Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Direct oxidation of bromo-derived Fischer-Borsche oxo-ring using molecular

iodine with combined experimental and computational study

Vivek T. Humne,^{a†} Monica H. Ghom,^b Mahavir S. Naykode,^b Yuvraj Dangat,^c Kumar Vanka^c

Pradeep Lokhande^b

^aDepartment of Chemistry, Shri R. R. Lahoti Science College, Morshi, India

^bDepartment of Chemistry, Savitribai Phule Pune University, Pune, 411007, India

^cDivision of Physical Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India

E-mail: vivekhumne2013@gmail.com

Table of Contents

General Information	2
General method for the preparation of substituted 1-oxo-2-Bromo- tetrahydrocarbazoles	2
Representative procedure for the synthesis of Carbazolo-1,4-quinone by molecular iodine.	6
Isotope Labeling Experiment	10
Computational Details	12
References	14
Spectral data	29

General Information

The NMR experiments were performed with 300 MHz, 400 MHz and 500 MHz spectrometer, and chemical shifts are expressed in ppm (δ) with TMS as an internal reference. *J* values are given in hertz. The ¹H and ¹³C NMR spectra are referenced to the residual solvent signals (7.26 ppm for ¹H and 77.0 ppm for ¹³C in CDCl₃, 2.50 ppm for ¹H and 39.9 ppm for ¹³C in DMSO-*d*₆). TOF and quadruple mass analyzer types were used for the HRMS measurements. Column chromatography was performed on silica gel (100–200 mesh) in glass columns to purify the compounds and visualized with UV light (254 nm), PMA and DNP stain. Commercially available reagents and solvents were used without further purification and were purchased.

(a) General method for the preparation of substituted 1-oxo-2-Bromotetrahydrocarbazoles (2):

In a 100 mL round bottom flask, copper (II) bromide, $CuBr_2$ (2.17 mmol) was dissolved in ethylacetate (20 mL) and chloroform (20 mL). To this reaction mixture, 1oxotetrahydrocarbazole (1.08 mmol) was added and stirred at 120 °C for 6 h. The process of the reaction was monitored by TLC. After completion of the reaction, filter the reaction mixture in hot condition. The mother liquor diluted with ethylacetate, washed with H₂O, dried over Na₂SO₄ and evaporated. The residue was purified by column chromatography (ethylacetate:hexame: : 2:8).

1-oxo-2-bromo-tetrahydrocarbazole (2a): Yield: 194 mg (68 %); mp 139-142 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.78 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.43 – 7.29 (m, 2H), 7.10 (t, J = t 8.5 Hz, 1H), 4.94 (t, J = 13.2 Hz, 1H), 3.06 – 2.91 (m, 2H), 2.63 – 2.49 (m, 2H); ¹³C NMR (75 MHz, DMSO- d_6): 189.3, 127.0, 126.9, 124.4, 124.2, 120.7, 120.1, 119.9, 112.6, 67.8, 47.5, 21.3; HRMS (ESI-qTOF) Calcd for C₁₂H₁₀BrNO [M+H]⁺, 263.9946, Found 263.0037.

1-oxo-2-bromo- 6-cyano-tetrahydrocarbazole (2b): Yield: 194 mg (70 %); mp 167-169 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 12.38 (s, 1H), 8.29 (s, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 4.94 (t, J = 13.2 Hz, 1H), 3.06 – 2.91 (m, 2H), 2.63 – 2.49 (m, 2H); ¹³C NMR (75 MHz, DMSO- d_6): 183.6, 139.9, 130.0, 129.2, 128.0, 126.0, 124.5, 120.5, 114.0, 112.6, 67.8, 47.5, 21.3; HRMS (ESI) m/z = [M + H]⁺ Calcd for C₁₃H₉BrN₂O 288.9898, Found 288.9789.

1-oxo-2-bromo-tetrahydrocarbazole-6-methylcarboxylate (2c): Yield: 173 mg (65 %); mp 140-142 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.03 (s, 1H), 8.32 (s, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 4.34 (d, *J* = 7.5 Hz, 1H), 3.83 (s, 3H), 3.49-2.91 (m, 2H), 2.47-2.06 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆): 187.6, 166.0, 147.9, 133.8, 129.7, 123.7, 122.1, 121.8, 113.6, 111.0, 53.9, 51.5, 34.2, 21.2; HRMS (ESI-qTOF) Calcd for C₁₄H₁₂BrNO₃ [M+H]⁺, 322.0073, Found 322.0103.

1-oxo-2-bromo-6-chloro-tetrahydrocarbazole (2d): Yield: 184 mg (67 %); mp 182-185 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.76 (s, 1H), 7.67 (s, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 8.2 Hz, 1H), 4.84 (t, J = 13.1 Hz, 1H), 2.97-2.89 (m, 2H), 2.62 – 2.45 (m, 2H); ¹³C NMR (75 MHz, DMSO- d_6): 190.1, 136.3, 132.0, 126.5, 126.1, 124.0, 120.1, 114.3, 112.6, 67.8, 47.5, 21.3; HRMS (ESI-qTOF) Calcd for C₁₂H₉BrClNO [M+H]⁺, 297.9556, Found 297.8769.

