Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Peptide Macrocyclisation via Late-Stage Reductive Amination

Hayden J. Bell, Lara R. Malins* Email: <u>lara.malins@anu.edu.au</u>

General Methods 3 Literature Compounds 4 General Procedure A: Automated Peptide Assembly	Table of Contents	2
Literature Compounds4General Procedure A: Automated Peptide Assembly.4General Procedure B: Peptide Macrocyclisation via Reductive Amination5Optimisation of Reaction Solvent and Additives5Optimisation of Equivalents of Reductant in 40 mM Borate Buffer6Cyclisation of Peptide 9 with Isophthalaldehyde and Terephthalaldehyde.7Attempted Cyclisation of an N-terminal Cysteine Peptide8Synthesis of Dialdehyde linkers9Experimental procedures and characterization data for peptide starting materials15Experimental procedures and characterization data for Click chemistry31References32NMR Spectra Data33	General Methods	3
General Procedure A: Automated Peptide Assembly	Literature Compounds	4
General Procedure B: Peptide Macrocyclisation via Reductive Amination5Optimisation of Reaction Solvent and Additives5Optimisation of Equivalents of Reductant in 40 mM Borate Buffer.6Cyclisation of Peptide 9 with Isophthalaldehyde and Terephthalaldehyde.7Attempted Cyclisation of an N-terminal Cysteine Peptide8Synthesis of Dialdehyde linkers9Experimental procedures and characterization data for peptide starting materials15Experimental procedures and characterization data for Click chemistry31References3233	General Procedure A: Automated Peptide Assembly	4
Optimisation of Reaction Solvent and Additives	General Procedure B: Peptide Macrocyclisation via Reductive Amination	5
Optimisation of Equivalents of Reductant in 40 mM Borate Buffer	Optimisation of Reaction Solvent and Additives	5
Cyclisation of Peptide 9 with Isophthalaldehyde and Terephthalaldehyde	Optimisation of Equivalents of Reductant in 40 mM Borate Buffer	6
Attempted Cyclisation of an N-terminal Cysteine Peptide	Cyclisation of Peptide 9 with Isophthalaldehyde and Terephthalaldehyde	7
Synthesis of Dialdehyde linkers	Attempted Cyclisation of an N-terminal Cysteine Peptide	8
Experimental procedures and characterization data for peptide starting materials	Synthesis of Dialdehyde linkers	9
Experimental procedures and characterization data for pyridinyl macrocyclic products	Experimental procedures and characterization data for peptide starting materials	15
Experimental procedures and characterization data for Click chemistry	Experimental procedures and characterization data for pyridinyl macrocyclic products	22
References 32 NMR Spectra Data 33	Experimental procedures and characterization data for Click chemistry	31
NMR Spectra Data	References	32
	NMR Spectra Data	33

General Methods

¹H NMR spectra were recorded at 400 MHz using a Bruker AVANCE 400 or Varian MR-400 spectrometer and 700 MHz using a Bruker Ascend 700 spectrometer. Residual proton-solvent peaks were used as an internal reference for ¹H NMR spectra (CDCl₃ δ 7.26 ppm, MeOD δ 3.31 ppm and CD₃CN δ 1.94 ppm). Coupling constants (J) are quoted to the nearest 0.1 Hz. The assignment of proton signals was assisted by COSY, ROESY, TOCSY, HSQC and HMBC experiments. ¹³C NMR spectra were recorded at 101 MHz using a Bruker AVANCE 400 spectrometer and 176 MHz using a Bruker Ascend 700 spectrometer. Solvent peaks were used as an internal reference for ¹³C NMR spectra (CDCl₃ δ 77.16 ppm, MeOD δ 49.00 ppm and CD₃CN δ 1.32 ppm). Assignment of carbon signals was assisted by HSQC and HMBC experiments. The following abbreviations (or combinations thereof) are used to denote ¹H NMR multiplicities: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, m = multiplet. Infrared spectra were recorded on a Perkin-Elmer UATR Two spectrometer as a thin film or solid. UV-Vis absorbance was recorded using a Shimadzu UV-2450 spectrometer. Lowresolution ESI mass spectra were recorded on a Waters LCT Premier TOF (capillary voltage of 2.5 kV and cone voltage of 50 V). High-resolution ESI mass spectra were recorded on a Thermo Fisher Scientific Orbitrap Elite (capillary voltage of 4 kV). Anhydrous solvents were obtained from commercial sources or an MB SPS-800. Commercially available chemicals were used as purchased. Analytical thin-layer chromatography was conducted with aluminiumbacked silica gel 60 F254 (0.2 mm) plates supplied by Merck and visualized using UV fluorescence ($\lambda_{max} = 254$ nm). Flash chromatography employed Merck Kiesegel 60 silica gel (230–400 mesh). Solvent compositions are given in (v/v). PS 40–60 °C refers to petroleum spirits, boiling point fraction 40-60 °C. Microwave irradiation was performed in a CEM Discover microwave reactor. Preparative HPLC was performed on a Waters Alliance Separation Module 2690, with a Waters 996 photodiode array detector. The system was operated using Empower 3 software. All separations employed linear gradients (unless otherwise specified) of water containing 0.1% trifluoroacetic acid and MeCN containing 0.1% trifluoroacetic acid at a constant flow rate of 10 mL/min (preparative HPLC, Alltima, C18, 5 μ m; 22 × 250 mm) or 3 mL/min (semi-preparative HPLC, Luna, C18, 5 μ m; 10 × 250 mm). All gradients are given in percentage of MeCN (Solvent B). UPLC-MS was performed on a Waters Acquity system outfitted with a Waters UV Detector. Separations employed linear gradients (unless otherwise specified) of water containing 0.1% formic acid (Solvent A) and MeCN containing 0.1% formic acid (Solvent B) at a constant flow rate (0.25 mL/min, BEH,

C18, $1.7 \mu m$). Automated Fmoc-SPPS was carried out on a Biotage Initiator+ Alstra microwave peptide synthesiser, with procedures as described below.

Literature Compounds:

Compounds **5**, **6a**, **7a** and **2** were all synthesised according to literature procedures reported by Vincent and co-workers.¹

General Procedure A: Automated Peptide Assembly

Automated Assembly:

Peptides were elongated using automated iterative Fmoc-solid-phase peptide synthesis (Fmoc-SPPS) according to the following general protocols:

Deprotection: The resin was treated with 20% piperidine/DMF (1×3 min then 1×10 min) and washed with DMF (4×4.5 mL).

General amino acid coupling: The resin was treated with Fmoc-protected amino acid (4.0 equiv., 0.4 M in DMF), ethyl cyano(hydroxyimino)acetate (Oxyma Pure[®]) (4.0 equiv., 0.5 M in DMF), and *N*,*N*'-diisopropylcarbodiimide (DIC) (4.0 equiv., 0.5 M in DMF). The fritted syringe was sealed and agitated for 20 minutes under microwave irradiation (50 °C, 200 W). The resin was then washed with DMF (4×4.5 mL).

Capping: Ac₂O/DIEA (4 equiv., 0.3 M in NMP) was added to the resin. The reaction was agitated for 10 minutes at room temperature. The resin was then washed with DMF (4 \times 4.5 mL).

