Catalytic asymmetric Michael/cyclization of 3-isothiocyanato thiobutyrolactone: an approach to the construction of a library of bispiro[pyrazolone-thiobutyrolactone] skeletons

Ren-Ming Liu^{*a*}, Min Zhang^{*a*}, Xiao-Xue Han^a, Xiong-Li Liu^{*a**}, Bo-Wen Pan^b, You-Ping Tian^b, Li-

Jun Peng, ^{a*} Wei-Cheng Yuan^c

^a National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.

^b College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.

^c Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China

*E-mail address: xlliu1@gzu.edu.cn, ljpeng@gzu.edu.cn

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. General procedure for preparation of 3-isothiocyanato thiobutyrolactone 1	S2
3. Characterization data of compound 1	S2
4. Catalytic asymmetric synthesis of bispiro[pyrazolone-thiobutyrolactone] skeletons 3	S3
5. Characterization data of compounds 3	S3
6. Preparative scale synthesis of the product 3a	S13
7. Further investigation of transformation of 3q	S14
8. X-ray crystal data for compound 3k	S15
9. The Copies of ¹ H NMR, ¹³ C NMR and HPLC Spectra for Compounds 1, 3 and 4	S16

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel or just by simple filtration and washing. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. General procedure for preparation of 3-isothiocyanato thiobutyrolactone 1

The homocysteinethiolactone hydrochloride (1.53 g, 10.0 mmol) was dissolved in CH_2Cl_2 (90 mL), and saturated aqueous NaHCO₃ (90 mL) was added at 0 °C. The biphasic mixture was stirred vigorously for 15 min. The stirring was stopped, and thiophosgene (1.71 g, 1.14 mL, 15.0 mmol) was added via syringe to the organic layer. Stirring was immediately restarted, and the reaction was allowed to stir for 2 h at 0 °C. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2×50 mL) and washed with water (50 mL). The combined organics were dried over Na₂SO₄, concentrated under vacuum. The residue mixture was purified by flash column chromatography on silica gel to give 3-isothiocyanato thiobutyrolactone **1**.

3. Characterization data of compound 1

1: Light yellow oil; yield 73%, 1.16 g; ¹H NMR (CDCl₃, 400 MHz) δ: 2.25-2.35 (m, 1H), 2.65-2.72 (m, 1H), 3.34-3.38 (m, 2H), 4.43-4.47 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 27.5, 31.9, 64.0, 199.8; HRMS (ESI-TOF) m/z: Calcd. for C₅H₅NNaOS₂ [M+Na]⁺: 181.9705; Found: 181.9703.

4. Catalytic asymmetric synthesis of bispiro[pyrazolone-thiobutyrolactone] skeletons 3

In a sealed tube equipped with a magnetic stirring bar, to the mixture of 3-isothiocyanato thiobutyrolactone 1 (0.10 mmol), and squaramide catalyst C12 (10 mol %) in 1.5 mL of freshly distilled toluene was added alkylidene pyrazolone 2 (0.15 mmol). The reaction mixture was stirred at room temperature for 16 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 3, using hexane/EtOAc (10/1, v/v) as the eluent.

5. Characterization data of compounds 3

3a: Light yellow solid, m.p. 207.9-208.5 °C; yield 87%, 36.6 mg, 93% ee, >20:1 dr, $[\alpha]_D^{20} =$ +151.3 (*c* 2.1, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.61$ min; $\tau_{minor} = 7.15$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 2.18 (s, 3H), 2.57-2.65 (m, 1H), 2.72-2.78 (m, 1H), 3.12-3.26 (m, 2H), 4.39 (s, 1H), 7.12-7.16 (m, 1H), 7.19-7.23 (m, 3H), 7.27-7.34 (m, 4H), 7.75 (d, *J* = 8.0 Hz, 2H), 9.50 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 11.8, 25.3, 32.5, 51.0, 75.0, 76.7, 117.1, 123.5, 126.6, 127.0, 127.5, 128.1, 135.1, 155.6, 167.1, 193.3, 201.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₉N₃NaO₂S₂ [M+Na]⁺: 444.0811; Found: 444.0813.

3b: Light yellow solid, m.p. 134.2-134.7 °C; yield 85%, 37.3 mg, 91% ee, >20:1 dr, $[\alpha]_D^{20}$ = +163.0 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 11.04 min; τ_{minor} = 6.30 min); ¹H NMR (CDCl₃, 400 MHz) δ : 2.21 (s, 3H), 2.71-2.79 (m, 2H), 2.89-2.95 (m, 1H), 3.41-3.45 (m, 1H), 4.33 (s, 1H), 7.18-7.27 (m, 3H), 7.42-7.51 (m, 4H), 7.71 (d, *J* = 8.4 Hz, 2H), 11.86 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.2, 27.6, 35.0, 52.5, 77.4, 79.2, 116.6 (d, *J*_{CF} = 22.3 Hz), 119.2, 126.3, 127.2, 127.3, 129.6, 132.4 (d, *J*_{CF} = 9.2 Hz), 137.3, 159.2, 163.7 (d, *J*_{CF} = 245.1 Hz), 169.4,

194.2, 205.7; ¹⁹F NMR (CDCl₃, 470 MHz) δ: -111.41; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₈FN₃NaO₂S₂ [M+Na]⁺: 462.0717; Found: 462.0714.