1-oxo-2-bromo-3-methyl-tetrahydrocarbazole (2e): Yield: 188 mg (67%); mp 131-134 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.32 (s, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.37 (t, J = 6.6 Hz, 1H), 7.15 (t, J = 7.2 Hz, 1H), 4.83 (d, J = 6.3 Hz, 1H), 3.20-2.46 (m, 3H), 1.15 (d, J = 4.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 189.9, 137.7, 130.4, 127.3, 125.4, 124.6, 120.1, 118.9, 112.1, 45.8, 32.1, 28.8, 29.6; HRMS (ESI-qTOF) Calcd for C₁₃H₁₂BrNO [M + H]⁺ 278.0102, Found 278.1058.

1-oxo-2-bromo-3,6-dimethyl-tetrahydrocarbazole (2f): Yield: 188 mg (68 %); decomposed > 173 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.41 (s, 1H), 7.36 (s, 1H), 7.26 (d, J = 8.1 Hz, 1H), 7.09 (d, J = 8.1 Hz, 1H), 4.81 (d, J = 1.8 Hz, 1H), 3.15 (s, 3H), 3.02-2.95 (m, 1H), 2.57 (d, J = 13.5 Hz, 2H), 1.08 (d, J = 5.1 Hz, 3H); ¹³C NMR (75 MHz, DMSO- d_6): 190.0, 136.6, 131.0, 128.3, 128.0, 126.9, 125.3, 120.3, 112.7, 58.8, 32.5, 29.1, 21.2, 21.0; HRMS (ESI-qTOF) Calcd for C₁₄H₁₄BrNO[M+H]⁺ 292.0259, Found 292.0319.

1-oxo-2-bromo-3-methyl-6-cyano-tetrahydrocarbazole (2g): Yield: 193 mg (71 %); mp 197-199 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 12.38 (s, 1H), 8.29 (s, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 4.83 (d, J = 6.3 Hz, 1H), 3.20-2.46 (m, 3H), 1.15 (d, J = 4.2 Hz, 3H); ¹³C NMR (75 MHz, DMSO- d_6): 183.6, 139.9, 130.0, 129.2, 128.0, 126.0, 124.5, 120.5, 114.0, 102.2, 60.1, 36.1, 26.1, 19.1; HRMS (ESI-qTOF) Calcd for C₁₄H₁₁BrN₂O [M + H]⁺ 303.0055, Found 303.0199.

1-oxo-2-bromo-3-methyl-tetrahydrocarbazole-6-methylcarboxylate (2h): Yield: 189 mg (72 %); mp 286-288 °C; ¹H NMR (300 MHz, CDCl₃): δ 11.41 (s, 1H), 8.41 (s, 1H), 7.98 (d, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 4.52 (d, *J* = 6.5 Hz, 1H), 3.93 (s, 3H), 3.43-2.42 (m, 3H); 1.31 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 183.6, 167.0, 141.1, 129.2, 127.2, 124.8, 124.1, 121.9, 115.4, 112.5, 58.9, 51.5, 36.8, 25.8, 19.0: HRMS (ESI-qTOF) Calcd for C₁₅H₁₄BrNO₃[M + H]⁺ 336.0157, Found 336.1218.

1-oxo-2-bromo-6-chloro-3-methyl- tetrahydrocarbazole (2i): Yield: 183 mg (68 %); mp 167-170 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 11.76 (s, 1H), 7.67 (s, 1H), 7.37 (d, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 8.1 Hz, 1H), 4.84 (s, 1H), 2.97 (d, *J* = 15.5 Hz, 1H), 2.48-2.35 (m, 2H), 1.09 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): 190.1, 136.3, 132.0, 126.5, 126.1, 126.0, 124.0, 120.1, 114.3, 59.3, 32.2, 28.7, 20.9; HRMS (ESI-qTOF) Calcd for C₁₃H₁₁BrClNO [M+H]+, 311.9713, Found 311.9002.

1-oxo-2,6-dibromo-3-methyl-tetradrocarbazole (2j): Yield: 175 mg (68 %); mp 186-188 °C; ¹H NMR (300 MHz, DMSO- d_6): δ 11.59 (s, 1H), 7.66 (s, 1H), 7.03-6.92 (m, 2H), 4.87 (bs, 1H), 3.11-2.81 (m, 1H), 2.48-2.33 (m, 2H), 0.56 (d, J = 3.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO- d_6): 190.3, 139.2, 132.6, 127.8, 127.4, 124.8, 120.0, 113.9, 101.7, 59.1, 32.1, 28.6, 20.9; HRMS (ESI) m/z =[M+H]⁺ Calcd for C₁₃H₁₁Br₂NO 357.9187, Found 357.8265.

1-oxo-2-bromo-3-methyl-6,8-dichloro-tetrahydrocarbazole (2k): Yield: 197 mg (76 %); mp 169-172 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.4 (s, 1H), 7.79 (s, 1H), 7.50 (s, 1H), 4.74 (bs, 1H), 3.03 – 2.94 (m, 2H), 2.49 – 2.39 (m, 1H) 1.17 (d, *J* = 3.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): 188.7, 139.5, 135.2, 133.1, 131.9, 130.9, 129.8, 124.8, 123.4, 65.4, 41.2, 30.6, 23.9; HRMS (ESI-qTOF) Calcd for C₁₃H₁₀BrCl₂NO [M + H]⁺ 345. 9323, Found 345.9405.

