Supplementary Information for

Total Synthesis of Resolvin D3

${ }^{\text {a }}$ Department of Applied Chemistry, Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
${ }^{\mathrm{b}}$ Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University

1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
Table of Contents S1
Experimental Procedures S2
Tables S1 and S2 S16
References S18
NMR spectra S19
UV spectrum S39

Experimental Procedures

General Information

Infrared (IR) spectra are reported in wave number $\left(\mathrm{cm}^{-1}\right)$. The ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ with $\mathrm{Me}_{4} \mathrm{Si}(\delta=0 \mathrm{ppm})$, the centerline of CDCl_{3} triplet ($\delta=77.1 \mathrm{ppm}$) or tesidual protonated solvent as an internal standard. Signal patterns are indicated as br s, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). High-resolution mass spectroscopy (HRMS) was obtained by ionizing samples via field desorption (FD). After the reactions were finished, the organic extracts were concentrated by using an evaporator and then the residues were purified by chromatography on silica gel (Kanto, spherical silica gel 60 N).

4-[(tert-Butyldimethylsilyl)oxy]butan-1-ol (11)

To an ice-cold solution of 1,4-butanediol (10) ($5.30 \mathrm{~mL}, 60.0 \mathrm{mmol}$) in THF (200 mL) was added $\mathrm{NaH}(55 \%$ dispersion in mineral oil, $2.62 \mathrm{~g}, 60.0 \mathrm{mmol}$). After being stirred at room temperature for $1 \mathrm{~h}, \mathrm{TBSCl}(9.04 \mathrm{~g}, 60.0 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 3 h , and diluted with $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give silyl ether $\mathbf{1 1}(11.7 \mathrm{~g}, 96 \%)$ as a colorless liquid: $R_{\mathrm{f}}=0.26$ (hexane/EtOAc $=3: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 6 \mathrm{H})$, 0.90 (s, 9 H), $1.59-1.71$ (m, 4 H), 2.71 (br s, 1 H), $3.61-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,18.4,26.0,30.0,30.3,62.8,63.4$. The spectroscopic data were consistent with the literature values. ${ }^{\text {S1 }}$

6-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)hex-1-yn-3-ol (rac-12)

To an ice-cold solution of silyl ether $\mathbf{1 1}(4.10 \mathrm{~g}, 20.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added DMSO ($7.10 \mathrm{~mL}, 100 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(11.2 \mathrm{~mL}, 80.4 \mathrm{mmol})$, and SO_{3}. pyridine ($6.39 \mathrm{~g}, 40.1 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over
MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude aldehyde, which was used for the next reaction without further purification.

To an ice-cold solution of trimethylsilylacetylene ($4.15 \mathrm{~mL}, 30.0 \mathrm{mmol}$) in THF (50 mL) was added $n-\mathrm{BuLi}(1.59 \mathrm{M}$ in hexane, $16.4 \mathrm{~mL}, 26.1 \mathrm{mmol})$. The mixture was cooled to $-78^{\circ} \mathrm{C}$ for 1 h, and a solution of the above aldehyde in THF (15 mL) was added to the mixture. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol rac-12 $(4.92 \mathrm{~g}, 82 \%)$ as a pale yellow liquid: $R_{\mathrm{f}}=0.41$ (hexane $/ \mathrm{EtOAc}=5: 1$) ; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.89$ $(\mathrm{m}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.75(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{dt}, J=6.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.32,-5.28,0.00,18.4,26.0,28.6,35.5,62.5,63.3,89.0,106.9$. The spectroscopic data were consistent with the literature values. ${ }^{\text {S2 }}$

6-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)hex-1-yn-3-one (13)

To a solution of alcohol rac- $\mathbf{1 2}(4.37 \mathrm{~g}, 14.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added Celite $(7.06 \mathrm{~g})$ and PCC ($4.70 \mathrm{~g}, 21.8 \mathrm{mmol}$). After being stirred at room temperature for 14 h , the mixture was diluted with hexane and filtered through a pad of Celite. The filtrate was concentrated and the residue was purified by chromatography on silica gel (hexane/EtOAc) to give ketone 13 $(3.87 \mathrm{~g}, 89 \%)$ as a colorless liquid: $R_{\mathrm{f}}=0.64$ (hexane/EtOAc $=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.89(\mathrm{tt}, J=7.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2$ H), $3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,-0.7,18.4,26.0,27.1,42.0$, $61.9,97.7,102.1,187.9$. The spectroscopic data were consistent with the literature values. ${ }^{\text {S3 }}$

(S)-6-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)hex-1-yn-3-ol [(S)-12]

A mixture of $\operatorname{RuCl}[(S, S)-\mathrm{TsDPEN}](p-c y m e n e)(293 \mathrm{mg}, 0.468 \mathrm{mmol})$ and $\mathrm{KOH}(310 \mathrm{mg}, 5.52$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at room temperature for 12 min and washed with $\mathrm{H}_{2} \mathrm{O}$ several
times. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was transferred to another flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over CaH_{2}, and concentrated to afford purple solids, to which were added $i-\operatorname{PrOH}(8 \mathrm{~mL})$ and a solution of ketone $13(2.75 \mathrm{~g}, 9.21 \mathrm{mmol})$ in $i-\mathrm{PrOH}(5 \mathrm{~mL})$. The mixture was stirred at room temperature for 1 h and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol (S)-12 (2.63 g, 95\%): 98\% ee by HPLC analysis (Chiralcel OD-H, hexane, 1.0 $\mathrm{mL} / \mathrm{min}, 35{ }^{\circ} \mathrm{C}$, $t_{\mathrm{R}} / \min 13.4$ (R-isomer, minor) and 14.0 (S-isomer, major); The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data were consistent with those of the racemate.