Cleavage: The resin was dissolved in DCM and transferred to a 6 mL or 12 mL fritted syringe then washed with DMF (5 × 3 mL), DCM (5 × 3 mL). A mixture of TFA/TIPS/H₂O (3 mL, 90:5:5 v/v/v) was added to the resin. After 2 h, the resin was washed with TFA (2 × 3 mL) and DCM (2 × 3 mL).

Work-Up: The combined cleavage solutions were concentrated under a gentle stream of nitrogen, and the oily residue obtained was then treated with ice-cold Et₂O to precipitate the peptide. Peptides were further purified by preparative reverse-phase HPLC using the conditions indicated in each synthetic protocol described below.

General Procedure B: Peptide Macrocyclisation via Reductive Amination

Linear peptide diamine (1.0 equiv.) was diluted in sodium borate reduction buffer (40 mM sodium borate, 100 mM NaBH₃CN, pH 9) to a concentration of 1 mM. To this was added dialdehyde **1**, **2** or **3** (3.0 equiv., 60 mM in MeCN). The reaction was stirred for 16 - 24 h and monitored *via* UPLC-MS analysis. If incomplete, additional aldehyde was added (1.0 - 3.0 equiv.) and the reaction stirred for a further 16 - 24 h. The crude mixture was concentrated to a volume of approximately 1 mL under a stream of nitrogen and diluted with MeCN containing 0.1% TFA. The mixture was then purified *via* preparative reverse phase HPLC (direct injection of crude reaction mixture; eluent as noted) to afford the pure macrocyclic peptide after lyophilisation. For the purpose of yield calculations, the protonation states of the peptide starting materials and peptide products were assumed to be consistent.

Optimisation of Reaction Solvent and Additives (see Manuscript Table 1)

Linear peptide diamine **9** (5.8 – 13 mmol, 1.0 equiv.) was dissolved in the appropriate solvent to a concentration of 1 mM. To this was added the additive (specified in table), dialdehyde **1** (1.5 equiv., 60 mM in MeCN) and NaBH₃CN (10 equiv., 80 mM in MeCN). The reaction was stirred at room temperature for 24 h and subsequently concentrated under a stream of nitrogen, diluted in water/MeCN (50/50, v/v) and purified *via* preparative reverse phase HPLC (5% B for 3 min, then 5% – 40% B, over 30 minutes) to afford the pure macrocyclic peptide after lyophilisation.

Crude HPLC Trace of Optimised Reaction Conditions (from Entry 7, Table 1):

Figure S1. Model reaction for the cyclisation of peptide 9 with dialdehyde using optimised reaction conditions (see Entry 7, Table 1 in the manuscript). Gradient: 5% B for 1 min, then 5% to 40% B over 5 min, $\lambda = 210$ nm). Inset: extracted mass of product peak at t = 4.0 min.

Optimisation of Equivalents of Reductant in 40 mM Borate Buffer

Optimisation was carried out using linear peptide (9) on a 0.5 mg scale, at 1 mM concentration with respect to the peptide. Linear peptide (9) was dissolved in 40 mM sodium borate buffer and to this was added aldehyde 1 (1.5 equiv., 60 mM in MeCN) and 10, 20 or 100 equivalents of NaBH₃CN (as a solution in 40 mM borate buffer). The reaction was capped and stirred at room temperate. At t = 24 h, an aliquot of each reaction was analysed *via* UPLC-MS, with the relative conversion quantified by peak area in the UV chromatogram (λ = 210). Employing 100 equivalents of NaBH₃CN led to complete consumption of peptide starting material (9), with no observed increase in the production of over alkylated by-products. Accordingly, 100 equivalents of NaBH₃CN were used for all subsequent cyclisations.

Figure S2. Optimisation of reductant stoichiometry (t = 24 h). *Gradient:* 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm.

Cyclisation of Peptide 9 with Isophthalaldehyde and Terephthalaldehyde

Linear peptide diamine (1.0 equiv.) was diluted in sodium borate reduction buffer (40 mM sodium borate, 100 mM NaBH₃CN, pH 9) to a concentration of 1 mM. To this was added isophthalaldehyde or terephthalaldehyde (3.0 equiv., 60 mM in MeCN). The reaction was stirred at rt for 24 h and evaluated by analytical reverse-phase UPLC (5 to 40% B over 30 min, $\lambda = 210$ nm). To estimate reaction yield, the area of the product was integrated and compared to a standard curve derived from the integration ($\lambda = 210$ nm) of stock samples of peptide **9** prepared at concentrations of 1.0 mM, 0.5 mM, and 0.25 mM. Yields are estimated assuming the extinction coefficient for **9** and **10b/10c** are comparable at $\lambda = 210$ nm.

Standard curve preparation (Gradient: 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm.)

Attempted Cyclisation of an N-terminal Cysteine Peptide

Macrocyclisation of a peptide bearing an N-terminal cysteine residue was attempted *via* general procedure B. After 3 h, the mixture was analysed *via* UPLC-MS, which revealed two major peaks corresponding to $[M+2H]^{2+}$ of a putative N-terminal thiazolidine^{2, 3} peptide macrocycle (**Figure S3**). However, leaving the reaction to stir overnight led to degradation of the product before isolation (**Figure S4**), suggesting that unprotected cysteine residues may not be tolerated under the reaction conditions.

Figure S3. Attempted macrocyclisation of an N-terminal cysteine peptide at t = 3 *h. Gradient:* 20% B for 1 min, then 20% to 80% B over 10 min, λ = 210 nm).

Figure S4. Attempted macrocyclisation of an N-terminal cysteine peptide at t = 24 h. Gradient: 20% B for 1 min, then 20% to 80% B over 10 min, $\lambda = 210$ nm).

Synthesis of Dialdehyde linkers

Compounds **5**, **6a**, **7a** and **2** were all synthesised according to literature procedures reported by Vincent and co-workers.¹

Diethyl 4-hydroxypyridine-2,6-dicarboxylate (5)

A solution of chelidamic acid **4** (2.0 g, 10.9 mmol, 1.0 equiv.) in dry EtOH (50 mL) under a nitrogen atmosphere was cooled to 0 °C. To this solution was added thionyl chloride (7.9 mL, 109 mmol, 10.0 equiv.) dropwise. The solution was allowed to warm to room temperature and magnetically stirred for 9 h. The solution was concentrated under reduced pressure and purified *via* flash chromatography on silica gel (MeOH/DCM: 2/98) to give diethyl 4-hydroxypyridine-

2,6-dicarboxylate **5** (1.89 g, 72%) as a yellow solid. Spectra matched literature values.¹ **H NMR** (400 MHz, CDCl₃) δ 7.37 (s, 2H), 4.45 (q, *J* = 7.1 Hz, 4H), 1.41 (t, *J* = 7.1 Hz, 6H).