N-Propyl-1-oxo-2-bromo-3-methyl-tetrahydrocarbazole (2l): Yield:184 mg (69%) ; ¹H NMR (400 MHz, DMSO- d_6): δ 8.19 (d, J = 2.8 Hz, 1H), 7.81 (d, J = 9.2 Hz, 1H), 7.72-7.65 (m, 1H), 7.58 (d, J = 8.8 Hz, 1H), 4.83 – 4.53 (m, 3H), 3.20 – 2.46 (m, 3H), 1.78 – 1.61 (m, 5H), 0.85 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, DMSO- d_6): δ 183.19, 180.81, 147.47, 137.53, 133.28, 129.43, 124.60, 117.51, 115.41, 46.3, 45.8, 32.1, 29.6, 28.8, 23.3, 15.6; HRMS (ESI-qTOF) Calcd for C₁₆H₁₈BrNO [M+H]⁺, 320.0572: found 320.1142.

N-Propyl-1-oxo-2-bromo-tetrahydrocarbazole (2m): Yield: 179 mg (66 %); mp 123-125 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.69 (d, *J* = 8.0 Hz, 1H), 7.43 – 7.29 (m, 2H), 7.10 (t, *J* = 8.5 Hz, 1H), 4.94 (m, 3H), 3.06 – 2.91 (m, 2H), 2.63 – 2.49 (m, 4H), 0.85 (t, *J* = 6.8 Hz, 3H);¹³C NMR (75 MHz, DMSO-*d*₆): 189.3, 127.0, 126.9, 124.4, 124.2, 120.7, 120.1, 119.9, 112.6, 67.8,

5

46.3, 45.8, 32.1, 29.6, 23.3; HRMS (ESI-qTOF) Calcd for C₁₅H₁₆BrNO [M+H]⁺, 306.0415, Found 306.1105.

N-Benzyl-1-oxo-2-bromo-tetrahydrocarbazole (2n): 168 mg (65%) ; mp 137-140 °C; ¹H NMR (400 MHz, DMSO- *d₆*): δ 8.07 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.44-7.33 (m, 2H), 7.27-7.20 (m, 3H), 7.16 (d, *J* = 7.2 Hz, 2H), 5.86 (s, 2H), 4.94 (t, *J* = 13.2 Hz, 1H), 3.06 – 2.91 (m, 2H), 2.63 – 2.49 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d₆*): δ 181.20, 173.14, 140.98, 140.22, 139.47, 139.27, 137.16, 136.71, 129.18, 129.09, 128.07, 127.93, 125.51, 48.15, 67.8, 47.5, 21.3; HRMS (ESI-qTOF) Calcd for C₁₉H₁₆BrNO [M+H]⁺, 354.0415: found 354.1015.

N-Methyl-1-oxo-2-bromo-tetrahydrocarbazole (2o): Yield: 168 mg (60%); mp 111-115 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.69 (d, *J* = 8.0 Hz, 1H), 7.43 -7.29 (m, 2H), 7.10 (t, *J* = 8.5 Hz, 1H), 4.94 (t, *J* = 13.2 Hz, 1H), 3.06 - 2.91 (m, 2H), 2.63 - 2.49 (m, 2H); 1.82 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): 189.3, 127.0, 126.9, 124.4, 124.2, 120.7, 120.1, 119.9, 112.6, 67.8, 47.5, 25.6, 21.3; HRMS (ESI-qTOF) Calcd for C₁₃H₁₂BrNO [M+H]⁺, 278.0102, Found 278.1061.

(b) Representative procedure for the synthesis of Carbazolo-1,4-quinone by molecular iodine(3):

A mixture of molecular iodine (0.757 mmol) and substituted 2-bromo-1-oxo-tetrahydrocabazole **2** (0.757 mmol) in DMSO (5 mL) was stirred at 100 °C for appropriate time. The progress of reaction was monitored by thin layer chromatography. The reaction mixture was poured in ice cold saturated solution of sodium thiosulphate and kept at 0 °C for overnight. The solid product was separated out. The crude product was purified by column chromatography using *n*-hexane /ethyl acetate as eluent to afford carbazolo-1,4-quinone (**3**).

Carbazolo-1,4-quinone (3a)¹: 86 mg (58%) as a red solid; mp: 138-140 °C; ¹H NMR (400 MHz, DMSO- *d*₆): δ 12.01 (s, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 1H), 7.50 – 7.41 (m, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 6.26 (s, 2H); ¹³C NMR (101 MHz, DMSO- *d*₆): δ 187.6, 180.8, 152.7, 139.4, 132.9, 127.4, 126.0, 124.8, 123.0, 122.6, 116.9, 112.7; HRMS (ESI-qTOF) Calcd for C₁₂H₇NO₂ [M+H]⁺, 198.0477: found 198.1544.