3c: Light yellow solid, m.p. 163.2-164.0 °C; yield 84%, 36.9 mg, 98% ee, >20:1 dr, $[\alpha]_D^{20} =$ +119.4 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 8.61$ min; $\tau_{minor} = 5.68$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.22 (s, 3H), 2.70-2.82 (m, 2H), 2.90-2.95 (m, 1H), 3.41-3.47 (m, 1H), 4.35 (s, 1H), 7.19-7.30 (m, 4 H), 7.39-7.47 (m, 3H), 7.71 (d, J = 7.6 Hz, 2H), 11.89 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 27.7, 35.1, 52.6, 77.3, 79.2, 116.8 (d, *J*_{CF} = 21.4 Hz), 117.1(d, *J*_{CF} = 23.1 Hz), 119.1, 126.3, 126.4, 129.7, 131.7 (d, *J*_{CF} = 9.2 Hz), 133.6 (d, *J*_{CF} = 8.3 Hz), 137.3, 159.2, 162.6 (d, *J*_{CF} = 244.4 Hz), 170.0, 194.0, 205.5; ¹⁹F NMR (CDCl₃, 470 MHz) δ : -111.41; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₈FN₃NaO₂S₂ [M+Na]⁺: 462.0717; Found: 462.0717.

3d: Light yellow solid, m.p. 184.5-185.6 °C; yield 85%, 38.7 mg, 99% ee, >20:1 dr, $[\alpha]_D^{20} =$ +206.7 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.36$ min; $\tau_{minor} = 6.05$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.21 (s, 3H), 2.70-2.82 (m, 2H), 2.89-2.95 (m, 1H), 3.41-3.47 (m, 1H), 4.32 (s, 1H), 7.23-7.27 (m, 1H), 7.42-7.47 (m, 6H), 7.70-7.73 (m, 2H), 11.88 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 27.7, 35.0, 52.5, 77.3, 79.2, 119.3, 126.3, 129.6, 129.7, 130.0, 132.1, 134.7, 137.3, 159.1, 169.6, 194.1, 205.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₈ClN₃NaO₂S₂ [M+Na]⁺: 478.0421; Found: 478.0424.

3e: Light yellow solid, m.p. 130.2-130.8 °C; yield 86%, 42.9 mg, >99% ee, >20:1 dr, $[\alpha]_D^{20} =$ +146.1 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 12.13$ min; $\tau_{minor} = 6.16$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 2.21 (s, 3H), 2.69-2.82 (m, 2H), 2.89-2.95 (m, 1H), 3.40-3.46 (m, 1H), 4.30 (s, 1H), 7.23-7.27 (m, 1H), 7.38-7.46 (m, 4H), 7.56 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 11.88 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.2, 27.7, 35.0, 52.6, 77.2, 79.1, 119.3, 123.4, 126.3, 129.6, 130.4, 132.4, 132.6, 137.3, 159.1, 169.6, 194.1, 205.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₈BrN₃NaO₂S₂ [M+Na]⁺: 521.9916; Found: 521.9914.

3f: Light yellow solid, m.p. 179.2-179.9 °C; yield 82%, 35.7 mg, 93% ee, >20:1 dr, $[\alpha]_D^{20} =$ +229.6 (*c* 2.5, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 13.71$ min; $\tau_{minor} = 7.51$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.19 (s, 3H), 2.20 (s, 3H), 2.69-2.82 (m, 2H), 2.89-2.93 (m, 1H), 3.38-3.40 (m, 1H), 4.26 (s, 1H), 7.11-7.14 (m, 2H), 7.21-7.25 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.41-7.45 (m, 2H), 7.74-7.76 (m, 2H), 11.83 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 21.0, 27.6, 35.1, 53.4, 77.4, 79.2, 119.0, 126.1, 127.9, 129.6, 130.0, 130.2, 137.4, 139.3, 159.1, 169.8, 194.4, 206.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₁N₃NaO₂S₂ [M+Na]⁺: 458.0967; Found: 458.0962.