(S,E)-6-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)hex-1-en-3-ol (6)

To an ice-cold solution of alcohol $(S) \mathbf{- 1 2}(2.63 \mathrm{~g}, 8.75 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added RedAl (3.6 M in toluene, $6.00 \mathrm{~mL}, 21.6 \mathrm{mmol}$) dropwise. After being stirred at room temperature for 1.5 h , the mixture was poured into saturated Rochelle salt. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give allyl alcohol $\mathbf{6}$ (2.03 $\mathrm{g}, 77 \%$) as a colorless liquid: $R_{\mathrm{f}}=0.41$ (hexane/EtOAc $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{21}-1.1\left(c 1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 0.066(\mathrm{~s}, 9 \mathrm{H}), 0.073$ (s, 6 H), 0.91 (s, 9 H), 1.53-1.74 (m, 4 H), 2.79 $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.16(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=18.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{dd}, J=18.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,-1.2,18.4,26.0,28.9,34.5$, $63.6,74.2,129.0,148.6$. The spectroscopic data were consistent with the literature values. ${ }^{\text {S4 }}$

(S,Z)-6-Bromo-4-[(tert-butyldiphenylsilyl)oxy]hex-5-en-1-ol (15)

To a solution of allyl alcohol $6(1.90 \mathrm{~g}, 6.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Br}_{2}(0.35 \mathrm{~mL}, 6.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min , excess bromine was quenched with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The resulting mixture was extracted with hexane three times. The combined extracts were dried over MgSO_{4} and concentrated to give the crude dibromide, which was used for the next reaction without further purification.

To a solution of the above dibromide in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added TBAF $(1.0 \mathrm{M}$ in THF, $6.91 \mathrm{ml}, 6.91 \mathrm{mmol}$) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 13 min the mixture and poured
into brine. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude (Z)-bromide 14, which was used for the next reaction without further purification.

To an ice-cold solution of the above (Z)-bromide 14 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added imidazole $(641 \mathrm{mg}, 9.42 \mathrm{mmol})$ and $\mathrm{TBDPSCl}(2.10 \mathrm{~mL}, 8.10 \mathrm{mmol})$. After being stirred at room temperature for 19 h , the mixture was diluted with saturated NaHCO_{3}. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude silyl ether, which was used for the next reaction without further purification.

To an ice-cold solution of the above silyl ether in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added PPTS (947 mg , $3.77 \mathrm{mmol})$. The solution was stirred at room temperature for 19 h and concentrated. The resulting mixture was diluted with saturated NaHCO_{3} and extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel to afford alcohol $15(1.33 \mathrm{~g}, 49 \%)$ as a colorless liquid: $R_{\mathrm{f}}=0.17$ (hexane/EtOAc $=5: 1) ;[\alpha]_{\mathrm{D}}{ }^{21}+61\left(c 1.02, \mathrm{CHCl}_{3}\right)$; IR (neat) $3333,1428,1110,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.52-1.70(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{dd}, J=10.0$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.71(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1$ H), $6.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=7.6$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.3,27.0,27.8,33.3,62.9,71.5,106.8,127.6,127.7$, $129.7,129.8,133.76,133.82,135.9,136.0,137.6$; $\mathrm{HRMS}(\mathrm{FD})$ calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BrO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 433.11984, found 433.12089.

Methyl (S,Z)-4-[(tert-butyldiphenylsilyl)oxy]-8-(trimethylsilyl)oct-5-en-7-ynoate (17)

To a mixture of bromoolefin $15(1.05 \mathrm{~g}, 2.42 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(419 \mathrm{mg}, 0.363 \mathrm{mmol})$, and trimethylsilylacetylene $(1.00 \mathrm{~mL}, 7.23 \mathrm{mmol})$ in $t-\mathrm{BuNH}_{2}(15 \mathrm{~mL})$ was added $\mathrm{CuI}(92.0 \mathrm{mg}, 0.483$ mmol). The mixture was stirred at room temperature for 5 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude alcohol 16, which was used for the next reaction without further purification.

To an ice-cold solution of the above alcohol 16 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ and DMSO $(4 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(1.67 \mathrm{~mL}, 12.0 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot$ pyridine $(1.13 \mathrm{~g}, 7.23 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude aldehyde, which was used for the next reaction without further purification.

To an ice-cold solution of the above aldehyde in t - $\mathrm{BuOH}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added 2-methyl-2-butene ($1.30 \mathrm{~mL}, 12.2 \mathrm{mmol}$), $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(604 \mathrm{mg}, 3.87 \mathrm{mmol})$, and NaClO_{2} (70% purity, $1.10 \mathrm{~g}, 8.51 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude carboxylic acid, which was used for the next reaction without further purification.