6-cyno-carbazolo-1,4-quinone (3b): 100 mg (65%) as a red solid; mp: 197-199 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.13 (s, 1H), 8.26 (s, 1H), 7.59 (d, *J* = 8.6 Hz, 1H), 7.53 (d, *J* = 8.6 Hz, 1H), 6.45 (s, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 191.3, 183.4, 139.6, 136.0, 133.3, 129.2, 128.4, 128.0, 125.5, 120.5, 114.5, 109.0, 102.3; HRMS (ESI-qTOF) Calcd for C₁₃H₆N₂O₂ [M+H]⁺, 223.0429: found 223.0505.

6-Methylcarboxylate-carbazolo-1,4-quinone (3c): 107 mg (68%) as an orange solid; mp: 185-187 °C; mp: decomposed >245 °C; ¹H NMR (300 MHz, DMSO- *d*₆): δ 12.03 (s, 1H), 8.33 (s, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.7 Hz, 1H), 6.95 (s, 2H), 3.84 (s, 3H); ¹³C NMR (75 MHz, DMSO- *d*₆): δ 192.3, 183.0, 167.1, 141.2, 139.0, 138.9, 132.2, 129.5, 126.8, 125.1, 124.40, 121.7, 113.3, 52.3; HRMS (ESI-qTOF) Calcd for C₁₄H₉NO₄ [M+H]⁺, 256.0532: found 256.0608. **6-Chloro-carbazolo-1,4-quinone (3d)**^{1a}: 94 mg (61%) as a red solid; mp: decomposed >245 °C; ¹H NMR (500 MHz, DMSO- *d*₆): δ 11.99 (s, 1H), 8.32 (s, 1H), 7.84 (d, J = 6.5 Hz, 1H), 7.43 (d, J = 9.0 Hz, 1H), 6.79 (s, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆): δ 185.6, 180.2, 139.2, 137.3, 129.6, 127.2, 126.7, 125.0, 121.8, 121.0, 116.1, 115.0; HRMS (ESI-qTOF) Calcd for C₁₂H₆CINO₂ [M+H]⁺, 232.0087: found 232.0162.

Murrayaquinone (3e)^{1, 2}: 138 mg (91%) as a red solid; mp: 236-239 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.80 (s, 1H), 8.02 (d, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.39-7.27 (m, 2H), 6.57 (s, 1H), 2.04 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 183.2, 180.2, 148.4, 136.8,

136.6, 134.6, 132.2, 130.2, 126.1, 116.5, 116.1, 114.6, 16.0; HRMS (ESI-qTOF) Calcd for C₁₃H₉NO₂ [M+H]⁺, 212.0633: found 212.0711.

3,6-Dimethyl-carbazolo-1,4-quinone (3f)^{1a, 2}: 120 mg (78%) as a red solid; mp: 228-230 °C; ¹H NMR (300 MHz, DMSO- *d₆*): δ 12.54 (s, 1H), 7.67 (s, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.10 (d, *J* = 8.7 Hz, 1H), 6.53 (s, 1H), 1.84 (s, 6H); ¹³C NMR (75 MHz, DMSO-*d₆*): δ 180.1, 167.5, 149.9, 140.9, 139.2, 135.9, 133.6, 131.9, 128.9, 124.1, 121.1, 116.2, 21.5, 19.1; HRMS (ESI-qTOF) Calcd for C₁₄H₁₁NO₂ [M+H]⁺, 226.0790: found 226.0864.

3-Methyl-6-cyno-carbazolo-1,4-quinone (3g): 137 mg (88%) as an orange solid; mp: 181-184 °C; ¹H NMR (500 MHz, CDCl₃): δ 12.70 (s, 1H), 8.41(s, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 7.41 (d, *J* = 9.0 Hz, 1H), 6.40 (s, 1H), 2.05 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 183.0, 180.1, 148.6, 139.2, 137.7, 131.8, 128.2, 127.9, 123.5, 119.6, 116.2, 114.9, 106.6, 16.0; HRMS (ESI-qTOF) Calcd for C₁₄H₈N₂O₂ [M+H]⁺, 237.0586: found 237.0664.

3-Methylcarboxylate-3-methyl-carbazolo-1,4-quinone (3h): 137 mg (86%) as an orange solid; mp: decomposed >229 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 13.02 (s, 1H), 8.55 (s, 1H), 7.84 (d, *J* = 10.2 Hz, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 6.56 (s, 1H), 3.79 (s, 3H), 1.97 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 183.2, 180.2, 166.6, 148.3, 140.0, 137.8, 132.0, 126.8, 125.1, 124.1, 123.3, 116.3, 114.3, 52.4, 15.8; HRMS (ESI-qTOF) Calcd for C₁₅H₁₁NO₄ [M+H]⁺, 270.0688: found 270.0756.

