N N N N N N N N N N N N N N	400000000000000000000000000000000000000







2-(4-(4-Chlorobenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride

(**4e**)





 $\label{eq:2-(4-(4-Bromobenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl) ethane sulfonyl fluoride$ 

(4f)

#### ¹H NMR (400 MHz, CDCl₃)

7.73 7.756 7.756 7.756 7.756 7.756 7.756 7.756 7.756 6.72 6.72 



--53.92

I.












## 2-(4-(3-Methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride

(**4**g)





2-(4-(2-Methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride

(4h)

#### ¹H NMR (400 MHz, CDCl₃)



--53.88







## $\label{eq:2-(4-(Naphthalen-2-ylmethyl)-5-oxo-3-phenyl-4, 5-dihydroisoxazol-4-yl) ethanes ulfonyl \\$

fluoride (4i)

¹**H NMR** (400 MHz, CDCl₃)

0 / / / / / / / / / / / / / / / / / / /	000000044000-00000000	001111000400110000004000000	24
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000000777777777000000	000000000000000000000000000000000000000	٥٥ c
NNNNNNNNNNN	NNNNNNNNNNNNNN00000		i ni
			<u> </u>

2-(5-Oxo-3-phenyl-4-(thiophen-2-ylmethyl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl

fluoride (4j)

¹H NMR (400 MHz, CDCl₃)

--53.87

FO2S-

 $\label{eq:constraint} 2-(4-(Furan-2-ylmethyl)-5-oxo-3-phenyl-4, 5-dihydroisoxazol-4-yl) ethanesulfonyl fluoride$

(4k)

¹⁹F NMR (471 MHz, CDCl₃)

-53.70

2-(4-Benzyl-5-oxo-3-(p-tolyl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4m)

2-(4-Benzyl-3-(4-methoxyphenyl)-5-oxo-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride

(**4n**)

FO₂

82 83 83 83 83 83 83 83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

-3.92 -3.89	22222222222222222222222222222222222222
$\searrow$	



-53.74

FO₂S ΟMe





2-(4-Benzyl-3-(4-bromophenyl)-5-oxo-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride

(40)

¹**H NMR** (400 MHz, CDCl₃)













2-(4-Benzyl-5-oxo-3-(o-tolyl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4p)

0-0040-000r00r4-0r00 0	0 ~ ~ ~ 0 4 0 ~ ~ ~ 0 00 ~ 0 4 0 0 4 ~
0,00,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,	ပ်ပံပံပံပံပံပံပံ/ – စံစံစံစံစံစံစံ-
<u> </u>	, , , , , , , , , , , , , , , , , , ,





2-(4-Benzyl-5-oxo-3-(thiophen-2-yl)-4,5-dihydroisoxazol-4-yl)ethanesulfonyl fluoride (4q) ¹H NMR (400 MHz, CDCl₃)



¹³C NMR (101 MHz, CDCl₃)







4-Methoxyphenyl 2-(4-benzyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)ethanesulfonate

(8)

¹H NMR (400 MHz, CDCl₃)





#### 8. HPLC Spectra



The reaction catalyzed by **5a** gave product **4a** with 41% ee. Chiral HPLC analysis (Chiral pak AD-H, *i*-PrOH/*n*-hexane = 10/90, flow rate = 1.0 mL/min, wave length = 254 nm),  $t_R$  (minor) = 15.295 min,  $t_R$  (major) = 10.199 min, 41% ee.



		PeakTable			
PDA Ch1 254nm 4nm					
	Peak#	Ret. Time	Area	Height	Area %
	1	10.199	13310900	880021	70.381
	2	15.295	5601730	264265	29.619
	Total		18912630	1144286	100.000

#### 9. X-Ray Crystallographic Data

A suitable crystal was selected and mounted on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 100.00(10) K during data collection

Single crystals of **3a** were obtained by slow evaporation of a solution containing **3a** in the mixture of petroleum ether and dichloromethane at room temperature. A suitable crystal was selected and the crystal data and structure refinement results for compound **3a** are listed below. X-ray structure of product **3a** (ellipsoid contour at 50% probability).

CCDC 2158101 (3a) contain the supplementary crystallo-graphic data for this paper.

These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif



3a CCDC 2158101

Identification code	<b>3</b> a
Empirical formula	C18H16FNO4S
Formula weight	361.38
Temperature/K	100.00(10)
Crystal system	monoclinic

Space group	P21/c	
a/Å	12.6101(6)	
b/Å	13.2345(4)	
c/Å	10.6349(5)	
$\alpha/^{\circ}$	90	
β/°	110.857(5)	
$\gamma/^{\circ}$	90	
Volume/Å3	1658.54(13)	
Z	4	
pcalcmg/mm3	1.447	
μ/mm-1	2.047	
F(000)	752.0	
Crystal size/mm3	$0.25\times0.15\times0.1$	
$2\Theta$ range for data collection	10.05 to 134.148°	
Index ranges	$-15 \le h \le 15,  -15 \le k \le 15,  -10 \le l \le 12$	
Reflections collected	9675	
Independent reflections	2927[R(int) = 0.0658]	
Data/restraints/parameters	2927/0/226	
Goodness-of-fit on F2	1.052	
Final R indexes [I>=2 $\sigma$ (I)]	R1 = 0.0482, wR2 = 0.1287	
Final R indexes [all data]	R1 = 0.0569, wR2 = 0.1358	
Largest diff. peak/hole / e Å-30.31/-0.55		