To an ice-cold solution of the above carboxylic acid in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added TMSCHN $_{2}(0.60 \mathrm{M}$ in hexane, $6.00 \mathrm{~mL}, 3.60 \mathrm{mmol})$ dropwise. The mixture was stirred at room temperature for 2 h and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give ester 17 ($963 \mathrm{mg}, 83 \%$): $R_{\mathrm{f}}=0.59$ (hexane/EtOAc $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{28}+108$ (c $0.85, \mathrm{CHCl}_{3}$); IR (neat) 2150, 1742, 1428, $1251 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06$ (s , 9 H), 1.06 (s, 9 H), 1.79-1.98 (m, 2 H), 2.31 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.62 (s, 3 H), 4.80 (dt, $J=8.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (dd, $J=11.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.90 (dd, $J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.45$ (m, 6 H), $7.61-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.2,19.4,27.1,29.5,32.7,51.6,71.0$, $100.4,100.8,109.3,127.5,127.6,129.6,129.7,133.99,134.04,135.9,136.0,146.1,174.0 ;$ HRMS (FD) calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}]^{+} 478.23595$, found 478.23479.

Methyl (S,Z)-4-[tert-butyldiphenylsilyl)oxy]oct-5-en-7-ynoate (18)

To an ice-cold solution of ester $\mathbf{1 7}(890 \mathrm{mg}, 1.86 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($360 \mathrm{mg}, 2.60 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h and concentrated. The resulting mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give acetylene 18 ($696 \mathrm{mg}, 92 \%$) as a colorless oil: $R_{\mathrm{f}}=0.38$ (hexane/EtOAc $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}+105\left(c 0.69, \mathrm{CHCl}_{3}\right)$; IR (neat) 3294, 1740, 1428,
$1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.86(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 4.78(\mathrm{dtd}, J=8.8,6.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{ddd}$, $J=11.2,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.95(\mathrm{ddd}, J=11.2,8.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.61-7.69$ (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4,27.0,29.5,32.6,51.6,70.9,79.2,83.0,108.2$, 127.5, 127.6, 129.6, 129.7, 133.88, 133.94, 135.9, 136.0, 146.9, 173.9; HRMS (FD) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+} 406.19642$, found 406.19609.

3-[(tert-Butyldimethylsilyl)oxy]propan-1-ol (20)

To an ice-cold solution of 1,3-propanediol (19) ($4.35 \mathrm{~mL}, 60.0 \mathrm{mmol}$) in THF (150 mL) was added NaH (55% dispersion in mineral oil, $2.62 \mathrm{~g}, 60.0 \mathrm{mmol}$). After being stirred at room temperature for $30 \mathrm{~min}, \mathrm{TBSCl}(9.04 \mathrm{~g}, 60.0 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 2.5 h , and diluted with $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give silyl ether $\mathbf{2 0}(10.9 \mathrm{~g}, 95 \%)$ as a colorless liquid: $R_{\mathrm{f}}=0.26$ (hexane/EtOAc $=5: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.15(\mathrm{~s}, 6 \mathrm{H})$, $0.97(\mathrm{~s}, 9 \mathrm{H}), 1.85$ (quint, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.91(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.4,18.2,25.9,34.2,62.5,63.0$. The spectroscopic data were consistent with the literature values. ${ }^{\mathrm{S5}}$

5-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)pent-1-yn-3-ol (rac-21)

To an ice-cold solution of silyl ether $20(10.9 \mathrm{~g}, 57.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ were added DMSO ($20.2 \mathrm{~mL}, 284 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(31.8 \mathrm{~mL}, 228 \mathrm{mmol})$, and $\mathrm{SO}_{3} \cdot$ pyridine ($18.2 \mathrm{~g}, 114 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude aldehyde, which was used for the next reaction without further purification.

To a solution of trimethylsilylacetylene $(9.50 \mathrm{~mL}, 68.7 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ was added n -

BuLi (1.64 M in hexane, $34.7 \mathrm{~mL}, 56.9 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 1 h , a solution of the above aldehyde in THF (6 mL) was added. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol rac-21 (12.1 g, 74\%) as a pale yellow liquid: $R_{\mathrm{f}}=0.36$ (hexane/ $\mathrm{EtOAc}=5: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10$ ($\mathrm{s}, 3 \mathrm{H}$), $0.17(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 1 H), 3.81 (ddd, $J=10.4,6.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (ddd, $J=10.4,8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dt}, J=$ $6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.50,-5.54,-0.02,18.3,25.9,38.3,61.3,62.5$, $89.4,106.2$. The spectroscopic data were consistent with the literature values. ${ }^{\text {S6 }}$

5-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)pent-1-yn-3-one (22) TMS

To a solution of alcohol rac-21 (3.36 g, 11.7 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added Celite $(5.68 \mathrm{~g})$ and PCC ($3.79 \mathrm{~g}, 17.6 \mathrm{mmol}$). After being stirred at room temperature for 18.5 h , the mixture was diluted with hexane and filtered through a pad of Celite. The filtrate was concentrated and the residue was purified by chromatography on silica gel (hexane/EtOAc) to give ketone 22 $(2.77 \mathrm{~g}, 83 \%)$ as a colorless liquid: $R_{\mathrm{f}}=0.65$ (hexane/EtOAc $\left.=5: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.75(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta-5.4,-0.7,18.3,25.9,48.4,58.6,98.2,102.0,186.4$. The spectroscopic data were consistent with the literature values. ${ }^{\text {S6 }}$
(R)-5-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)pent-1-yn-3-ol [(R)-21] TMS