6-Chloro-3-methyl-carbazolo-1,4-quinone (3i) ^{1a, 2}: 142 mg (91%) as a red solid; mp: decomposed >253 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.95 (s, 1H), 7.91 (s, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 7.35 (d, *J* = 8.7 Hz, 1H), 6.58 (s, 1H), 2.02 (s, 3H); ¹³C NMR (75 MHz, DMSO*d*₆): δ 185.0, 174.1, 139.2, 135.8, 132.6, 127.8, 127.8, 127.4, 124.8, 120.0, 117.0, 113.9, 20.9; HRMS (ESI-qTOF) Calcd for C₁₃H₈CINO₂ [M+H]⁺, 246.0244: found 246.0320. **6-Bromo-3-methyl-carbazolo-1,4-quinone (3j)** ^{1a}: 146 mg (90%) as a red solid; mp: 253-255 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 12.83 (s, 1H), 8.06 (s, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 6.61 (s, 1H), 2.06 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 184.4, 174.2, 140.2, 136.3, 132.3, 130.3, 128.6, 126.2, 124.7, 123.9, 121.0, 112.7, 18.6; HRMS (ESI-qTOF) Calcd for C₁₃H₈BrNO₂ [M+H]⁺, 289.9738: found 289.9817.

6,8-Dichlro-3-methyl-carbazolo-1,4-quinone (3k): 143 mg (89%) as a red solid; mp 240-244 °C; ¹H NMR (300 MHz, DMSO-*d*₆): δ 13.49 (s, 1H), 7.96 (s, 1H), 7.60 (s, 1H), 6.69 (s, 1H), 2.07 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 185.1, 179.9, 148.2, 143.8, 138.2, 134.8, 132.6, 130.7, 128.7, 126.0, 120.5, 119.9, 18.9; HRMS (ESI-qTOF) Calcd for C₁₃H₇Cl₂NO₂ [M+H]⁺, 279.9854: found 279.9930.

9-Propyl-3-methyl-carbazolo-1,4-quinone (3l): 109 mg (69%) as a red solid; mp: 156-160°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.19 (d, *J* = 2.8 Hz, 1H), 7.81 (d, *J* = 9.2 Hz, 1H), 7.72-7.65 (m, 1H), 7.58 (d, *J* = 8.8 Hz, 1H), 6.62 (d, *J* = 1.6 Hz, 1H), 4.53 (t, *J*_{*I*} = 6.8 Hz, *J*₂ = 7.2 Hz, 2H), 2.05 (d, *J* = 1.6 Hz, 3H), 1.78-1.71 (m, 2H), 0.85 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 183.1, 180.8, 147.4, 137.5, 134.5, 133.2, 129.4, 124.6, 124.1, 117.5, 115.4, 115.1, 46.3, 23.3, 15.6, 11.3; ¹³C NMR (DEPT) (101 MHz, DMSO- *d*₆): δ 134.5, 133.2, 129.4, 124.1, 115.1, 46.3, 23.3, 15.6, 11.3; HRMS (ESI-qTOF) Calcd for C₁₆H₁₅NO₂ [M+H]⁺, 254.1103: found 254.1172.

9-Propyl-carbazolo-1,4-quinone (3m): 89 mg (57%) as a red solid; mp: decomposed >235 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.09 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.45 (t, *J*₁ = 7.2 Hz, *J*₂ = 8.4 Hz, 1H), 7.33 (t, *J*₁ = 7.2 Hz, *J*₂ = 7.6 Hz, 1H), 6.25 (s, 2H), 4.52 (t, *J*₁ = 7.2 Hz, *J*₂ = 7.2 Hz, 2H), 1.79-1.70 (m, 2H), 0.87 (t, *J*₁ = 7.6 Hz, *J*₂ = 6.8 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 180.8, 177.1, 152.7, 139.4, 132.9, 127.4, 126.0, 124.8, 123.0, 122.6, 116.9, 112.7, 46.3, 23.4, 11.4.; ¹³C NMR (DEPT) (101 MHz, DMSO- *d*₆): δ 127.4, 126.0, 124.8, 123.0, 122.6, 112.7, 46.3, 23.4, 11.4: HRMS (ESI-qTOF) Calcd for C₁₅H₁₃NO₂ [M+H]⁺, 240.0946: found 240.1022.

9-Benzyl-carbazolo-1,4-quinone (3n)³: 102 mg (61%) as a red solid; decomposed >247 °C ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.07 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.68, 7.44-7.33 (m, 3H), 7.27-7.20 (m, 4H), 7.16 (d, *J* = 7.2 Hz, 2H), 5.86 (s, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 181.2, 173.1, 140.9, 140.2, 139.4, 139.2, 137.1, 136.7, 129.1, 129.0, 128.0, 127.9, 127.2, 125.5, 122.6, 120.7, 119.1, 113.1, 48.1; ¹³C NMR (DEPT) (101 MHz, DMSO-*d*₆): δ 139.4, 139.2, 129.1, 129.0, 128.0, 127.9, 127.2, 125.5, 122.6, 120.7, 113.1, 48.1; HRMS (ESI-qTOF) Calcd for C₁₉H₁₃NO₂ [M+H]⁺, 288.0946: found 288.1023.

9-Methyl-carbazolo-1,4-quinone (3o)³: 92 mg (61%) as a red solid; mp: 121-125°C; ¹H NMR (500 MHz, CDCl₃): δ 8.10 (d, *J* = 7.5 Hz, 1H), 7.97 (d, *J* = 7.5 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.50 – 7.42 (m, 1H), 6.30 (s, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 191.5, 181.3, 145.0, 136.0, 132.7, 130.9, 128.4, 127.9, 127.0, 125.6, 124.9, 117.0, 21.9; HRMS (ESI-qTOF) Calcd for C₁₃H₉NO₂ [M+H]⁺, 212.0633: found 212.0710.

