Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Copper-catalyzed regioselective C2-H chlorination of indoles with *para*-toluenesulfonyl chloride

Xue-Hong Li, Guang-Chao Yang, Jun-Fang Gong,* and Mao-Ping Song*

College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001,

China

E-mail: mpsong@zzu.edu.cn (M.-P. Song) or gongjf@zzu.edu.cn (J.-F. Gong).

Table of contents

1 Experimental Section	S2
1.1 Optimization of reaction conditions	S2
1.2 H/D exchange experiment	S5
1.3 Intermolecular competition KIE	S6
1.4 Parallel experiments	S7
1.5 Removal of the directing group	S7
1.6 Pd-catalyzed Suzuki couplings of 3a with phenylboronic acid	S9
2 NMR spectra	S10

1 Experimental Section

1.1 Optimization of reaction conditions

Table S1. Screening of solvent^a

	N N N	+ TsCl	Cu(OAc K ₂ CO ₃ solven 110)₂ (20 mol %) (2.0 equiv.) t (1.0 mL) °C, 12 h	-CI
	1a	2a		3a	
Entry	Solvent	$\operatorname{Yield}^{b}(\%)$	Entry	Solvent	$\operatorname{Yield}^{b}(\%)$
1	1,4-Dioxane	10	10	Hexane	6
2	Toluene	15	11	DMSO	10
3	PhBr	11	12	MeOH	0
4	THF	trace	13	TFE	0
5	MeCN	11	14	H_2O	0
6	Acetone	0	15	DCE	25
7	DMF	8	16	DCM	13
8	Et ₂ O	10	17	CHCl ₃	9
9	EtOAc	10	18	1,2,3-Trichloropropane	17

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), $Cu(OAc)_2$ (20 mol %), K_2CO_3 (0.4 mmol), solvent (1.0 mL), 110 °C, under air, 12 h. ^{*b*}Isolated yields.

Table S2. Screening of catalyst^a

	+ TsCl	Cat. (20 mol%) K ₂ CO ₃ (2.0 equiv.) DCE (1.0 mL) 110 °C, 12 h	
1a	2a		3a
Entry		Cat.	$\operatorname{Yield}^{b}(\%)$
1		Cu(OAc) ₂	25
2	C	u(OAc) ₂ ·H ₂ O	15
3		CuOAc	10
4		$Cu(acac)_2$	0
5		Cu(OTf) ₂	13
6		CuCl ₂	9

|--|

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), cat. (20 mol%), K₂CO₃ (0.4 mmol), DCE (1.0 mL), 110 °C, under air, 12 h. ^{*b*}Isolated yields.

Table S3. Screening of base/acid^a

ĺ	N N	+ TsCl	Cu(OAc) ₂ Base/acid DCE (110 °	(20 mol%) (2.0 equiv.) 1.0 mL) C, 12 h	
	1a	2a			3a
Entry	Base/Acid	Yield ^{b} (%)	Entry	Base/Acid	$\operatorname{Yield}^{b}(\%)$
1	/	0	11	PhCOONa	43
2	K ₂ CO ₃	25	12	PivONa [·] H ₂ O	24
3	Na ₂ CO ₃	35	13	NaH ₂ PO ₄ ·2H ₂ O	<5
4	Li ₂ CO ₃	39	14	CH ₃ ONa	35
5	NaOAc	34	15	t-BuOK	<5
6	KOAc	14	16	КОН	15
7	CsOAc	0	17	K ₃ PO ₄	6
8	NaHCO ₃	43	18 ^c	NaHCO ₃ /PhCOONa	43
9	KHCO ₃	24	19	TsOH	0
10	$Na_2C_2O_4$	10	20	AcOH	Trace

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Cu(OAc)₂ (20 mol %), base/acid (0.4 mmol), DCE (1.0 mL), 110 °C, under air, 12 h. ^{*b*}Isolated yields. ^{*c*}NaHCO₃/PhCOONa = (1/1).

Table S4. Screening of oxidant^a

	N	Cu Na O	u(OAc) ₂ (2 aHCO ₃ (2.0 xidant (1.0	0 mol%) D equiv.)	
	N +	ISCI	DCE (1.0 110 °C, 1	mL) N ¹ 2 h	
	1a	2a		:	3a
Entry	Oxidant	$\operatorname{Yield}^{b}(\%)$	Entry	Oxidant	$\operatorname{Yield}^{b}(\%)$
1	/	43	9	PhI(OAc) ₂	25
2	$K_2S_2O_8$	43	10	Mn(OAc) ₃ ·H ₂ O	Trace
3	Ag_2CO_3	0	11	KMnO ₄	54

4	AgOAc	41	12	H_2O_2	35
5	Ag ₂ O	0	13	BQ	40
6	AgTFA	0	14	O_2	39
8	NMO	17			

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Cu(OAc)₂ (20 mol%), NaHCO₃ (0.4 mmol), oxidant (0.2 mmol), DCE (1.0 mL), air, 110 $^{\circ}$ C, 12 h. ^{*b*}Isolated yields.

Table S5. Screening of additive^a

+	TsCl	Cu(OAc) ₂ (20 mol%) NaHCO ₃ (2.0 equiv.) KMnO ₄ (1.0 equiv.) Additive (1.0 equiv.) DCE (1.0 mL) 110 °C, 12 h	
1a	2a		3a
Entry	1	Additive	Yield ^{b} (%)
1		/	54
2		Ph ₃ P	17
3	Z	$Zn(OAc)_2$	18
4		DMPU	81
5^c		DMPU	58
6^d		DMPU	0
7^e		DMPU	0
8^{f}		DMPU	72
9^g		DMPU	81

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Cu(OAc)₂ (20 mol%), NaHCO₃ (0.4 mmol), KMnO₄ (0.2 mmol), additive (0.2 mmol), DCE (1.0 mL), 110 °C, 12 h. ^{*b*}Isolated yields. ^{*c*}*p*-Bromobenzenesulfonyl chloride instead of **2a**. ^{*d*}Without TsCl. ^{*e*}Without Cu(OAc)₂. ^{*f*}Under O₂. ^{*g*}Under Ar. DMPU = 1,3-dimethyltetrahydropyrimidin-2(1*H*)-one.