3g: Light yellow solid, m.p. 184.2-185.1 °C; yield 90%, 41.7 mg, 93% ee, >20:1 dr, $[\alpha]_D^{20} =$ +289.1 (*c* 2.2, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.45$ min; $\tau_{minor} = 6.73$ min);

¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.09-1.11 (m, 6H), 2.19 (s, 3H), 2.67-2.83 (m, 3H), 2.90-2.94 (m, 1H), 4.30 (s, 1H), 7.19-7.31 (m, 5H), 7.42-7.46 (m, 2H), 7.74 (d, *J* = 7.6 Hz, 2H), 11.84 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 23.9, 24.1, 27.6, 33.4, 35.2, 53.2, 77.3, 79.2, 119.1, 126.1, 127.6, 128.4, 129.6, 130.0, 137.5, 149.8, 159.2, 169.8, 194.4, 205.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₂₅N₃NaO₂S₂ [M+Na]⁺: 486.1280; Found: 486.1277.

3h: Light yellow solid, m.p. 201.3-201.7 °C; yield 82%, 37.0 mg, 96% ee, 12:1 dr, $[\alpha]_D^{20} =$ +377.4 (*c* 2.8, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 16.70$ min; $\tau_{minor} = 9.21$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 2.17 (s, 3H), 2.57-2.65 (m, 1H), 2.71-2.77 (m, 1H), 3.09-3.15 (m, 1H), 3.18-3.24 (m, 1H), 3.65 (s, 3H), 4.33 (s, 1H), 6.70 (d, J = 8.8 Hz, 2H), 7.11-7.15 (m, 1H), 7.20 (d, J = 8.8 Hz, 2H), 7.30-7.34 (m, 2H), 7.75-7.77 (m, 2H), 9.77 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 13.1, 26.6, 33.8, 51.8, 54.2, 75.6, 78.0, 113.6, 118.4, 121.1, 124.8, 127.9, 130.1, 136.4, 157.0, 159.1, 168.4, 194.7, 203.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₁N₃NaO₃S₂ [M+Na]⁺: 474.0917; Found: 474.0914.

3i: Light yellow solid, m.p. 179.8-179.9 °C; yield 90%, 44.0 mg, 87% ee, >20:1 dr, $[\alpha]_D^{20} =$ +484.1 (*c* 2.3, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 23.33$ min; $\tau_{minor} = 8.51$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.24 (s, 3H), 2.60-2.67 (m, 1H), 2.80-2.87 (m, 1H), 2.89-2.94 (m, 1H), 3.40-3.43 (m, 1H), 5.17 (s, 1H), 7.22-7.26 (m, 1H), 7.39-7.44 (m, 3H), 7.64-7.69 (m, 3H), 7.87 (d, *J* = 7.2 Hz, 1H), 11.92 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.4, 27.7, 34.7, 47.9, 77.7, 79.0, 119.3, 126.4, 129.0, 129.6, 130.0, 130.8, 132.2, 133.3, 133.4, 137.1, 158.8, 169.3, 193.6, 205.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₇C₁₂N₃NaO₂S₂ [M+Na]⁺: 512.0031; Found: 512.0027.

3j: Light yellow solid, m.p. 161.5-161.8 °C; yield 84%, 35.9 mg, 96% ee, >20:1 dr, $[\alpha]_D^{20}$ = +192.2 (*c* 2.4, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 13.38 min; τ_{minor} = 7.70 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.19 (s, 3H), 2.58-2.64 (m, 1H), 2.78-2.85 (m, 1H), 2.89-2.94 (m, 1H), 3.38-3.41 (m, 1H), 4.67 (s, 1H), 7.00-7.02 (m, 1H), 7.17 (d, *J* = 3.2 Hz, 1H), 7.23-7.27 (m, 1H), 7.44-7.48 (m, 2H), 7.56 (d, *J* = 4.8 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 2H), 11.81 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.1, 27.4, 35.1, 49.2, 77.3, 79.2, 118.9, 126.1, 127.8, 129.0, 129.6, 130.7, 131.8, 137.5, 158.8, 169.3, 193.8, 205.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇N₃NaO₂S₃ [M+Na]⁺: 450.0375; Found: 450.0378.

3k: Light yellow solid, m.p. 262.1-263.1 °C; yield 82%, 40.1 mg, 97% ee, >20:1 dr, $[\alpha]_D^{20} =$ +54.2 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 12.07$ min; $\tau_{minor} = 6.65$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.23 (s, 3H), 2.62-2.68 (m, 1H), 2.80-2.86 (m, 1H), 2.89-2.94 (m, 1H), 3.39-3.44 (m, 1H), 5.04 (s, 1H), 7.23-7.27 (m, 1H), 7.42-7.46 (m, 2H), 7.50-7.52 (m, 1H), 7.68-7.73 (m, 3H), 7.88 (d, *J* = 8.4 Hz, 1H), 11.91 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.3, 27.7, 34.7, 46.6, 77.6, 78.9, 119.4, 126.4, 127.3, 128.6, 129.6, 130.4, 132.6, 135.5, 136.2, 137.1, 158.8, 169.3, 193.6, 205.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₇Cl₂N₃NaO₂S₂ [M+Na]⁺: 512.0031; Found: 512.0035.