(b) Isotope Labeling Experiment:

Method for preparation of ¹⁸O labeled DMSO

The [¹⁸O]-DMSO was prepared according to the literature⁴

$$(CH_3)_2S + Br_2 \longrightarrow (CH_3)_2S - Br Br - H_2O^{18} \xrightarrow{H_2O^{18}} H_3C \xrightarrow{S} CH_3$$

Step I: Bromine (1.8 mL, 33 mmoles) was added dropwise over 40 min to a vigorously stirred, ice-cooled solution of dimethyl sulfide (2.43 mL, 33 mmoles) in carbon tetrachloride (30 mL).

The resulting yellowish precipitate were removed by filtration and washed with cold chloroform to remove unreacted bromine. After removing the solvent on rotator evaporator under reduced pressure at room temperature, 71% (5.2 g) of yellow solid product was obtained. (*Avoid heating dimethylsulfur dibromide, it may cause brominating side products of dimethyl sulfide*).

Step II : Solid dimethylsulfur dibromide (5.0 g, 22.5 mmoles) was added portion wise over 15 min to a vigorously stirred solution of triethylamine (6.3 ml, 45 mmoles, freshly distilled from sodium hydroxide) and ¹⁸O-labeled water (97 atom % ¹⁸O) (0.20 ml, 11 mmoles) in 15 ml of tetrahydrofuran (freshly distilled from sodium metal). The temperature of the reaction was maintained below 50°C by occasional cooling in ice. The precipitate of triethylamine hydrobromide was removed by centrifugation and washed twice with ether. The combined yellow supernatant and washings were dried on high vacuum pressure pump at room temperature (15 mm) to remove the solvent and the tan residue was distilled in a short path distillation to get 850 mg (97%) of ¹⁸O-labeled DMSO.

Step II

0¹⁸-incorparated murrayaquinone (41%)

Without further purification the distilled ¹⁸O-labeled DMSO was applied on the oxidation of substrate **2e** under the standard conditions. After 2 h, reaction mixture was poured in cold sodium thiosulphate and purified by column chromatography. The isolated product was subjected to the ESI-MS analysis, a significant amount (42%) of ¹⁸O incorporated oxidized product (M+H, m/z = 212) along with the unlabeled product (M+H,m/z = 214) was observed.

Savitribai Phule Pune University - Central Instrumentation Facility

Analysis Info Analysis Name	D:\Data\2016\JUNE\SPPU\CHEMISTRY\PD LOKHANDE\MA	Acquisition I HAVIR\MS -2	Date 6/7/2010 1_BC1_01_281	6 7:10:08 PM 4.d
Method	dlc-ms350mz_10min_90b.m	Operator	CIF	
Sample Name Comment	MS -21	Instrument	impact HD	1819696.00184

Acquisition Parame	eter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	3500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 //min
Scan End	600 m/z	Set Charging Voltage	2000 V	Set Divert Valve	Waste
		Set Corona	0 nA	Set APCI Heater	0 %

Computational Details

All the DFT calculations were carried out using the Turbomole 6.0 suite of programs.⁵ Geometry optimizations were performed using dispersion corrected Perdew, Burke, and Erzenhof density functional (PBE).⁶ The TZVP basis set was employed for the calculations.⁷ The resolution of identity (ri), along with the multipole accelerated resolution of identity (marij) approximations

were employed for an accurate and efficient treatment of the electronic Coulomb term in the density functional calculations. Solvent effects were incorporated with the COSMO model,⁸ with $\varepsilon = 46.7$ for DMSO. The contributions of internal energy and entropy were obtained from frequency calculations done on the DFT structures at 298.15 K. Therefore, the energies reported in the figures are the ΔG values. It was ensured that the obtained transition state structures possessed only one imaginary frequency corresponding to the correct normal mode.

The conversion of **2e** to **4e** has been investigated with density functional theory (DFT). The role molecular iodine could be justified in the conversion of **2e** to **4e** in two important steps; (a) for the elimination of HBr and, (b) I₂/DMSO-mediated oxidation. In order to explore these two steps, four different conformations of **2e** were considered as shown in Figure 1. The lowest energy conformation **2ea** has been considered as a starting reactant.

Figure 1. Different possible conformations for 2e and the values in the bracket represent the energies in kcal/mol.

The free energy profile diagram shows that the interaction of molecular iodine with 2e forms 2e_I₂, a complex that is slightly endergonic, by 0.2 kcal/mol. This is because of the interaction of iodine with the *pi*-cloud of the aromatic ring in 2a_I₂. The dissociation of bromine allows the change in conformation of 2e_I₂ to 2e_I₂ *via* TS1 with a barrier of 31.6 kcal/mol. The subsequent HBr elimination is a feasible process *via* TS2 with a barrier of 23.1 kcal/mol and leads to the

formation of $\mathbf{c_{I_2}}$, which is 4.5 kcal/mol exergonic with respect to 2e. Thereafter, C(sp³)-H oxidation of $\mathbf{c_{I_2}}$ can occur *via* TS3 with a barrier of 32.4 kcal/mol, as shown in Figure 2. This is the slowest step of the reaction and generates the cation-anion adduct (d). The formation of 4e from d is a feasible process with a barrier of only 9.4 kcal/mol *via* TS4. The final product is stable and exergonic by 21.4 kcal/mol with respect to 2e.