Diethyl 4-(prop-2-yn-1-yloxy)pyridine-2,6-dicarboxylate (6a)

To a solution of diethyl 4-hydroxypyridine-2,6-dicarboxylate **5** (450 mg, 1.9 mmol, 1.0 equiv.) in acetone (30 mL) was added K₂CO₃ (520 mg, 3.8 mmol, 2.0 equiv.) and propargyl bromide (1 M solution in PhMe, 7.52 mL, 7.5 mmol, 4.0 equiv.) under a nitrogen atmosphere. The solution was heated to reflux and magnetically stirred for 2 h. The solution was subsequently cooled to room temperature, diluted with DCM (30 mL) and washed with water (3 x 20 mL). The organic layer was dried over NaSO₄, filtered, and concentrated under reduced pressure to give diethyl 4-(prop-2-yn-1-yloxy)pyridine-2,6-dicarboxylate **6a** (437 mg, 84%) as a yellow oil. Spectra matched literature values.¹¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (s, 2H), 4.86 (d, *J* = 2.4 Hz, 2H), 4.48 (q, *J* = 7.2 Hz, 4H), 2.62 (t, *J* = 2.4 Hz, 1H), 1.46 (t, *J* = 7.2 Hz, 6H).

(4-(prop-2-yn-1-yloxy)pyridine-2,6-diyl)dimethanol (7a)

A solution of diethyl 4-(prop-2-yn-1-yloxy)pyridine-2,6-dicarboxylate **6a** (437 mg, 1.6 mmol, 1.0 equiv.) in dry EtOH (5 mL) under a nitrogen atmosphere was cooled to 0 °C. To this was added NaBH₄ (298 mg, 7.9 mmol, 5.0 equiv.) portion-wise. The solution was allowed to warm to room temperature and magnetically stirred for 8 h. The solution was cooled to 0 °C and water was added dropwise until effervescence ceased. The mixture was extracted with EtOAc (2 x 5 mL), and the organic layer dried over NaSO₄, filtered, and concentrated under reduced pressure to give (4-(prop-2-yn-1-yloxy)pyridine-2,6-diyl)dimethanol **7a** (251 mg, 82%) as a

light-yellow solid. Spectra matched literature values.¹ ¹**H** NMR (400 MHz, MeOD) δ 7.07 (s, 2H), 4.88 (d, *J* = 2.4 Hz, 2H), 4.64 (s, 4H), 3.06 (t, *J* = 2.4 Hz, 1H).

4-(prop-2-yn-1-yloxy)pyridine-2,6-dicarbaldehyde (2)

A solution of oxalyl chloride (215 µL, 2.5 mmol, 2.2 equiv.) in DCM (20 mL) under a nitrogen atmosphere was cooled to -78 °C. To this was added DMSO (356 µL, 5.0 mmol, 4.0 equiv.) dropwise and the solution was magnetically stirred for 5 minutes. (4-(prop-2-yn-1-yloxy)pyridine-2,6-diyl)dimethanol **7a** (220 mg, 1.1 mmol, 1.0 equiv.) was added dropwise, followed by Et₃N (1.59 mL, 11.0 mmol, 10.0 equiv.). The solution was allowed to warm to room temperature and was diluted with water (50 mL). The mixture was extracted with DCM (3 x 25 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified *via* flash chromatography on silica gel (MeOH/DCM: 1/99) to give 4- (prop-2-yn-1-yloxy)pyridine-2,6-dicarbaldehyde **2** (150 mg, 70%) as a yellow solid. Spectra matched literature values.¹¹**H NMR** (400 MHz, CDCl₃) δ 10.12 (s, 2H), 7.73 (s, 2H), 4.88 (d, J = 2.4 Hz, 2H), 2.62 (t, J = 2.4 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 192.3, 165.8, 155.0, 112.0, 77.9, 76.2, 56.6.

Diethyl 4-(4-chlorobutoxy)pyridine-2,6-dicarboxlate (6b)

To a solution of diethyl 4-hydroxypyridine-2,6-dicarboxylate **5** (478 mg, 2.1 mmol, 1.0 equiv.) in DMF (25 mL) under a nitrogen atmosphere was added 1-bromo-4-chlorobutane (1.4 mL, 12.5 mmol, 6.0 equiv.) and K_2CO_3 (1.15 g, 8.4 mmol, 4.0 equiv.). The solution was stirred at 50 °C for 3 h. The solution was filtered and concentrated under reduced pressure and the crude residue was purified *via* flash chromatography on silica gel (EtOAc/Petroleum ether: 1/1) to

give **6b** (509 mg, 77%) as a clear oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (s, 2H), 4.47 (q, J = 7.1 Hz, 4H), 4.18 (t, J = 5.7 Hz , 2H), 3.63 (t, J = 6.1 Hz, 2H), 2.05 – 1.97 (m, 4H), 1.46 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.9, 164.9, 150.4, 114.4, 68.2, 62.6, 44.5, 29.1, 26.4, 14.4. **IR:** v_{max} = 2980, 2961, 2929, 2879, 1741, 1722, 1594, 1446, 1337, 1237, 1226, 1041, 1020, 781 cm⁻¹. **HRMS (ESI-TOF):** calc'd C₁₅H₂₁NO₅³⁵Cl [M+H]⁺ 330.1108; found 330.1104.

(4-(4-chlorobutoxy)pyridine-2,6-diyl)dimethanol (7b)

To an oven-dried round-bottom flask under a nitrogen atmosphere was added diethyl ester **6b** (55 mg, 0.17 mmol, 1.0 equiv.) followed by EtOH (10 mL). The resulting solution was magnetically stirred and cooled to 0 °C. To this solution was added NaBH₄ (32 mg, 0.83 mmol, 5.0 equiv.) and the solution was allowed to warm to room temperature and stirred for a further 16 h. 1 M HCl (aq) was added to the solution until effervescence ceased. The solution was then diluted with water (50 mL) and the organic layer was extracted with EtOAc (5 x 15 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the product diol **7b** (37.2 mg, 91%) as a white solid. ¹**H NMR** (400 MHz, MeOD) δ 6.97 (s, 2H), 4.61 (s, 4H), 4.20 – 4.06 (m, 2H), 3.72 – 3.57 (m, 2H), 2.04 – 1.89 (m, 4H). ¹³**C NMR** (101 MHz, MeOD) δ 168.7, 163.7, 106.4, 68.5, 65.3, 45.4, 30.4, 27.5. **IR:** v_{max} = 3367 (br), 2954, 2900, 2655, 1601, 1572, 1438, 1352, 1309, 1303, 1150, 1089, 1050, 1032, 866, 671 cm⁻¹. **HRMS (ESI-TOF):** calc'd C₁₁H₁₇NO₃³⁵Cl [M+H]⁺ 246.0897; found 246.0798. **M.P** = 109-111 °C.

4-(4-chlorobutoxy)pyridine-2,6-dicarbaldehyde (8)

To an oven-dried round-bottom flask under a nitrogen atmosphere was added oxalyl chloride (289 µL, 3.4 mmol, 2.5 equiv.) and dry dichloromethane (40 mL). This solution was magnetically stirred and cooled to -78 °C. Dimethyl sulfoxide (421 µL, 5.9 mmol, 4.4 equiv.) was added dropwise, and the solution was stirred at -78 °C for a further 15 minutes. Diol **7b** (331 mg, 1.4 mmol, 1.0 equiv.) was added dropwise, followed by triethylamine (1.88 mL, 14 mmol, 10 equiv.) dropwise. The solution was allowed to warm to room temperature before being diluted with H₂O (50 mL). The aqueous layer was extracted with DCM (3 × 25 mL). The combined organic fractions were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified *via* flash chromatography on silica gel (EtOAc/Petroleum ether 3:7) to give dialdehyde **8** (260 mg, 80%) as a yellow oil which solidified upon freezing. ¹H NMR (400 MHz, CDCl₃) δ 10.11 (s, 2H), 7.63 (s, 2H), 4.20 (t, *J* = 5.8 Hz, 2H), 3.63 (t, *J* = 6.0 Hz, 2H), 2.06 – 1.97 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 167.0, 154.9, 111.5, 68.5, 44.5, 29.1, 26.3. **IR:** v_{max} = 2922, 2847, 1710, 1592, 1557, 1448, 1361, 1313, 716, 652 cm⁻¹. **HRMS (ESI-TOF):** calc'd C₁₁H₁₂NO₃³⁵ClNa [M+Na]⁺ 264.0403; found 264.0408. **M.P** = 41-42 °C.