31: Light yellow solid, m.p. 170.3-171.3 °C; yield 84%, 40.4 mg, 97% ee, >20:1 dr, $[\alpha]_D^{20} =$

+250.5 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 38.14$ min; $\tau_{minor} = 13.75$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 2.12 (s, 3H), 2.45-2.51 (m, 1H), 2.65-2.72 (m, 1H), 2.97-3.04 (m, 1H), 3.24-3.30 (m, 1H), 3.70 (s, 3H), 3.75 (s, 3H), 4.89 (s, 1H), 6.48-6.50 (m, 1H), 6.58 (s, 1H), 7.22-7.26 (m, 1H), 7.43-7.45 (m, 3H), 7.74 (d, *J* = 8.0 Hz, 2H), 11.66 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 14.0, 27.2, 34.6, 43.9, 55.7, 56.5, 77.4, 78.8, 99.3, 106.0, 110.7, 119.1, 126.1, 129.6, 130.1, 137.5, 159.2, 161.3, 170.1, 194.4, 206.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₃N₃NaO₄S₂ [M+Na]⁺: 504.1022; Found: 504.1025.

3m: Light yellow solid, m.p. 175.4-176.0 °C; yield 80%, 38.5 mg, 96% ee, >20:1 dr, $[\alpha]_D^{20}$ = +134.5 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 16.53 min; τ_{minor} = 9.06 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.12 (s, 3H), 2.53-2.56 (m, 1H), 2.68-2.75 (m, 1H), 2.92-2.98 (m, 1H), 3.28-3.32 (m, 1H), 3.35 (s, 3H), 3.51 (s, 3H), 3.70 (s, 3H), 4.94 (s, 1H), 6.88-6.91 (m, 1H), 7.00 (d, *J* = 8.8 Hz, 1H), 7.06 (d, *J* = 2.8 Hz, 1H), 7.23-7.27 (m, 1H), 7.43-7.47 (m, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 11.73 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.1, 27.3, 34.6, 44.3, 55.7, 56.8, 77.4, 78.8, 113.5, 115.1, 115.5, 118.8, 119.8, 126.1, 129.7, 137.5, 152.0, 153.3, 159.3, 170.1, 194.1, 205.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₃N₃NaO₄S₂ [M+Na]⁺: 504.1022; Found: 504.1023.

3n: Light yellow solid, m.p. 162.3-162.8 °C; yield 86%, 37.4 mg, >99% ee, >20:1 dr, $[\alpha]_D^{20} =$ +356.9 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 14.82$ min; $\tau_{minor} = 7.80$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.19 (s, 3H), 2.29 (s, 3H), 2.70-2.80 (m, 2H), 2.80-2.95 (m, 1H), 3.39-3.41 (m, 1H), 4.29 (s, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.32-7.34 (m, 3H), 7.39-7.42 (m, 2H), 7.59 (d, J = 8.4 Hz, 2H), 11.84 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 14.2, 21.0, 27.6, 35.1, 53.6, 77.2, 79.2, 119.2, 129.6, 129.7, 130.0, 130.1, 131.1, 135.0, 135.5, 158.9, 169.6, 194.5, 205.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₁N₃NaO₂S₂ [M+Na]⁺: 458.0967; Found: 458.0965.

30: Light yellow solid, m.p. 132.3-132.8 °C; yield 87%, 39.4 mg, 96% ee, >20:1 dr, $[\alpha]_D^{20} =$ +267.8 (*c* 2.7, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 13.75$ min; $\tau_{minor} = 6.64$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.20 (s, 3H), 2.29 (s, 3H), 2.72-2.79 (m, 2H), 2.89-2.93 (m, 1H), 3.41-3.45 (m, 1H), 4.31 (s, 1H), 7.17-7.24 (m, 4H), 7.47-7.50 (m, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 11.84 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 21.0, 27.6, 35.0, 52.5, 77.3, 79.2, 116.5 (d, *J*_{CF} = 22.4 Hz), 119.3, 127.3 (d, *J*_{CF} = 7.1 Hz), 130.0, 132.4 (d, *J*_{CF} = 8.4 Hz), 134.9, 135.6, 158.9, 162.8 (d, *J*_{CF} = 245.2 Hz), 169.4, 194.3, 205.7; ¹⁹F NMR (CDCl₃, 470 MHz) δ : - 112.25; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀FN₃NaO₂S₂ [M+Na]⁺: 476.0873; Found: 476.0877.