The DFT investigations suggested that the conversion of 2e to 4e occurs in two steps: HBr elimination followed by activation of C(sp³)-H bond by molecular iodine in DMSO. The oxidation step is the rate limiting step with a barrier of 32.4 kcal/mol.

Figure 2. The free energy profile diagram for the conversion of 2a to 4; energy values are in kcal/mol.

References:

 (a) Chakraborty, S.; Chattopadhyay, G.; Saha, C. J. Heterocyclic Chem. 2011, 48, 331. (b)
 Fujii, M.; Nishiyama, T.; Choshi, T.; Satsuki, N.; Fujiwaki, T.; Abe, T.; Ishikura M.; Hibino, S. *Tetrahedron* 2014, 70,1805. (c) Paul, H. B.; Christina, L. L. C.; Maurice, L. G.; Geoffrey, D. S.; Paul W. *Bioorg. Med. Chem. Lett.* 2007, 17, 82. 2. Itoigawa, M.; Kashiwada, Y.; Ito, C.; Furukawa, H.; Tachibana, Y.; Bastow, K.; Lee, K. -H. J. Nat. Prod. 2000, **63**, 893.

3. Bouaziz, Z.; Ghe'rardi, A.; Re'gnier, F.; Sarciron, M. –E.; Bertheau, X.; Fenet, B.; Walchshofer N.; Fillion, H. *Eur. J. Org. Chem.* 2002, **11**, 1834.

4. Mupparapa, N.; Khan, S.; Battula, S.; Kushwala, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1154.

- 5. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.
- 6. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 77, 3865.
- 7. Weigend, F. Phys. Chem. Chem. Phys. 2002, 4, 4285.
- 8. Klamt, A. J. Phys. Chem. 1995, 99, 2224.

Intermediate/ TSs	Optimize Geometry
2a	
2a_I ₂	
TS1	
2b_I2	

 Table S1. Optimized geometries for different intermediate and transition states investigated in

 the present study.

Cartesian Coordinates: 2a

С	-1.125	6.290 -2.459
С	-0.685	5.335 -1.530
С	0.659	5.334 -1.023
С	1.566	6.323 -1.463
С	1.127	7.266 -2.384
С	-0.203	7.247 -2.875
С	0.759	4.241 -0.114
С	-0.493	3.621 -0.101
Ν	-1.357	4.290 -0.950
С	1.896	3.754 0.718
С	1.387	2.907 1.898
С	0.345	1.879 1.461
С	-0.833	2.461 0.679
0	-1.964	1.955 0.728
Н	0.809	3.582 2.560
Br	1.139	0.476 0.233
Н	-2.149	6.282 -2.838
Η	-0.512	8.004 -3.599
Н	1.813	8.037 -2.741
Н	2.591	6.340 -1.088
Η	2.576	3.133 0.105
Η	2.494	4.596 1.099
С	2.528	2.299 2.708
Η	-2.325	4.026 -1.114
Н	-0.028	1.289 2.306
Н	2.141	1.721 3.562
Н	3.133	1.628 2.080
Н	3.181	3.096 3.093
2b		
C	-1.008	2.369 0.566
С	-0.674	3.568 -0.160
С	0.570	4.195 -0.155
С	1.705	3.666 0.649
С	1.207	2.815 1.842
С	0.191	1.779 1.334
Ν	-1.540	4.245 -1.001
С	-0.876	5.314 -1.547
С	0.466	5.312 -1.034
С	1.365	6.320 -1.446
С	0.919	7.287 -2.338
С	-0.410	7.270 -2.832
С	-1.324	6.294 -2.446
Η	0.680	3.487 2.540

Br	-0.497	0.633 2.817
0	-2.126	1.841 0.520
Н	0.694	1.061 0.665
Н	-2.346	6.288 -2.828
Н	-0.724	8.045 -3.534
Н	1.599	8.074 -2.670
Н	2.390	6.335 -1.069
Н	2.360	3.039 0.017
Н	2.334	4.484 1.035
С	2.406	2.178 2.546
Н	-2.508	3.983 -1.165
Н	2.106	1.653 3.463
Н	2.904	1.458 1.877
Н	3.134	2.959 2.814
2c		
С	-1.101	6.259 -2.489
С	-0.657	5.291 -1.522
С	0.619	5.252 -0.956
С	1.674	6.252 -1.294
С	1.390	6.911 -2.660
С	-0.069	7.347 -2.792
Ν	-1.419	4.240 -1.039
С	-0.660	3.519 -0.152
С	0.636	4.132 -0.076
С	1.617	3.575 0.772
С	1.293	2.447 1.514
С	0.005	1.857 1.425
С	-0.984	2.378 0.597
С	1.714	5.957 -3.825
Br	-0.491	8.854 -1.514
0	-2.212	6.240 -3.042
Н	-1.972	1.918 0.533
Η	-0.213	0.970 2.023
Н	2.035	2.003 2.180
Н	2.608	4.028 0.845
Н	1.704	7.034 -0.514
Н	2.669	5.782 -1.309
Н	2.021	7.807 -2.761
Η	-2.383	4.056 -1.302
Н	1.487	6.429 -4.793
Н	2.784	5.702 -3.803
Н	1.134	5.025 -3.747
Н	-0.278	7.783 -3.776
2d		