4-(4-azidobutoxy)pyridine-2,6-dicarbaldehyde (3)

To a solution of dialdehyde **8** (100 mg, 4.1 mmol, 1.0 equiv.) in dry DMF (5 mL) under a nitrogen atmosphere was added NaN₃ (135 mg, 21 mmol, 5.0 equiv.). The solution was magnetically stirred at room temperature for 3 h. The reaction solution was then concentrated under a stream of nitrogen, redissolved in DCM (20 mL) and washed with H₂O (2 × 20 mL) and brine (20 mL). The organic layer was dried over MgSO₄, filtered, and concentrated under

reduced pressure. The crude mixture was purified *via* flash chromatography on silica gel (100% EtOAc) to give azido-dialdehyde **3** (78 mg, 76%) as a dark yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 10.11 (s, 2H), 7.63 (s, 2H), 4.18 (t, *J* = 6.1 Hz, 2H), 3.39 (t, J = 6.6 Hz, 2H), 2.02 – 1.90 (m, 2H), 1.85 – 1.76 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 192.5, 167.0, 154.9, 111.5, 68.7, 51.1, 26.2, 25.6. **IR:** v_{max} = 3084, 2953, 2847, 2095, 1709, 1592, 1361, 1312, 715, 700 cm⁻¹. **HRMS (ESI-TOF):** calc'd C₁₁H₁₂N₄O₃Na [M+Na]⁺ 271.0807; found 271.0811.

Experimental procedures and characterization data for peptide starting materials

Peptide 9

Peptide **9** was prepared according to general procedure A on a 583 µmol scale. TFA cleavage afforded the crude peptide after workup. The crude peptide was purified *via* reverse-phase preparative HPLC (15% B for 3 min, then 15% – 60% B, over 20 minutes) to afford peptide **9** as a white solid following lyophilisation. ¹H NMR (400 MHz, MeOD) δ 4.50 – 4.29 (m, 3H), 4.28 – 4.17 (m, 1H), 4.14 (s, 2H), 3.99 – 3.91 (m, 1H), 3.84 – 3.77 (m, 1H), 3.75 (s, 2H), 3.73 – 3.66 (m, 1H), 3.65 – 3.56 (m, 1H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.43 – 2.10 (m, 1H), 2.09 – 1.84 (m, 4H), 1.83 – 1.56 (m, 6H), 1.55 – 1.33 (m, 2H), 1.40 (d, *J* = 7.2 Hz, 3H), 0.96 (d, *J* = 6.2 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₂₆H₄₈N₉O₇ [M+H]⁺ 598.3677; found 598.3673. **UPLC trace:**

Purified peptide 9 (Rt = 6.1 min, 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm).

Peptide **SI-1** was prepared according to general procedure A on a 120 µmol scale. TFA cleavage afforded the crude peptide after workup. The crude peptide was purified *via* reverse phase preparative HPLC (0% B for 3 min, then 0% – 60% B, over 20 minutes) to afford peptide **SI-1** as a white fluffy solid following lyophilisation. ¹H NMR (700 MHz, MeOD) δ 4.62 (t, *J* = 6.3 Hz, 1H), 4.51 (dd, *J* = 8.5, 5.3 Hz, 1H), 4.41 – 4.37 (m, 1H), 4.34 – 4.30 (m, 1H), 3.78 – 3.72 (m, 1H), 3.72 – 3.66 (m, 1H), 2.93 (m, 2H), 2.83 – 2.66 (m, 4H), 2.31 – 2.19 (m, 2H), 2.16 (s, 3H), 2.14 – 2.06 (m, 2H), 2.05 – 1.97 (m, 2H), 1.96 – 1.88 (m, 1H), 1.74 – 1.64 (m, 3H), 1.51 – 1.43 (m, 2H). **HRMS (ESI-TOF):** calc'd C₂₀H₃₈N₇O₅S [M+H]⁺ 488.2655; found 488.2656. **UPLC trace:**

Purified peptide SI-1 (Rt = 2.8 min, 10% B for 1 min, then 10% to 60% B over 10 min, $\lambda = 210$ nm).

Peptide **SI-2** was prepared according to general procedure A on a 120 µmol scale. TFA cleavage afforded the crude peptide after workup. The crude peptide was purified *via* reverse-phase preparative HPLC (20% B for 3 min, then 20% – 60% B, over 20 minutes) to afford peptide **SI-2** as a white fluffy solid following lyophilisation. ¹H NMR (700 MHz, MeOD) δ 7.08 (d, *J* = 8.5 Hz, 2H), 6.69 (d, *J* = 8.5 Hz, 2H), 4.76 – 4.70 (m, 1H), 4.61 – 4.54 (m, 1H), 4.47 – 4.42 (m, 1H), 4.38 – 4.32 (m, 1H), 4.32 – 4.27 (m, 1H), 4.26 – 4.20 (m, 2H), 4.21 – 4.14 (m, 2H), 3.94 – 3.86 (m, 1H), 3.12 (dd, *J* = 14.2, 5.6 Hz, 1H), 2.99 – 2.93 (m, 2H), 2.90 – 2.84 (m, 1H), 2.82 (dd, *J* = 15.6, 7.9 Hz, 1H), 2.75 (dd, *J* = 15.5, 5.6 Hz, 1H), 2.57 – 2.49 (m, 1H), 2.47 – 2.39 (m, 4H), 2.21 – 2.13 (m, 1H), 2.14 – 2.06 (m, 1H), 2.07 – 2.00 (m, 2H), 1.97 – 1.90 (m, 1H), 1.87 – 1.79 (m, 1H), 1.77 – 1.67 (m, 2H), 1.68 – 1.63 (m, 3H), 1.60 – 1.52 (m, 1H), 1.48 (d, *J* = 7.1 Hz, 3H), 1.47 (d, *J* = 7.3 Hz, 3H), 1.22 (d, *J* = 6.4 Hz, 3H), 0.99 (d, *J* = 6.6 Hz, 3H), 0.94 (d, *J* = 6.5 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₄₅H₇₃N₁₂O₁₆ [M+H]⁺ 1037.5267; found 1037.5273. **UPLC trace:**

Purified peptide SI-2 (Rt = 6.0 min, 10% B for 1 min, then 10% to 60% B over 10 min, λ = 210 nm).