(R)-21

A mixture of $\operatorname{RuCl}[(R, R)-\mathrm{TsDPEN}](p-c y m e n e)(173 \mathrm{mg}, 0.272 \mathrm{mmol})$ and $\mathrm{KOH}(183 \mathrm{mg}$, $3.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was stirred at room temperature for 10 min and washed with $\mathrm{H}_{2} \mathrm{O}$ several times. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was transferred to another flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over CaH_{2}, and concentrated to afford purple solids, to which were added $i-\operatorname{PrOH}(8 \mathrm{~mL})$ and a solution of ketone $22(1.55 \mathrm{~g}, 5.45 \mathrm{mmol})$ in $i-\operatorname{PrOH}(7 \mathrm{~mL})$. The mixture was stirred at room temperature for 2 h and concentrated. The residue was purified by chromatography on silica gel
(hexane/EtOAc) to give alcohol (R) - $\mathbf{2 1}(1.47 \mathrm{~g}, 94 \%)$: 98% ee by HPLC analysis (Chiralcel ODH , hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}, t_{\mathrm{R}} / \mathrm{min} 8.9$ (R-isomer, major) and 10.0 (S-isomer, minor)); The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data were consistent with those of the racemate.
(R, E)-3-[(tert-Butyldiphenylsilyl)oxy]-5-iodopent-4-en-1-ol (24)

To an ice-cold solution of alcohol $(R)-21(1.47 \mathrm{~g}, 5.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added imidazole ($1.05 \mathrm{~g}, 15.4 \mathrm{mmol}$) and TBDPSCl ($2.00 \mathrm{~mL}, 7.69 \mathrm{mmol}$). After being stirred at room temperature for 5 h , the mixture was diluted with saturated NaHCO_{3}. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude silyl ether, which was used for the next reaction without further purification.

To a solution of the above silyl ether in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.07 \mathrm{~g}, 7.74 \mathrm{mmol})$. The mixture was stirred at room temperature for 3 h and concentrated. The resulting mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude acetylene 23, which was used for the next reaction without further purification.

To an ice-cold mixture of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(3.00 \mathrm{~g}, 10.3 \mathrm{mmol})$ in THF (10 mL) was added DIBAL (1.02 M in hexane, $9.07 \mathrm{~mL}, 9.25 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and a solution of the above acetylene 23 in THF (5.0 mL) was added. The mixture was warmed to room temperature over 3 h and then cooled to $-78{ }^{\circ} \mathrm{C}$. The solution of $\mathrm{I}_{2}(2.61 \mathrm{~g}, 10.3 \mathrm{mmol})$ in THF $(3.0 \mathrm{~mL})$ was added. The solution was stirred at room temperature for 1 h and diluted with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated Rochelle salt. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude olefin, which was used for the next reaction without further purification.

To an ice-cold solution of the above olefin in $\mathrm{MeOH}(13 \mathrm{~mL})$ was added PPTS $(1.29 \mathrm{~g}, 5.13$ mmol). The mixture was stirred at room temperature for 31 h and concentrated. The resulting mixture was diluted with saturated NaHCO_{3} and extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give iodoolefin $24(1.93 \mathrm{~g}, 81 \%)$ as a liquid: $R_{\mathrm{f}}=0.20$ (hexane/EtOAc $=5: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}+114\left(c 0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H})$,
$1.63-1.82(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{sext}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.78(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{qd}, J=6.0,0.8 \mathrm{~Hz}, 1$ H), $5.96(\mathrm{dd}, J=14.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.61-$ 7.70 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4,27.1,39.1,59.2,74.5,77.7,127.7,127.8$, $130.0,130.1,133.1,133.3,135.9,136.0,147.4$. The spectroscopic data were consistent with the literature values. ${ }^{\text {S7 }}$

(R, E)-[3-[(tert-Butyldiphenylsilyl)oxy]-5-iodopent-4-en-1-yl]iodotriphenyl- λ^{5}-phosphane

(8)

To an ice-cold solution of iodoolefin $24(1.75 \mathrm{~g}, 3.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ were added $\mathrm{PPh}_{3}(1.18 \mathrm{~g}, 4.50 \mathrm{mmol})$ and imidazole ($306 \mathrm{mg}, 4.49 \mathrm{mmol}$). After being stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min, iodine $(1.14 \mathrm{~g}, 4.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 1 h , and diluted with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude iodide, which was used for the next reaction without further purification.