3p: Light yellow solid, m.p. 187.2-187.7 °C; yield 80%, 36.2 mg, 91% ee, >20:1 dr, $[\alpha]_D^{20} =$ +9.3 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.55$ min; $\tau_{minor} = 5.94$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.24 (s, 3H), 2.31 (s, 3H), 2.73-2.85 (m, 2H), 2.94-2.99 (m, 1H), 3.44-3.49 (m, 1H), 4.38 (s, 1H), 7.20-7.32 (m, 5H), 7.40-7.43 (m, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 11.92 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 20.9, 27.7, 35.1, 52.6, 77.2, 79.2, 116.7 (d, *J*_{CF} = 20.4 Hz), 117.1 (d, *J*_{CF} = 23.1 Hz), 119.1, 126.4, 130.0, 131.7, 133.6, 134.9, 135.6, 159.0, 162.7 (d, J_{CF} = 245.0 Hz), 169.5, 194.2, 205.5; ¹⁹F NMR (CDCl₃, 470 MHz) δ : -111.45; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀FN₃NaO₂S₂ [M+Na]⁺: 476.0873; Found: 476.0873.

3q: Light yellow solid, m.p. 187.7-188.1 °C; yield 86%, 40.3 mg, >99% ee, >20:1 dr, $[\alpha]_D^{20} =$ +299.4 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 15.15$ min; $\tau_{minor} = 6.37$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.20 (s, 3H), 2.28 (s, 3H), 2.69-2.81 (m, 2H), 2.90-2.95 (m, 1H), 3.41-3.46 (m, 1H), 4.31 (s, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.40-7.46 (m, 4H), 7.59 (d, *J* = 8.4 Hz, 2H), 11.86 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 21.0, 27.7, 35.0, 52.6, 72.2, 79.2, 119.3, 129.7, 130.0, 130.1, 132.1, 134.7, 134.9, 135.6, 158.9, 169.4, 194.2, 205.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀ClN₃NaO₂S₂[M+Na]⁺: 492.0578; Found: 492.0577.

3r: Light yellow solid, m.p. 148.3-149.1 °C; yield 80%, 41.0 mg, 93% ee, >20:1 dr, $[\alpha]_D^{20}$ = +225.9 (*c* 2.1, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 18.14 min; τ_{minor} = 8.12 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.12 (s, 3H), 2.23 (s, 3H), 2.62-2.75 (m, 2H), 2.81-2.87 (m, 1H), 3.33-3.39 (m, 1H), 4.21 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.48-7.52 (m, 4H), 11.79 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 21.0, 27.7, 35.0, 52.6, 77.1, 79.1, 119.3, 123.4, 130.0, 130.4, 132.4, 132.6, 134.9, 135.6, 158.9, 169.4, 194.2, 205.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀BrN₃NaO₂S₂ [M+Na]⁺: 536.0073; Found: 536.0074.

3s: Light yellow solid, m.p. 164.5-165.3 °C; yield 90%, 40.4 mg, 93% ee, >20:1 dr, $[\alpha]_D^{20} =$ +272.4 (*c* 2.0, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.68$ min; $\tau_{minor} = 5.79$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 2.16 (s, 3H), 2.19 (s, 3H), 2.26 (s, 3H), 2.55-2.63 (m, 1H), 2.69-2.74 (m, 1H), 3.10-3.24 (m, 2H), 4.34 (s, 1H), 6.98 (d, *J* = 8.0 Hz, 2H), 7.10-7.17 (m, 4H), 7.61 (d, *J* = 8.4 Hz, 2H), 9.76 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.1, 21.0, 26.9, 27.7, 34.9, 53.1, 77.4, 79.1, 119.5, 127.4, 129.4, 129.7, 130.0, 135.0, 135.6, 139.3, 157.8, 169.3, 195.9, 204.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₃N₃NaO₂S₂ [M+Na]⁺: 472.1124; Found: 472.1121.

3t: Light yellow solid, m.p. 165.3-165.9 °C; yield 90%, 41.9 mg, 95% ee, >20:1 dr, $[\alpha]_D^{20} =$ +346.1 (*c* 2.8, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 22.75$ min; $\tau_{minor} = 9.84$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.18 (s, 3H), 2.29 (s, 3H), 2.69-2.74 (m, 1H), 2.78-2.83 (m, 1H), 2.86-2.91 (m, 1H), 3.39-3.41 (m, 1H), 3.68 (s, 3H), 4.23 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.8 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 11.78 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 21.0, 27.5, 35.0, 53.1, 55.5, 77.4, 79.2, 114.9, 119.1, 122.6, 130.0, 131.4, 135.1, 135.4, 159.0, 160.2, 169.6, 194.6, 206.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₃N₃NaO₃S₂ [M+Na]⁺: 488.1073; Found: 488.1073.