Peptide **SI-3** was prepared according to general procedure A on a 120 µmol scale. TFA cleavage afforded the crude peptide after workup. The crude peptide was purified *via* reverse-phase preparative HPLC (20% B for 3 min, then 20% – 60% B, over 20 minutes) to afford peptide **SI-3** as a white fluffy solid following lyophilisation. ¹H **NMR** (400 MHz, MeOD) δ 7.41 – 7.14 (m, 5H), 4.66 (t, *J* = 6.4 Hz, 1H), 4.63 – 4.55 (m, 1H), 4.37 – 4.22 (m, 2H), 4.21 – 4.12 (m, 1H), 3.85 (d, *J* = 6.0 Hz, 2H), 3.19 (dd, *J* = 14.0, 5.1 Hz, 1H), 3.04 – 2.77 (m, 6H), 2.73 (dd, *J* = 15.6, 6.1 Hz, 1H), 1.96 (s, 3H), 1.90 – 1.53 (m, 10H), 1.52 – 1.40 (m, 2H), 1.38 – 1.20 (m, 3H), 0.97 (d, *J* = 6.3 Hz, 3H), 0.92 (d, *J* = 6.3 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₃₅H₅₉N₁₀O₈ [M+H]⁺ 747.4517; 747.4500. **UPLC trace:**

Purified peptide SI-3 (Rt = 10.2 min, 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm).

Peptide **SI-4** was prepared according to general procedure A on a 120 µmol scale. TFA cleavage afforded the crude peptide after workup. The crude peptide purified *via* reverse-phase preparative HPLC (30% B for 3 min, then 30% – 70% B, over 20 minutes) to afford peptide **SI-4** as a white fluffy solid following lyophilisation. ¹**H NMR** (700 MHz, MeOD) δ 8.72 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.29 – 7.24 (m, 5H), 7.19 (t, *J* = 7.1 Hz, 1H), 7.14 – 7.10 (m, 2H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 2H), 6.51 (d, *J* = 8.0 Hz, 2H), 4.51 – 4.46 (m, 1H), 4.46 – 4.38 (m, 2H), 4.37 – 4.33 (m, 1H), 4.33 – 4.29 (m, 1H), 4.25 (t, *J* = 8.1 Hz, 1H), 4.21 – 4.16 (m, 2H), 4.13 – 4.11 (m, 3H), 4.08 – 4.01 (m, 2H), 3.96 – 3.91 (m, 1H), 3.87 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.29 – 3.23 (m, 2H), 3.19 – 3.11 (m, 3H), 3.09 – 3.04 (m, 1H), 3.02 – 2.97 (m, 1H), 2.96-2.90 (m, 2H), 2.88 – 2.83 (m, 2H), 2.83 – 2.79 (m, 1H), 2.69 (dd, *J* = 16.2, 4.6 Hz, 1H), 2.11 (s, 3H), 1.92 – 1.82 (m, 3H), 1.81 – 1.75 (m, 1H), 1.73 – 1.64 (m, 5H), 1.61 – 1.56 (m, 5H), 1.51 – 1.43 (m, 6H), 1.40 – 1.27 (m, 2H), 1.16 (d, *J* = 5.5 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.92 (d, *J* = 6.4 Hz, 3H), 0.77 (d, *J* = 6.5 Hz, 3H), 0.73 (d, *J* = 6.5 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₇₅H₁₁₁N₁₉O₁₇ [M+2H]²⁺ 774.9203; found 774.9199. **UPLC trace:**

Purified peptide SI-4 (Rt = 4.5 min, 20% B for 1 min, then 20% to 80% B over 10 min, λ = 210 nm).

Peptide **SI-5** was prepared according to general procedure A on a 50 µmol scale. TFA cleavage afforded the crude peptide after workup. The crude peptide was purified *via* reverse phase preparative HPLC (20% B for 3 min, then 20% – 60% B, over 20 minutes) to afford peptide **SI-5** as a white fluffy solid following lyophilisation. ¹H NMR (700 MHz, MeOD) δ 7.31 – 7.26 (m, 2H), 7.25 – 7.20 (m, 3H), 4.71 – 4.68 (m, 1H), 4.67 – 4.62 (m, 2H), 4.57 (dd, *J* = 9.3, 5.3 Hz, 1H), 4.32 – 4.28 (m, 1H), 3.95 (d, *J* = 16.9 Hz, 1H), 3.84 (d, *J* = 16.9 Hz, 1H), 3.44 (dd, *J* = 13.2, 5.4 Hz, 1H), 3.31 (dd, *J* = 28.0, 6.3 Hz, 2H, *overlapping with MeOD peak*), 3.16 (dd, *J* = 14.1, 5.3 Hz, 1H), 3.11 (dd, *J* = 13.1, 7.7 Hz, 1H), 2.94 (dd, *J* = 14.1, 9.4 Hz, 1H), 2.88 (dd, *J* = 15.5, 8.0 Hz, 1H), 2.76 (dd, *J* = 15.5, 5.0 Hz, 1H), 1.95 (s, 3H), 1.83 – 1.63 (m, 3H), 0.98 (d, *J* = 6.3 Hz, 3H), 0.92 (d, *J* = 6.3 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₂₉H₄₇N₁₀O₈ [M+H]⁺ 663.3578; 663.3579. **UPLC trace:**

Purified peptide SI-5 (Rt = 8.5 min, 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm).

Peptide **SI-6** was prepared according to general procedure A on a 120 µmol scale. TFA cleavage afforded the crude peptide after workup. The crude peptide was purified *via* reverse phase preparative HPLC (20% B for 3 min, then 20% – 60% B, over 20 minutes) to afford peptide **SI-6** as a white fluffy solid following lyophilisation. ¹H NMR (700 MHz, MeOD) δ 7.30 – 7.26 (m, 2H), 7.25 – 7.19 (m, 3H), 4.67 – 4.65 (m, 1H), 4.58 (dd, *J* = 9.1, 5.4 Hz, 1H), 4.33 (dd, *J* = 9.2, 5.2 Hz, 1H), 4.31 – 4.27 (m, 2H), 3.88 – 3.84 (m, 2H), 3.16 (dd, *J* = 14.1, 5.4 Hz, 1H), 2.96 – 2.93 (m, 3H), 2.92 – 2.89 (m, 2H), 2.84 (dd, *J* = 15.7, 6.9 Hz, 1H), 2.75 (dd, *J* = 15.7, 5.8 Hz, 1H), 2.00 – 1.96 (m, 1H), 1.95 (s, 3H), 1.85 – 1.80 (m, 1H), 1.78 – 1.71 (m, 4H), 1.68 – 1.62 (m, 5H), 0.97 (d, *J* = 6.5 Hz, 3H), 0.92 (d, *J* = 6.5 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₃₃H₅₅N₁₀O₈ [M+H]⁺ 719.4204; 719.4204. **UPLC trace:**

Purified peptide SI-6 (Rt = 8.2 min, 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm).