To a solution of the above iodide in $\mathrm{MeCN}(25 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(1.52 \mathrm{~g}, 5.80 \mathrm{mmol})$. The solution was stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h and concentrated. The residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ then $\left.5 \% \mathrm{MeOH}\right)$ to give the phosphonium salt $\mathbf{8}(3.15 \mathrm{~g}$, quant.) as a yellow solids: $R_{\mathrm{f}}=0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$; mp $79-80{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{23}+31(c 1.00$, CHCl_{3}); IR (neat) $1438,1112,941 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.0(\mathrm{~s}, 9 \mathrm{H}), 1.65-1.91$ (m, 2 H), 3.15-3.27 (m, 1 H), 3.53-3.66 (m, 1 H$), 4.77$ (dt, $J=6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.54-7.71(\mathrm{~m}, 17 \mathrm{H}), 7.77-7.85$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.7(\mathrm{~d}, J=53 \mathrm{~Hz}), 19.5,27.1,30.1(\mathrm{~d}, J=4 \mathrm{~Hz}), 74.8$ $(\mathrm{d}, J=16 \mathrm{~Hz}), 80.3,117.7(\mathrm{~d}, J=86 \mathrm{~Hz}), 128.0,128.1,130.11,130.15,130.7(\mathrm{~d}, J=13 \mathrm{~Hz})$, $132.9,133.5,133.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 135.6,135.9,146.1$; HRMS signals were not detected by FD-MS.

(S)-5-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsily)pent-1-yn-3-ol [(S)-21]

A mixture of $\operatorname{RuCl}[(S, S)-\mathrm{TsDPEN}](p$-cymene $)(223 \mathrm{mg}, 0.351 \mathrm{mmol})$ and $\mathrm{KOH}(236 \mathrm{mg}, 4.21$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred at room temperature for 15 min and washed with $\mathrm{H}_{2} \mathrm{O}$ several times. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was transferred to another flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over CaH_{2}, and concentrated to afford purple solids, to which were added $i-\operatorname{PrOH}(8 \mathrm{~mL})$ and a solution of ketone $22(1.99 \mathrm{~g}, 6.99 \mathrm{mmol})$ in $i-\mathrm{PrOH}(7 \mathrm{~mL})$. The mixture was stirred at room temperature for 1 h and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol (S)-21 ($1.87 \mathrm{~g}, 93 \%$): 99\% ee by HPLC analysis (Chiralcel OD-H, hexane, 1.0 $\mathrm{mL} / \mathrm{min}, 35^{\circ} \mathrm{C}, t_{\mathrm{R}} / \mathrm{min} 9.1$ (R-isomer, minor) and 9.7 (S-isomer, major)). The spectroscopic data were consistent with the literature values. ${ }^{\text {S6 }}$

(S,E)-2,2,9,9,10,10-Hexamethyl-3,3-diphenyl-5-[2-(trimethylsilyl)vinyl]-4,8-dioxa-3,9-

 disilaundecane (26)

To an ice-cold solution of alcohol $(S)-\mathbf{2 1}(1.87 \mathrm{~g}, 6.53 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added Red$\mathrm{Al}(3.6 \mathrm{M}$ in toluene, $5.40 \mathrm{~mL}, 19.4 \mathrm{mmol})$ dropwise. After being stirred at room temperature for 2 h , the mixture was poured into saturated Rochelle salt at $0^{\circ} \mathrm{C}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude diol $\mathbf{2 5}$, which was used for the next reaction without further purification.

To an ice-cold solution of the above diol $\mathbf{2 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added imidazole (420 $\mathrm{mg}, 6.17 \mathrm{mmol})$ and $\mathrm{TBSCl}(787 \mathrm{mg}, 5.22 \mathrm{mmol})$. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h , the mixture was diluted with saturated NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4}, and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude allyl alcohol, which was used for the next reaction without further purification.

To an ice-cold solution of the above allyl alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added imidazole $(970 \mathrm{mg}, 14.2 \mathrm{mmol})$ and $\mathrm{TBDPSCl}(1.85 \mathrm{~mL}, 7.13 \mathrm{mmol})$. After being stirred at room temperature for 6 h , the solution was diluted with saturated NaHCO_{3}, and the mixture was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel to give silyl ether 26 $(2.23 \mathrm{~g}, 65 \%)$ as a colorless liquid: $R_{\mathrm{f}}=0.68$ (hexane/EtOAc $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{24}-23\left(c 0.98, \mathrm{CHCl}_{3}\right)$; IR (neat) 1249, 1111, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09$ (s, 9 H), $0.126(\mathrm{~s}, 3 \mathrm{H}), 0.129$ ($\mathrm{s}, 3 \mathrm{H}$), $0.99(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{sext}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{sext}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-$ $3.81(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{qd}, J=6.4,0.8 \mathrm{~Hz} 1 \mathrm{H}), 5.61(\mathrm{dd}, J=18.8 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=$ $18.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.76-7.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ $5.3,-5.2,-1.4,18.3,19.4,26.0,27.1,40.7,59.7,74.3,127.3,127.5,129.4,129.6,129.8,134.3$, 134.5, 136.0, 136.1, 148.1; HRMS (FD) calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{Si}_{3}[\mathrm{M}]^{+}$526.31186, found 526.31041.