3u: Light yellow solid, m.p. 210.3-210.9 °C; yield 89%, 41.4 mg, 94% ee, >20:1 dr, $[\alpha]_D^{20} =$ +269.9 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 22.68$ min; $\tau_{minor} = 10.65$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.13 (s, 3H), 2.44-2.50 (m, 1H), 2.68-2.75 (m, 1H), 2.94-3.00 (m, 1H), 3.25-3.31 (m, 1H), 3.36 (s, 3H), 3.75 (s, 3H), 4.99 (s, 3H), 6.88-6.92 (m, 1H), 7.05 (d, *J*

= 8.4 Hz, 1H), 7.22-7.26 (m, 1H), 7.29-7.33 (m, 1H), 7.42-7.46 (m, 2H), 7.51 (d, J = 7.6 Hz, 1H),
7.72 (d, J = 7.6 Hz, 2H), 11.72 (br s, 1H); ¹³C NMR (DMSO-*d₆*, 100 MHz) δ: 14.1, 27.2, 34.6,
44.1, 56.3, 77.3, 78.9, 112.4, 118.9, 119.1, 121.1, 126.1, 129.3, 129.6, 130.8, 137.4, 158.0, 159.2,
170.1, 194.3, 205.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₃N₃NaO₃S₂ [M+Na]⁺: 488.1073;
Found: 488.1077.

3v: Light yellow solid, m.p. 193.2-193.9 °C; yield 83%, 37.8 mg, 98% ee, >20:1 dr, $[\alpha]_D^{20} =$ +83.8 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.61$ min; $\tau_{minor} = 6.10$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.20 (s, 3 H), 2.73-2.79 (m, 2H), 2.87-2.94 (m, 1H), 3.39-3.42 (m, 1H), 4.30 (s, 1H), 7.33-7.39 (m, 5H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.76 (d, *J* = 8.8 Hz, 2H), 11.88 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 27.6, 35.1, 53.5, 77.4, 79.3, 120.5, 129.0, 129.7, 129.8, 129.9, 130.0, 130.1, 130.9, 136.2, 159.6, 169.8, 194.1, 205.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₈ClN₃NaO₂S₂ [M+Na]⁺: 478.0421; Found: 478.0418.

3w: Light yellow solid, m.p. 130.2-131.1 °C; yield 82%, 43.7 mg, 91% ee, 13:1 dr, $[\alpha]_D^{20} =$ +94.9 (*c* 2.9, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.83$ min; $\tau_{minor} = 5.37$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 2.21 (s, 3H), 2.69-2.74 (m, 1H), 2.77-2.83 (m, 1H), 2.87-2.94 (m, 1H), 3.40-3.46 (m, 1H), 4.30 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 9.2 Hz, 2H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 11.90 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 27.7, 35.0, 52.6, 77.3, 79.2, 120.7, 123.4, 129.7, 130.1, 130.3, 132.3, 132.7, 136.0, 159.6, 169.6, 193.8, 205.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₇BrClN₃NaO₂S₂ [M+Na]⁺: 555.9526; Found: 555.9522.

3x: Light yellow solid, m.p. 178.9-179.5 °C; yield 87%, 37.8 mg, 86% ee, >20:1 dr; The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.69$ min; $\tau_{minor} = 5.74$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.18-1.22 (m, 3H), 2.48-2.64 (m, 2H), 2.70-2.78 (m, 2H), 2.88-2.95 (m, 1H), 3.42-3.44 (m, 1H), 4.32 (s, 1H), 7.22-7.25 (m, 1H), 7.33-7.46 (m, 7H), 7.75 (d, J = 8.0 Hz, 2H), 11.85 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 9.6, 21.6, 27.6, 35.1, 53.5, 77.5, 79.3, 119.1, 126.2, 129.6, 129.7, 130.1, 131.1, 137.5, 162.6, 169.9, 194.7, 206.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₁N₃NaO₂S₂ [M+Na]⁺: 458.0967; Found: 458.0962.

3y: Light yellow solid, m.p. 184.3-184.6 °C; yield 90%, 42.2 mg, 98% ee, >20:1 dr; The ee was determined by HPLC analysis using a Chiralpak IC column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.42$ min; $\tau_{minor} = 4.95$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.18-1.22 (m, 3H), 2.47-2.54 (m, 1H), 2.59-2.65 (m, 1H), 2.67-2.73 (m, 1H), 2.76-2.82 (m, 1H), 2.91-2.94 (m, 1H), 3.41-3.43 (m, 1H), 4.33 (s, 1H), 7.22-7.25 (m, 1H), 7.42 (s, 6H), 7.74 (d, J = 7.2 Hz, 2H), 11.88 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 9.6, 21.6, 27.7, 35.0, 52.6, 77.5, 79.2, 119.3, 126.2, 129.6, 129.7, 130.1, 132.1, 134.7, 137.4, 162.6, 169.7, 194.4, 205.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₀ClN₃NaO₂S₂ [M+Na]⁺: 492.0578; Found: 492.0582.