Experimental procedures and characterization data for pyridinyl macrocyclic products

Peptide 10

Macrocyclic peptide **10** was prepared according to general procedure B from linear peptide **9** (6.23 mg, 7.5 µmol). At time = 24 h, an additional 1.5 equiv. of dialdehyde **1** was added, and the reaction continued to stir. At time = 29 h the reaction was purified *via* reverse phase preparative HPLC (0% B for 5 minutes, then 15% B for 3 minutes, then 15% – 60% B, over 20 minutes) to afford peptide macrocycle **10** (4.38 mg, 63%) as a white solid after lyophilisation. ¹H NMR (700 MHz, MeOD) δ 7.98 (t, *J* = 7.8 Hz, 1H), 7.52 (dd, *J* = 7.8, 2.8 Hz, 2H), 4.56 (s, 2H), 4.51 – 4.47 (m, 2H), 4.46 – 4.41 (m, 2H), 4.31 – 4.23 (m, 2H), 4.17 – 4.08 (m, 1H), 4.05 – 3.98 (m, 2H), 3.96 – 3.83 (m, 3H), 3.72 – 3.68 (m, 1H), 3.62 – 3.57 (m, 1H), 3.18 – 3.13 (m, 2H), 2.28 – 2.22 (m, 1H), 2.06 – 2.04 (m, 2H), 1.94 (app s, 2H), 1.89 – 1.85 (m, 1H), 1.83 – 1.78 (m, 2H), 1.69 – 1.62 (m, 3H), 1.58 – 1.53 (m, 1H), 1.48 – 1.43 (m, 1H), 1.35 (d, *J* = 7.1 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.93 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (176 MHz, MeOD) δ 176.6, 175.6, 175.1, 175.1, 172.0, 170.0, 167.3, 152.6, 152.1, 140.6, 124.2, 124.1, 62.3, 54.4, 53.7, 51.6, 51.4, 51.2, 49.5, 49.4, 47.9, 44.0, 42.8, 41.0, 32.2, 30.6, 26.3, 26.0, 25.9, 23.6, 23.2, 22.3, 16.8. HRMS (ESI-TOF): calc'd C₃₃H₅₃N₁₀O₇ [M+H]⁺ 701.4099; found 701.4083. UPLC trace:

Purified peptide 10 (Rt = 7.0 min, 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm).

Macrocyclic peptide **11** was prepared according to general procedure B from linear peptide **SI-1** (3.22 mg, 4.5 µmol). At time = 24 h, an additional 2.0 equiv. of dialdehyde **1** was added, and the reaction continued to stir. At time = 30 h the reaction was purified *via* reverse phase preparative HPLC (10% B for 3 minutes, then 10% - 60% B, over 20 minutes) to afford peptide macrocycle **11** (1.95 mg, 53%) as a white solid after lyophilisation. ¹H NMR (400 MHz, MeOD) δ 7.97 (t, *J* = 7.8 Hz, 1H), 7.53 – 7.46 (m, 2H), 4.78 – 4.70 (m, 1H), 4.68 – 4.61 (m, 2H), 4.59 – 4.53 (m, 1H), 4.50 – 4.45 (m, 1H), 4.44 – 4.36 (m, 1H), 4.32 – 4.28 (m, 2H), 3.86 – 3.71 (m, 2H), 3.24 – 3.15 (m, 1H), 2.87 – 2.63 (m, 5H), 2.42 – 2.27 (m, 2H), 2.20 (s, 3H), 2.17 – 2.13 (m, 2H), 2.10 – 2.03 (m, 2H), 1.98 – 1.86 (m, 2H), 1.81 – 1.67 (m, 2H), 1.59 – 1.45 (m, 2H). HRMS (ESI-TOF): calc'd C₂₇H₄₃N₈O₅S [M+H]⁺ 591.3077; found 591.3079. UPLC trace:

Purified peptide **11** (Rt = 4.1 min, 10% B for 1 min, then 10% to 60% B over 10 min, $\lambda = 262$ nm).

Macrocyclic peptide **12** was prepared according to general procedure B from linear peptide **SI-2** (6.35 mg, 5.0 µmol). At time = 24 h, an additional 2.0 equiv. of dialdehyde **1** was added, and the reaction continued to stir. At time = 32 h the reaction was purified *via* reverse phase preparative HPLC (0% B for 5 minutes, then 20% B for 3 minutes, then 20% – 60% B, over 20 minutes) to afford peptide macrocycle **12** (1.57 mg, 23%) as a white solid after lyophilisation. ¹H NMR (700 MHz, MeOD) δ 7.95 (t, *J* = 7.8 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.12 – 7.04 (m, 2H), 6.71 – 6.63 (m, 2H), 4.76 (dd, *J* = 10.3, 5.4 Hz, 1H), 4.57 (d, *J* = 3.6 Hz, 1H), 4.52 – 4.47 (m, 2H), 4.47 – 4.41 (m, 2H), 4.30 – 4.25 (m, 2H), 4.24 – 4.21 (m, 1H), 4.19 – 4.14 (m, 2H), 4.12 – 4.08 (m, 1H), 4.04 (q, *J* = 7.0 Hz, 1H), 3.91 (d, *J* = 14.4 Hz, 1H), 3.21 – 3.17 (m, 3H), 2.89 – 2.83 (m, 3H), 2.52 – 2.41 (m, 5H), 2.27 – 2.20 (m, 1H), 2.14 – 2.07 (m, 2H), 2.02 – 1.95 (m, 2H), 1.89 – 1.77 (m, 4H), 1.71 – 1.64 (m, 2H), 1.62 (d, *J* = 7.1 Hz, 3H), 1.57 – 1.55 (m, 1H), 1.49 (d, *J* = 7.4 Hz, 3H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.00 (d, *J* = 6.6 Hz, 3H), 0.95 (d, *J* = 6.6 Hz, 3H). HRMS (ESI-TOF): calc'd C₅₂H₇₈N₁₃O₁₆ [M+H]⁺ 1140.5689; found 1140.5686. UPLC trace:

Purified peptide **12** (Rt = 6.7 min, 10% B for 1 min, then 10% to 60% B over 10 min, $\lambda = 230$ nm).

Macrocyclic peptide **13** was prepared according to general procedure B from linear peptide **SI-3** (3.46 mg, 3.5 µmol). At time = 24 h, an additional 1.5 equiv. of dialdehyde **1** was added, and the reaction continued to stir. At time = 48 h the reaction was purified *via* reverse phase preparative HPLC (20% B for 3 minutes, then 20% – 60% B, over 20 minutes) to afford peptide macrocycle **13** (2.47 mg, 65%) as a fluffy white solid. ¹**H NMR** (700 MHz, MeOD) δ 7.97 (t, *J* = 7.8 Hz, 1H), 7.54 – 7.46 (m, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.17 (m, 3H), 4.55 – 4.51 (m, 1H), 4.50 – 4.46 (m, 3H), 4.45 (s, 2H), 4.40 – 4.35 (m, 1H), 4.30 – 4.26 (m, 1H), 4.20 – 4.16 (m, 1H), 3.85 (d, *J* = 1.5 Hz, 2H), 3.19 – 3.13 (m, 4H), 3.13 – 3.08 (m, 1H), 2.98 (dd, *J* = 14.0, 9.4 Hz, 1H), 2.76 – 2.69 (m, 2H), 1.96 (s, 3H), 1.95 – 1.92 (m, 1H), 1.85 – 1.76 (m, 5H), 1.73 – 1.68 (m, 4H), 1.65 – 1.60 (m, 1H), 1.59 – 1.54 (m, 1H), 1.51 – 1.44 (m, 1H), 1.41 – 1.34 (m, 2H), 0.95 (d, *J* = 6.3 Hz, 3H), 0.91 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (176 MHz, MeOD) δ 175.2, 174.8, 174.6, 174.3, 174.0, 174.0, 173.9, 173.6, 152.7, 152.6, 140.4, 138.4, 130.3, 129.6, 127.9, 124.1, 124.1, 56.9, 55.3, 54.4, 54.3, 52.4, 51.6, 51.6, 51.3, 51.2, 49.5, 49.4, 43.1, 40.8, 37.5, 37.2, 32.0, 31.8, 26.5, 26.3, 25.9, 23.5, 23.5, 23.3, 22.5, 21.7. HRMS (ESI-TOF): calc'd C₄₂H₆₄N₁₁O₈ [M+H]⁺ 850.4939; found 850.4942. UPLC trace:

Purified peptide **13** (Rt 9.2 min, 5% B for 1 min, then 5% to 60% B over 10 min, $\lambda = 210$ nm).