(S,E)-6-[(tert-Butyldimethylsilyl)oxy]-4-[(tert-butyldiphenylsilyl)oxy]hex-2-enenitrile (27)

26

27

To an ice-cold solution of silyl ether $26(2.10 \mathrm{~g}, 3.98 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added m CPBA (65% purity, $2.11 \mathrm{~g}, 7.94 \mathrm{mmol}$) portionwise. The mixture was stirred at room temperature for 24 h , and $\mathrm{Me}_{2} \mathrm{~S}(0.50 \mathrm{~mL}, 6.8 \mathrm{mmol})$ was added slowly at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 15 min , diluted with saturated NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4}, and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude epoxide, which was used for the next reaction without further purification.

To an ice-cold solution of the above epoxide in toluene $(15 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{AlCN}(0.71 \mathrm{M}$ in toluene, $11.2 \mathrm{~mL}, 7.95 \mathrm{mmol}$) dropwise. After being stirred at room temperature for 2 h , the solution was poured into saturated Rochelle salt at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 15 h , and extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel to give cyanoolefin 27 ($1.47 \mathrm{~g}, 77 \%$) as a colorless liquid: $R_{\mathrm{f}}=0.40$ (hexane $/ \mathrm{EtOAc}=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}-26$ (c $1.01, \mathrm{CHCl}_{3}$); IR (neat) $2224,1112,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.04(\mathrm{~s}, 3 \mathrm{H}),-$ $0.03(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.45-4.52(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 5,2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.4,18.2,19.4$, $25.9,27.0,39.9,58.6,70.8,98.3,117.5,127.85,127.89,130.0,130.2,133.0,133.2,135.7,135.9$, 156.8; HRMS (FD) calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 480.27541$, found 480.27584.
(3S,4E,6Z,9R,10E)-3,9-Bis[tert-butyldiphenylsilyl)oxy]-11-iodoundeca-4,6,10-trien-1-ol (33)

27
33
To a solution of cyanoolefin $27(1.02 \mathrm{~g}, 2.13 \mathrm{mmol})$ in toluene $(18 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.02 M in hexane, $2.49 \mathrm{~mL}, 2.54 \mathrm{mmol}$) dropwise. After being stirred at $-78^{\circ} \mathrm{C}$ for 3 h , the mixture was poured into saturated Rochelle salt at $0^{\circ} \mathrm{C}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude aldehyde $\mathbf{9}$, which was used for the next reaction without further purification.

To an ice-cold mixture of phosophonium salt $\mathbf{8}(2.85 \mathrm{~g}, 3.40 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added NaHMDS (1.0 M in THF, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$). The resulting reddish-orange mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and cooled to $-78^{\circ} \mathrm{C}$. A solution of the above aldehyde 9 in THF (6 mL) was added to the mixture dropwise. After 1 h , the mixture was warmed to $0^{\circ} \mathrm{C}$ over 1 h and added saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude olefin 32, which was used for the next reaction without further purification.

To an ice-cold solution of the above olefin 32 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(8 \mathrm{~mL})$ was added PPTS ($532 \mathrm{mg}, 2.12 \mathrm{mmol}$). The solution was stirred at room temperature for 15 h and concentrated. The resulting mixture was diluted with saturated NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel to afford alcohol $33(1.41 \mathrm{~g}, 83 \%)$ as a colorless liquid: $R_{\mathrm{f}}=0.20$ (hexane/ $\mathrm{EtOAc}=10: 1$); $[\alpha]_{\mathrm{D}}^{22}-2.3\left(c 0.76, \mathrm{CHCl}_{3}\right)$; IR (neat) 3385, $1428,1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.66-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.09-2.22(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.82(\mathrm{~m}, 1 \mathrm{H})$, $4.07(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dt}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=$ $14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.79-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{dd}, J=14.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ (dd, $J=14.4,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.45(\mathrm{~m}, 12 \mathrm{H}), 7.57-7.71(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3$, 19.4, $27.0,27.1,35.5,39.8,59.8,73.2,75.4,77.2,125.6,126.1,127.5,127.7,129.8,129.86,129.89$, 130.0, 133.4, 133.6, 133.7, 133.8, 135.7, 135.91, 135.95, 136.1, 147.6; HRMS (FD) calcd for $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{IO}_{3} \mathrm{Si}_{2}[\mathrm{M}]^{+} 800.25779$, found 800.25558 .
(1E,3R,5Z,7E,9S,11Z)-1-Iodotetradeca-1,5,7,11-tetraene-3,9-diol (7)

To an ice-cold solution of alcohol $33(1.07 \mathrm{~g}, 1.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and DMSO (7 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(0.93 \mathrm{~mL}, 6.7 \mathrm{mmol})$, and SO_{3}.pyridine ($638 \mathrm{mg}, 4.01 \mathrm{mmol}$). The mixture was stirred at room temperature for 2.5 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude aldehyde, which was used for the next reaction without further purification.

To an ice-cold solution of n-propyltriphenylphosphonium bromide ($922 \mathrm{mg}, 2.39 \mathrm{mmol}$) in THF (6.7 mL) and HMPA (1.3 mL) was added NaHMDS (1.0 M in THF, $2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min and cooled to $-90^{\circ} \mathrm{C}$. After being stirred at -90 ${ }^{\circ} \mathrm{C}$ for 20 min , a solution of the above aldehyde in THF (3.3 mL) and HMPA $(0.7 \mathrm{~mL})$ was added to the mixture dropwise. After being stirred at $-90^{\circ} \mathrm{C}$ for 45 min , the mixture was warmed to 0 ${ }^{\circ} \mathrm{C}$ over 1 h and diluted saturated with $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude disilyl ether, which was used for the next reaction without further purification.