6. Preparative scale synthesis of the product 3a

In a sealed tube equipped with a magnetic stirring bar, to the mixture of 3-isothiocyanato thiobutyrolactone 1 (0.16 g, 1.0 mmol), and squaramide catalyst C12 (10 mol %) in 15 mL of

freshly distilled toluene was added alkylidene pyrazolone **2** (0.39 g, 1.5 mmol). The reaction mixture was stirred at room temperature for 16 h and was directly loaded onto a silica gel and purified by flash chromatography (hexane/EtOAc, 10/1, v/v) to give the desired product **3a** (0.35 g, 83%, 91% ee, >20:1 dr).

7. Further investigation of transformation of 3q

To a stirred solution of 3q (93.8 mg, 0.20 mmol) in acetone (1.0 mL) was added K₂CO₃ (41 mg, 0.30 mmol) at 0 °C. Then iodomethane (43 mg, 0.30 mmol) in 2.0 mL acetone was added dropwise into the stirred reaction mixture. The reaction mixture was allowed to stir at room temperature for another 12 h, and was directly loaded onto a silica gel and purified by flash chromatography (hexane/EtOAc, 10/1, v/v) to give the desired product 4q (90%, 94% ee, >20:1 dr).

4q: Light yellow solid, m.p. 174.3-175.5 °C; yield 90%, 43.7 mg, 94% ee, >20:1 dr; The ee was determined by HPLC analysis using a Chiralpak IC column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.69$ min; $\tau_{minor} = 10.47$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 2.24 (s, 3H), 2.28 (s, 3H), 2.48 (s, 3H), 2.84-2.88 (m, 1H), 3.25-3.28 (m, 1H), 3.37-3.38 (m, 1H), 3.53-3.60 (m, 1H), 4.45 (s, 1H), 7.21-7.23 (m, 2H), 7.32-7.39 (m, 4H), 7.55-7.57 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ: 13.8, 14.2, 20.9, 28.7, 37.5, 54.1, 77.1, 89.3, 119.3, 129.5, 130.0, 131.1, 132.3, 134.1, 134.8, 135.8, 157.9, 168.3, 168.5, 206.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₂ClN₃NaO₂S₂ [M+Na]⁺: 506.0734; Found: 506.0737.

8. X-ray crystal data for compound 3k

Table S1 Crystal data and st	ructure refinement for 3k
Identification code	3k
Empirical formula	$C_{22}H_{17}Cl_2N_3O_2S_2$
Formula weight	490.40
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å, b/Å, c/Å	9.0271(6), 10.9083(6), 11.1404(8)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 105.790(7), 90.
Volume/Å ³	1055.60(12)
Z	2
$\rho_{calc}g/cm^3$	1.543
μ/mm^{-1}	0.532
F(000)	504.0
Radiation	Mo Ka ($\lambda = 0.71073$)
Crystal size/mm ³	$0.15\times0.12\times0.11$
2Θ range for data collection/°	4.69 to 58.856
Tu day you aaa	10 < b < 11 $14 < b < 14$ $11 < b$

Index ranges	$\text{-10} \le h \le 11, \text{-14} \le k \le 14, \text{-11} \le l \le 15$
Reflections collected	5127
Independent reflections	$3901 \ [R_{int} = 0.0231, R_{sigma} = 0.0540]$
Data/restraints/parameters	3901/1/281
Goodness-of-fit on F ²	0.978
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0359, wR_2 = 0.0685$
Final R indexes [all data]	$R_1 = 0.0416, wR_2 = 0.0709$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.23
Flack/Hooft parameter	-0.01(4)/0.00(5)

Crystal Data for $C_{22}H_{17}Cl_2N_3O_2S_2$ (*M* =490.40 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 9.0271(6) Å, *b* = 10.9083(6) Å, *c* = 11.1404(8) Å, *β* = 105.790(7)°, *V* = 1055.60(12) Å³, *Z* = 2, *T* = 169.99(10) K, µ(Mo Kα) = 0.532 mm⁻¹, *Dcalc* = 1.543 g/cm³, 5127 reflections measured (4.69° $\leq 2\Theta \leq 58.856^{\circ}$), 3901 unique ($R_{int} = 0.0231$, $R_{sigma} = 0.0540$) which were used in all calculations. The final R_1 was 0.0359 (I > 2 σ (I)) and wR_2 was 0.0709 (all data).