Table Set	6 Screening	of the loading	of 2a, C	$Cu(OAc)_2$,	KMnO ₄ ,	DMPU,	reaction	time a	and
tempera	ature ^a								

		+ TsCl 2a	Cu(OA KMnO DMPU NaHC	c) ₂ (15-25 m $_4$ (0.5-1.5 eq I (0.5-1.5 eq CO ₃ (2.0 equ DCE, T $^{\circ}$ C	nol%) quiv.) uiv.) iiv.)		≻−CI [−] N
Entry	29	$Cu(OAc)_2$	KMnO4	DMPU	Time	Temn	Yield ^b
Linuy	(mmol)	(mol%)	(equiv.)	(equiv.)	(h)	(°C)	(%)
1	0.3	20	1	1	12	110	76
2	0.4	20	1	1	12	110	81
3	0.5	20	1	1	12	110	78
4	0.4	15	1	1	12	110	67
5	0.4	25	1	1	12	110	79
6	0.4	20	0.5	1	12	110	75
7	0.4	20	1.5	1	12	110	75
8	0.4	20	1	0.5	12	110	64
9	0.4	20	1	1.5	12	110	80
10	0.4	20	1	1	8	110	54
11	0.4	20	1	1	16	110	79
12	0.4	20	1	1	12	100	76
13	0.4	20	1	1	12	120	67

^{*a*}Reaction conditions : **1a** (0.2 mmol), **2a**, cat., NaHCO₃ (0.4 mmol), KMnO₄, DMPU, DCE (1.0 mL), air, T °C. ^{*b*}Isolated yields.

1.2 H/D exchange experiment

Figure S1¹H NMR spectrum of [D_n]-1a from H/D exchange experiment

1.3 Intermolecular competition KIE

Figure S2¹H NMR spectrum of recovered 1a and [D1]-1a from intermolecular competition

KIE experiment

1.4 Parallel experiments

Figure S3 The parallel KIE was calculated as $k_{\rm H}/k_{\rm D} = 0.403/0.1949 \approx 2.1$

1.5 Removal of the directing group

Figure S4 ¹H NMR spectrum of 4a (400 MHz, CDCl₃)

Figure S5 ¹³C{¹H} NMR spectrum of 4a (150 MHz, CDCl₃)

1.6 Pd-catalyzed Suzuki couplings of 3a with phenylboronic acid

Entry	Reaction conditions	Isolated yield
		(%)
1	Pd ₂ (dba) ₃ (5 mol%), PCy ₃ ·HBF ₄ (10 mol%), Na ₂ CO ₃ (2 equiv.),	no reaction
	dioxane, 110 °C, 12 h	
2	Pd ₂ (dba) ₃ (1 mol%), X-Phos (4 mol%), K ₃ PO ₄ (2.0 equiv.), n-BuOH,	no reaction
	MW, 110 °C, 30 min	
3	Pd2(dba)3 (5 mol%), Na2CO3 (aq.), dioxane, MW, 110 °C, 30 min	trace
4	Pd2(dba)3 (5 mol%), Na2CO3 (aq.), CH3CN, MW, 110 °C, 30 min	trace
5	Pd(OAc) ₂ (5 mol%), Na ₂ CO ₃ (aq.), CH ₃ CN, MW, 110 °C, 30 min	25
6	Pd(PPh ₃) ₂ Cl ₂ (5 mol%), Na ₂ CO ₃ (aq.), CH ₃ CN, MW, 110 °C, 30 min	53
7	Pd(PPh ₃) ₄ (5 mol%), Na ₂ CO ₃ (aq.), CH ₃ CN, MW, 130 °C, 30 min	17
8	Pd(dppf)Cl ₂ (5 mol%), Na ₂ CO ₃ (aq.), CH ₃ CN, MW, 130 °C, 30 min	75

2 NMR spectra

¹³C{¹H} NMR spectrum of **3a** (100 MHz, CDCl₃)

S11

 $^{13}C\{^{1}H\}$ NMR spectrum of **3d** (100 MHz, CDCl₃)

YC12101 1H CDCl3 4518/SMP

 $^{13}C\{^{1}H\}$ NMR spectrum of **3f** (100 MHz, CDCl₃)

YC11231 1H CDCl3 4004/SMP

 $^{13}C\{^{1}H\}$ NMR spectrum of **3g** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3h** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3j** (100 MHz, CDCl₃)

 $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3l** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3m** (100 MHz, CDCl₃)

8.868 8.856 8.857 8.856 8.857 8.856 8.857 8.856 <li

 $^{13}C\{^{1}H\}$ NMR spectrum of **3n** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3p** (100 MHz, CDCl₃)

S27

 $^{13}C{^{1}H}$ NMR spectrum of **3t** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of 3w (100 MHz, CDCl₃)

821 809	949 928 229 225 133 133
8.8	

YC1152 1H CDCI3 220/SMP

-2.459

YC1153 13C CDCl3		\sim 133.0822 \sim 127.6189 \sim 127.1632 \sim 123.0639 \sim 120.4602 \sim 118.9188 \sim 118.9180 \sim 109.0333 \sim 109.0333
------------------------	--	---

¹³C{¹H} NMR spectrum of **3y** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3z** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of 4c (150 MHz, CDCl₃)

S39