To an ice-cold solution of the above disilyl ether in THF (5 mL) was added TBAF (1.0 M in THF, $8.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$). The solution was stirred at $35^{\circ} \mathrm{C}$ for 22 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give diol $7(383 \mathrm{mg}, 82 \%)$ as a pale yellow liquid: $R_{\mathrm{f}}=0.11$ (hexane/EtOAc $=3: 1) ;[\alpha]_{D}{ }^{20}+39\left(c 0.60, \mathrm{CHCl}_{3}\right)$; IR (neat) $3354,1414,949 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}$ of quint, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.2 .53(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.21(\mathrm{~m}, 1$ H), $4.23(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{dt}, J=10.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-$ 5.63 (m, 1 H), 5.78 (dd, $J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.18 (t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=$ $14.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{ddt}, J=15.2,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=14.8,6.0 \mathrm{~Hz}, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,20.9,35.1,35.3,72.0,73.9,77.8,123.6,125.1$, 125.8, 131.7, 135.6, 137.1, 147.6; HRMS (FD) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{IO}_{2}[\mathrm{M}]^{+} 348.05862$, found 348.05876 .

Resolvin D3 (1)

To an ice-cold solution of acetylene 18 ($79.3 \mathrm{mg}, 0.195 \mathrm{mmol}$) in THF (3 mL) was added dropwise freshly prepared $\operatorname{Sia}_{2} \mathrm{BH}(1.2 \mathrm{~mL}, 0.50 \mathrm{M}$ in THF, 0.60 mmol$)$. After being stirred at 0 ${ }^{\circ} \mathrm{C}$ for 50 min , and aqueous $2 \mathrm{~N} \mathrm{LiOH}(5.25 \mathrm{~mL}, 10.5 \mathrm{mmol})$ and a solution of iodoolefin $7(52.2$ $\mathrm{mg}, 0.150 \mathrm{mmol}$) in THF (2 mL) were added. Argon was bubbled into the reaction mixture for 10 min and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(34.7 \mathrm{mg}, 0.0300 \mathrm{mmol})$ was added. After being stirred at $35^{\circ} \mathrm{C}$ for 21 h , the mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residue was passed through a short column of silica gel (hexane/EtOAc) to give the crude triene, which was used for the next reaction without further purification.

To an ice-cold solution of the above triene in THF (1.5 mL) was added TBAF $(1.5 \mathrm{~mL}, 1.5$ mmol). After being stirred at $35^{\circ} \mathrm{C}$ for 7 h , the mixture was diluted with McIlvaine's phosphate buffer (pH 5.0) and extracted with a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF (small volume) five times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel to afford resolvin D3 (1) ($27.1 \mathrm{mg}, 48 \%$) as a colorless liquid: R_{f} $=0.46\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=5: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+9(c 0.40, \mathrm{MeOH}),\left[\mathrm{lit} .{ }^{\mathrm{S8}}+7.9(c 0.34, \mathrm{MeOH})\right] ; \mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\text {max }} 237,262,271,282 \mathrm{~nm}$; IR (neat) $3382,1726,1470 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.06$ (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.21-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{dt}, J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=14.0$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dt}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31-5.52(\mathrm{~m}, 4 \mathrm{H}), 5.68(\mathrm{dd}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=14.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=14.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=14.4$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=14.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 14.6,21.7,31.0,33.7,36.2,36.7,67.8,73.0,73.2,125.5,126.6,128.1,128.8$, 130.8, 131.1, 131.5, 134.6, 134.8, 135.2, 137.5, 137.9, 177.5; HRMS (FD) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}$ $[\mathrm{M}]^{+} 376.22497$ found 376.22592 .

Table S1 Comparison of ${ }^{1} \mathrm{H}$ NMR data between our synthetic reoslvin D3 and the reported data