9. The Copies of ¹H NMR, ¹³C NMR and HPLC Spectra for Compounds 1, 3 and 4 ¹H and ¹³C NMR of 1

¹H and ¹³C NMR of 3a

#	Time	Area	Height	Width	Area%	Symmetry
1	7.172	1525.3	79	0.3219	3.557	0.762
2	11.541	41354.2	1179.8	0.5842	96.443	0.584

¹⁹F NMR of 3b

#	Time	Area	Height	Width	Area%	Symmetry
1	6.308	2266.6	103.3	0.319	4.316	0.88
2	11.04	50252.7	1360.2	0.556	95.684	0.545

¹H and ¹³C NMR of 3c

¹⁹F NMR of 3c

HPLC of 3

#	Time	Area	Height	Width	Area%	Symmetry
1	5.648	14372.6	901.9	0.2656	49.905	0.68
2	8.728	14427.2	487.9	0.4928	50.095	0.681

#	Time	Area	Height	Width	Area%	Symmetry
1	5.685	857.2	50.5	0.2531	0.767	0.63
2	8.617	110943.5	3703.6	0.4565	99.233	0.478

LO

10

1 6 052	282.4	11.4	0 3520	0.505	0.02
2 11.24	4 47102.9	1152.6	0.3329	0,375	0.72
2 11.36	4/192.8	1152.6	0.6217	99,405	0.519

¹H and ¹³C NMR of 3f

#	Time	Area	Height	Width	Area%	Symmetry
1	7.514	234.5	11.9	0.3087	3.661	0.845
2	13.709	6170.2	134.2	0.6934	96.339	0.668

#	Time	Area	Height	Width	Area%	Symmetry
1	6.776	33407	1787	0.2851	50.089	0.544
2	11.067	33287.8	896.3	0.5663	49.911	0.574

#	Time	Area	Height	Width	Area%	Symmetry
1	6.736	5622.9	323.6	0.2637	3.269	0.561
2	10.458	166410.1	3908.9	0.5597	96.731	0.366

¹H and ¹³C NMR of 3h

S35

#	Time	Area	Height	Width	Area%	Symmetry
1	8.514	5861.1	230.5	0.3847	6.356	0.631
2	23.334	86347	912.5	1.577	93.644	0.384
¹H and ¹³C NMR of 3j

π	THILE	HICO	ricigite	mach	HICU /V	Symmetry
1	7.65	18228.6	873.8	0.3184	50.116	0.693
2	13.352	18143.9	419.4	0.6587	49.884	0.588

1	7.702	436.3	20,6	0.3235	1.964	0.706
2	13.384	21777.4	505.3	0.6538	98.036	0.586

¹H and ¹³C NMR of 3k

¹H and ¹³C NMR of 3l

¹H and ¹³C NMR of 3m

#	Time	Area	Height	Width	Area%	Symmetry
1	6.644	2983.2	162.5	0.2772	1.929	0.74
2	13.759	151663.2	2873.5	0.7768	98.071	0.393

¹⁹F NMR of 3p

#	Time	Area	Height	Width	Area%	Symmetry
1	5.9	7618	523.3	0.2208	49.627	0.68
2	10.391	7732.4	233.9	0.4997	50.373	0.657

¹H and ¹³C NMR of 3q

#	Time	Area	Height	Width	Area%	Symmetry
1	6.377	140.2	5.3	0.3796	0.290	0.498
2	15.151	48236	764.3	0.9583	99.710	0.477

4	10,329	17033.3	207.0	1,1427	77,702	0.010	
	AWD1 A. Wavel	enath=254 nm (LR	M-A4S.D1				

#	Time	Area	Height	Width	Area%	Symmetry
1	8.117	2454.8	101.7	0.3675	3.744	0.682
2	18.14	63115.9	912.9	0.9816	96.256	0.416

¹H and ¹³C NMR of 3s

110 100 f1 (ppm)

90

70

80

50 40 30 20

60

10

130 120

160 150 140

10 200

190 180 170

#	Time	Area	Height	Width	Area%	Symmetry
1	5.776	11713.5	678.8	0.2633	49.990	0.705
2	9.756	11718.2	341.2	0.5197	50.010	0.64

#	Time	Area	Height	Width	Area%	Symmetry
1	5.796	1829.2	85.8	0.3552	3.683	0.552
2	9.685	47830.6	1407.9	0.5104	96.317	0.572

¹H and ¹³C NMR of 3t

S59

#	Time	Area	Height	Width	Area%	Symmetry
1	9.841	257.8	7.7	0.5028	2.568	0.744
2	22.751	9779	114.9	1.2867	97.432	0.603

¹H and ¹³C NMR of 3u

#	Time	Area	Height	Width	Area%	Symmetry
1	10.65	2304	69.2	0.5043	2.815	0.727
2	22,686	79551.2	1022.6	1.1605	97.185	0.477

#	Time	Area	Height	Width	Area%	Symmetr
1	6.106	609.4	34.9	0.2575	1.086	0.611
2	9.618	55516.5	1846.7	0.4577	98.914	0.611

¹H and ¹³C NMR of 4q

#	Time	Area	Height	Width	Area%	Symmetry
1	7.451	36010.7	1070.3	0.4875	49.035	0.49
2	10.171	37428.7	784.1	0.6859	50.965	0.482