Macrocyclic peptide **14** was prepared according to general procedure B from linear peptide **SI-4** (5.06 mg, 4.5 µmol). At time = 22 h the reaction was purified *via* reverse phase preparative HPLC (0% B for 5 minutes, then 20% B for 3 minutes, then 20% – 80% B, over 20 minutes) to afford peptide macrocycle **14** (1.92 mg, 36%) as a white fluffy solid after lyophilisation. ¹**H NMR** (700 MHz, MeOD) δ 8.76 (s, 1H), 7.83 (t, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.39 (dd, *J* = 17.2, 8.0 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.24 (m, 5H), 7.19 – 7.16 (m, 1H), 7.14 (s, 1H), 7.09 (t, *J* = 7.3 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.45 (d, *J* = 8.0 Hz, 2H), 4.48 – 4.39 (m, 4H), 4.38 – 4.32 (m, 3H), 4.29 (dd, *J* = 16.9, 8.9 Hz, 2H), 4.26 – 4.22 (m, 2H), 4.16 – 4.10 (m, 3H), 4.09 – 4.00 (m, 2H), 3.96 (dd, *J* = 11.7, 6.7 Hz, 1H), 3.87 (dd, *J* = 13.9, 7.8 Hz, 2H), 2.88 (dd, *J* = 16.5, 9.4 Hz, 1H), 2.71 – 2.65 (m, 1H), 2.12 (s, 3H), 2.08 – 1.85 (m, 7H), 1.85 – 1.75 (m, 5H), 1.74 – 1.66 (m, 3H), 1.63 – 1.55 (m, 6H), 1.53 – 1.48 (m, 2H), 1.46 (d, *J* = 7.3 Hz, 3H), 1.18 (d, *J* = 6.1 Hz, 3H), 0.99 (d, *J* = 6.5 Hz, 3H), 0.93 (d, *J* = 6.5 Hz, 3H), 0.77 (d, *J* = 6.5 Hz, 3H), 0.68 (d, *J* = 6.5 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₈₂H₁₁₅N₂₀O₁₇ [M+H]⁺ 1651.8749; found 1651.8778. **UPLC Trace:**

Purified peptide **14** (Rt = 5.3 min, 20% B for 1 min, then 20% to 80% B over 10 min, $\lambda = 210$ nm).

Macrocyclic peptide **15** was prepared according to general procedure B from linear peptide **SI-5** (6.20 mg, 6.96 µmol). At time = 24 h, an additional 1.5 equiv. of dialdehyde **1** was added, and the reaction continued to stir. At time = 46 h the reaction was purified *via* reverse phase preparative HPLC (0% B for 5 minutes, then 20% B for 3 minutes, then 20% – 60% B, over 20 minutes) to afford peptide macrocycle **15** (2.69 mg, 39%) as a fluffy white solid. ¹H **NMR** (700 MHz, MeOD) δ 7.99 (t, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.33 – 7.22 (m, 5H), 5.16 (d, *J* = 9.4 Hz, 1H), 4.81 – 4.79 (m, 1H), 4.73 (d, *J* = 15.6 Hz, 1H), 4.52 – 4.46 (m, 3H), 4.44 (t, J = 5.6 Hz, 1H), 4.35 – 4.30 (m, 1H), 4.10 – 4.06 (m, 1H), 3.91 (s, 2H), 3.73 (dd, *J* = 13.4, 4.4 Hz, 1H), 3.64 – 3.60 (m, 1H), 3.48 – 3.42 (m, 1H), 3.22 – 3.19 (m, 1H), 3.02 – 2.98 (m, 1H), 2.74 – 2.70 (m, 2H), 1.89 (s, 3H), 1.70 – 1.55 (m, 4H), 0.91 – 0.89 (m, 6H). **HRMS (ESI-TOF):** calc'd C₃₆H₅₂N₁₁O₈ [M+H]⁺ 766.4004; found 766.4004. **UPLC trace:**

Purified peptide 15 (Rt = 8.9 min, 5% B for 1 min, then 5% to 40% B over 10 min, λ = 262 nm).

Macrocyclic peptide **16** was prepared according to general procedure B from linear peptide **SI-6** (4.98 mg, 5.3 µmol). At time = 24 h, an additional 1.0 equiv. of dialdehyde **1** was added, and the reaction continued to stir. At time = 30 h the reaction was purified *via* reverse phase preparative HPLC (0% B for 5 minutes, then 20% B for 3 minutes, then 20% – 60% B, over 20 minutes) to afford peptide macrocycle **16** (2.30 mg, 42%) as a fluffy white solid. ¹H **NMR** (700 MHz, MeOD) δ 7.96 (t, *J* = 7.8 Hz, 1H), 7.55 – 7.42 (m, 2H), 7.33 – 7.27 (m, 2H), 7.26 – 7.18 (m, 3H), 4.64 – 4.59 (m, 1H), 4.50 – 4.47 (m, 2H), 4.46 – 4.43 (m, 4H), 4.29 (dd, *J* = 10.6, 4.5 Hz, 1H), 4.17 – 4.13 (m, 1H), 3.85 (d, *J* = 0.9 Hz, 2H), 3.20 – 3.14 (m, 4H), 3.10 – 3.06 (m, 1H), 3.01 – 2.98 (m, 1H), 2.79 – 2.72 (m, 2H), 2.02 – 1.97 (m, 1H), 1.95 (s, 3H), 1.93 – 1.85 (m, 2H), 1.83 – 1.76 (m, 5H), 1.72 – 1.63 (m, 3H), 0.95 (d, *J* = 6.5 Hz, 3H), 0.92 (d, *J* = 6.4 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₄₀H₆₀N₁₁O₈ [M+H]⁺ 822.4626; found 822.4626. **UPLC trace:**

Purified peptide 16 (Rt = 9.0 min, 5% B for 1 min, then 5% to 40% B over 10 min, λ = 210 nm).