NO.	$\begin{gathered} \text { synthetic } \\ \text { Resolvin D3 (1) } \\ \left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \end{gathered}$	$\begin{gathered} \text { Petasis's } \\ \text { Resolvin D3 (1) } \\ \left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{\mathrm{S8}} \end{gathered}$	Anderson's Resolvin D3 (1) $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{\mathrm{S9}}$
1	0.96, t (7.5 Hz)	0.98, t (7.5 Hz)	0.96, t (7.5 Hz)
2	1.67-1.79, m	1.71-1.82, m	1.67-1.76, m
3	1.79-1.90, m	1.88, dd (14.1, 7.2 Hz)	1.84, dq (14.6, 7.5 Hz)
4	2.06, quint (7.5 Hz)	2.07, q (7.3 Hz)	1.99-2.13, m
5	2.21-2.37, m	2.22-2.38, m	
6	2.35, t (7.2 Hz)		
7	2.41, dt (14.0, 6.8 Hz)	2.45 , q (7.9 Hz)	2.16-2.59, m
8	2.46, dt (14.0, 6.8 Hz)		
9	$4.12, \mathrm{q}(6.8 \mathrm{~Hz})$	4.08-4.23, m	4.06-4.26, m
10	4.16, q (6.8 Hz)		
11	4.61, dt (10.8, 7.2 Hz)	4.60, m	4.52-4.69, m
12	5.31-5.52, m	5.31-5.55, m	$\begin{aligned} & 5.30-5.41, \mathrm{~m} \\ & 5.46, \operatorname{ddt}(10.6,8.7,7.3 \mathrm{~Hz}) \end{aligned}$
13	5.68, dd (15.2, 6.8 Hz)	5.70, dd (15.4, 6.5 Hz)	5.68, dd (15.2, 6.5 Hz)
14	5.75, dd (14.4, 6.8 Hz)	5.75, dd (15.2, 6.7 Hz)	5.76, dd (14.4, 6.5 Hz)
15	$6.07, \mathrm{t}(10.8 \mathrm{~Hz})$		
16	$6.09, \mathrm{t}(10.8 \mathrm{~Hz})$	6.02-6.13, m	6.08, q (11.3 Hz)
17	6.25 , dd (14.4, 11.2 Hz)	6.24 , dd (14.6, 10.7 Hz)	
18	6.31, dd (14.4, 10.8 Hz)	6.34, dd (14.9, 10.8 Hz)	6.20-6.36, m
19	6.50, dd (15.2, 11.2 Hz)	6.52, dd (15.4, 11.1 Hz)	
20	6.55 , dd (14.4, 10.8 Hz)	6.60, dd (14.6, 11.5 Hz)	6.60-6.44, m

Table S2 Comparison of ${ }^{13} \mathrm{C}$ NMR data between our synthetic reoslvin D3 and the reported data

NO.	$\begin{gathered} \text { synthetic } \\ \text { Resolvin D3 (1) } \\ \left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \end{gathered}$	Petasis's Resolvin D3 (1) $\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{\mathrm{S8}}$	Anderson's Resolvin D3 (1) $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{\mathrm{S} 9}$
1	14.6	14.5	14.6
2	21.7	21.7	21.7
3	31.0	35.3	30.9
4	33.7	35.4	33.7
5	36.2	36.2	36.2
6	36.7	36.7	36.7
7	67.8	68.9	67.7
8	73.0	73.1	73.0
9	73.2	73.2	73.2
10	125.5	125.5	125.5
11	126.6	126.6	126.6
12	128.1	128.2	128.1
13	128.8	129.1	128.7
14	130.8	130.3	130.8
15	131.1	131.0	131.1
16	131.5	131.8	131.5
17	134.6	134.6	134.6
18	134.8	134.8	134.8
19	135.2	135.5	135.2
20	137.5	137.5	137.5
21	137.9	137.5	137.9
22	177.5	182.5	177.4

References

S1) B. M.Trost and M. J. Bartlett, Org. Lett., 2012, 14, 1322.
S2) E. E. Kwan, J. R. Scheerer and D. A. Evans, J. Org. Chem., 2013, 78, 175.
S3) E. C. McLaughlin and M. P. Doyle, J. Org. Chem., 2008, 73, 4317.
S4) M. Morita, S. Tanabe and Y. Kobayashi, Synlett, 2019, 30, 1351.
S5) B. Schmidt and S. Audörsch, J. Org. Chem., 2017, 82, 1743.
S6) O. Hartmann and M. Kalesse, Org. Lett., 2012, 14, 3064.
S7) N. Ogawa, S. Sone, S. Hong, Y. Lu and Y. Kobayashi, Synlett, 2020, 31, 1735.
S8) J. W. Winkler, J. Uddin, C. N. Serhan and N. A. Petasis, Org. Lett., 2013, 15, 1424.
S9) F. Urbitsch, B. L. Elbert, J. Llaveria, P. E. Streatfeild and E. A. Anderson, Org. Lett., 2020, 22, 1510.

HPLC analysis

(S) -12

$$
e e=(98.763-1.237) \times 100 /(98.763+1.237)
$$

$$
=97.526
$$

$(S)-12$

$$
\approx 98 \%
$$

Conditions: Chiralcel OD-H, hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$

HPLC analysis

mAU

| peak\# | t_{R} | area | area\% | height | height\% |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.915 | 11568443 | 99.082 | 483300 | 98.462 |
| 2 | 10.027 | 107221 | 0.918 | 7550 | 1.538 |

Conditions: Chiralcel OD-H, hexane, $1.0 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$

(

X : parts per Million : Proton

\circ				 $\forall ナ ナ 寸 \forall ナ$ ウから川がm 3 NMR $\mathrm{z}, \mathrm{CDCl}_{3}$ ）	 － $\iiint \int$		
		$\begin{aligned} & \text { प } \\ & \frac{1}{2} \end{aligned}$				$\begin{aligned} & 1.0 \\ & 9 \\ & = \\ & \underset{\sim}{\infty} \end{aligned}$	0

	 7 ${ }^{1} \mathrm{H}$ NMR （400 MHz， CDCl_{3} ）	जaño よなヂながな	 		1
		$\stackrel{\text { ¢ }}{\text { i }}^{4.0}$	3.0	$\begin{aligned} & 1.0 \\ & 10 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	0

UV spectrum of resolvin D3 (MeOH)