Macrocyclic alkynyl peptide **17** was prepared according to general procedure B from linear peptide **SI-6** (7.00 mg, 7.4 µmol). At time = 20 h the reaction was purified *via* reverse phase preparative HPLC (0% B for 5 minutes, then 10% B for 3 minutes, then 10% – 60% B, over 20 minutes) to afford peptide macrocycle **17** (2.57 mg, 31%) as a white solid. ¹H **NMR** (700 MHz, MeOD) δ 7.32 – 7.27 (m, 2H), 7.26 – 7.21 (m, 3H), 7.16 – 7.13 (m, 1H), 7.13 – 7.11 (m, 1H), 4.92 (d, *J* = 2.3 Hz, 2H), 4.64 – 4.60 (m, 1H), 4.52 – 4.47 (m, 1H), 4.44 (dd, *J* = 9.0, 3.9 Hz, 1H), 4.42 – 4.39 (m, 2H), 4.37 (s, 2H), 4.30 – 4.26 (m, 1H), 4.17 – 4.12 (m, 1H), 3.85 (s, 2H), 3.22 – 3.12 (m, 5H), 3.08 – 3.04 (m, 1H), 3.01 – 2.97 (m, 1H), 2.78 – 2.72 (m, 2H), 2.00 – 1.96 (m, 1H), 1.95 (s, 3H), 1.92 – 1.85 (m, 2H), 1.83 – 1.74 (m, 5H), 1.71 – 1.64 (m, 3H), 0.96 (d, *J* = 6.5 Hz, 3H), 0.92 (d, *J* = 6.4 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₄₃H₆₂N₁₁O₉ [M+H]⁺ 876.4733; found 876.4732.

Purified peptide 17 (Rt = 9.6 min, 5% B for 1 min, then 5% to 40% B over 10 min, $\lambda = 210$ nm).

Macrocyclic azido peptide **18** was prepared according to general procedure B using 50/50 borate buffer/CH₃CN (v/v) from linear peptide **SI-6** (10.00 mg, 10.6 µmol). At time = 22 h the reaction was purified *via* reverse phase preparative HPLC (20% B for 3 minutes, then 20% – 80% B over 20 minutes) to afford peptide macrocycle **18** (6.25 mg, 51%) as a white solid. 2.22 mg (22%) of starting material **SI-6** was also recovered. ¹**H NMR** (700 MHz, MeOD) δ 7.32 – 7.27 (m, 2H), 7.25 – 7.20 (m, 3H), 7.07 – 7.03 (m, 2H), 4.59 (t, *J* = 6.5 Hz, 1H), 4.47 (dd, *J* = 9.1, 5.8 Hz, 1H), 4.43 (dd, *J* = 9.5, 4.3 Hz, 1H), 4.40 – 4.37 (m, 1H), 4.36 – 4.34 (m, 3H), 4.31 – 4.27 (m, 1H), 4.17 (t, *J* = 6.2 Hz, 2H), 4.15 – 4.11 (m, 1H), 3.85 (d, *J* = 3.4 Hz, 2H), 3.38 (t, *J* = 6.7 Hz, 2H), 3.20 – 3.11 (m, 4H), 3.09 – 3.04 (m, 1H), 3.00 (dd, *J* = 14.1, 9.1 Hz, 1H), 2.76 – 2.74 (m, 2H), 2.00 – 1.96 (m, 1H), 1.95 (s, 3H), 1.93 – 1.87 (m, 4H), 1.82 – 1.76 (m, 7H), 1.73 – 1.68 (m, 2H), 1.66 – 1.62 (m, 1H), 0.95 (d, *J* = 6.5 Hz, 3H), 0.91 (d, *J* = 6.4 Hz, 3H). **HRMS (ESI-TOF):** calc'd C₄₄H₆₇N₁₄O₉ [M+H]⁺ 935.5215; found 935.5221. **UPLC trace:**

Purified peptide **18** (Rt = 6.8 min, 5% B for 1 min, then 5% to 60% B over 10 min, $\lambda = 210$ nm).

Bis-macrocyclic triazole peptide 19 was prepared via procedures adapted from Finn and coworkers.⁴ Peptide 17 (2.0 mg, 1.8 µmol, 1.0 equiv.) and peptide 18 (3.0 mg, 2.6 µmol, 1.5 equiv.) were dissolved in phosphate buffer (100 mM, pH 7). To this was added sodium ascorbate (10 equiv., 100 mM in water), aminoguanidine (10 equiv., 100 mM in water), CuSO₄ (0.5 equiv., 20 mM in water) and THPTA (0.5 equiv., 50 mM in water) to afford a solution with a final concentration of 2.0 mM with respect to the alkynyl peptide. The solution was capped and magnetically stirred for 24 h and subsequently purified via reverse phase preparative HPLC (5% B for 3 minutes, then 5% - 60% B over 40 minutes) to afford the bismacrocyclic triazole peptide 19 (3.04 mg, 74%) as a fluffy light yellow solid. Cyclic azido peptide starting material **18** was recovered (0.56 mg, 18%). ¹**H NMR** (700 MHz, MeOD) δ 8.18 (s, 1H), 7.32 – 7.26 (m, 4H), 7.26 – 7.21 (m, 6H), 7.20 – 7.16 (m, 2H), 7.07 – 7.03 (m, 2H), 5.33 (s, 2H), 4.64 – 4.59 (m, 2H), 4.52 (t, J = 7.0 Hz, 2H), 4.50 – 4.47 (m, 2H), 4.44 – 4.41 (m, 2H), 4.39 - 4.34 (m, 8H), 4.30 - 4.27 (m, 2H), 4.18 (t, J = 6.3 Hz, 2H), 4.16 - 4.13(m, 2H), 3.85 (d, J = 2.0 Hz, 4H), 3.21 - 3.18 (m, 2H), 3.16 - 3.12 (m, 6H), 3.08 - 3.04 (m, 2H), 3.01 – 2.97 (m, 2H), 2.78 – 2.72 (m, 4H), 2.12 – 2.09 (m, 2H), 1.99 – 1.97 (m, 2H), 1.95 (s, 6H), 1.91 – 1.87 (m, 2H), 1.85 – 1.82 (m, 4H), 1.80 – 1.77 (m, 6H), 1.76 – 1.74 (m, 2H), 1.70 - 1.68 (m, 3H), 1.67 - 1.63 (m, 3H), 1.30 - 1.28 (m, 2H), 0.95 (dd, J = 6.5, 1.5 Hz, 6H), 0.92 (dd, J = 6.4, 1.5 Hz, 6H). HRMS (ESI-TOF): calc'd C₈₇H₁₂₉N₂₅O₁₈ [M+2H]²⁺ 905.9974; found 905.9964 UPLC trace:

Purified peptide **19** (Rt = 5.8 min, 5% B for 1 min, then 5% to 60% B over 10 min, λ = 210 nm).

References

- 1. B. J. Timmer, M. A. Flos, L. M. Jorgensen, D. Proverbio, S. Altun, O. Ramstrom, T. Aastrup and S. P. Vincent, *Chem. Commun.*, 2016, **52**, 12326-12329.
- 2. L. R. Malins, J. N. deGruyter, K. J. Robbins, P. M. Scola, M. D. Eastgate, M. R. Ghadiri and P. S. Baran, *J. Am. Chem. Soc.*, 2017, **139**, 5233-5241.
- 3. P. Botti, T. D. Pallin and J. P. Tam, J. Am. Chem. Soc., 1996, **118**, 10018-10024.
- 4. V. Hong, S. I. Presolski, C. Ma and M. G. Finn, *Angew. Chem. Int. Ed.*, 2009, **48**, 9879-9883.

f1 (ppm)