C -0.977 2.382 0.587

С	-0.656	3.522	-0.165
С	0.635	4.146	-0.083
С	1.617	3.594	0.768
С	1.297	2.464	1.510
С	0.012	1.868	1.420
С	0.612	5.263	-0.966
С	-0.655	5.284	-1.546
Ν	-1.414	4.233	-1.060
С	1.651	6.280	-1.307
С	1.385	6.883	-2.711
С	-0.077	7.362	-2.747
С	-1.110	6.243	-2.526
0	-2.218	6.190	-3.070
С	1.723	5.882	-3.819
Н	-0.232	8.105	-1.949
Н	-1.963	1.918	0.521
Н	-0.204	0.983	2.021
Н	2.041	2.023	2.176
Н	2.606	4.052	0.841
Н	1.642	7.091	-0.557
Н	2.659	5.838	-1.286
Н	2.022	7.772	-2.821
Η	-2.372	4.035	-1.337
Η	1.533	6.315	-4.812
Η	2.786	5.607	-3.756
Η	1.124	4.963	-3.720
Br	-0.484	8.381	-4.405
20	т		
2a_ C	0.861	2 571	0 777
C C	-0.001	3 68/	-0.058
C C	0.812	<i>J</i> .004	-0.153
C	1 952	3 668	0.133
C	1.932	2 901	1 871
Č	0.312	1.933	1.520
Ň	-1.338	4.402	-0.870
C	-0.631	5.386	-1.501
Č	0.734	5.291	-1.074
С	1.676	6.217	-1.570
Ċ	1.237	7.199	-2.479
Ċ	-0.120	7.260	-2.894
С	-1.064	6.362	-2.418
С	2.577	2.241	2.649
Br	0.943	0.445	0.302
0			
0	-2.020	2.155	0.896

Н -2.105 6.409 -2.740 -0.419 8.029 -3.607 Η 1.963 7.881 -2.924 Η Η 2.734 6.129 -1.318 2.551 2.980 0.013 Η 2.629 4.476 0.955 Η -2.332 4.208 -0.973 Η Η -0.057 1.400 2.403 2.192 1.724 3.541 Η Η 3.103 1.508 2.020 3.302 3.003 2.973 Η 1.442 8.629 0.112 Ι Ι 1.404 10.461 2.274 TS1 C -0.911 2.511 0.900 -0.579 3.674 0.106 С С 0.720 4.241 0.004 С 1.872 3.583 0.592 С 1.517 2.667 1.768 С 0.205 2.039 1.690 -1.463 4.432 -0.590 Ν -0.800 5.512 -1.150 С С 0.580 5.412 -0.796 С 1.480 6.406 -1.226 0.975 7.477 -1.981 С С -0.400 7.545 -2.322 -1.305 6.567 -1.914 С С 2.654 1.738 2.200 O -2.052 1.986 0.927 1.077 8.829 0.694 Ι 1.034 10.384 3.013 Ι 2.376 1.037 -1.415 Br Η 1.351 3.381 2.620 -2.362 6.624 -2.176 Η -0.755 8.386 -2.918 Η 1.659 8.231 -2.372 Η 2.544 6.338 -0.997 Η 2.234 2.810 -0.195 Η Η 2.721 4.247 0.799 -2.463 4.243 -0.647 Η 0.000 1.194 2.356 Η Η 2.365 1.147 3.080 2.888 1.057 1.367 Η 3.546 2.331 2.443 Η **2b I**₂ C -1.348 6.240 -2.436

С	-0.884	5.247	-1.553
С	0.444	5.266	-1.012
С	1.315	6.319	-1.363
С	0.844	7.316	-2.239
С	-0.474	7.265	-2.767
C	0 565	4 130	-0 164
C	-0.659	3 168	_0.218
N	1 525	J.+08 A 1A7	1.058
C	-1.525	7.17/	-1.050
C	1.090	3.023	0.000
C	1.180	2./34	1.827
C	0.213	1.6/5	1.268
C	-0.980	2.243	0.477
0	-2.082	1.694	0.392
С	2.375	2.125	2.560
Br	-0.478	0.476	2.701
Η	0.608	3.377	2.517
Η	0.760	0.992	0.597
Η	-2.359	6.202	-2.844
Η	-0.798	8.050	-3.451
Η	1.525	8.099	-2.576
Н	2.351	6.327	-1.021
Н	2.383	3.028	0.042
Н	2.279	4.453	1.085
Н	-2.479	3.859	-1.258
Н	2.060	1.570	3.454
Н	2 920	1 4 3 6	1 894
Н	3 064	2 924	2 869
I	0.666	8 588	0 426
T	0.000 1	0.200	2 685
TS'	0.230 I)	0.247	2.005
	1 3 8 7	2 806	0.006
C	-1.307	2.090	0.990
C	-0.940	3.917	0.100
C	0.451	4.075	-0.109
C	1.391	5.1/3	0.525
C	0.955	2.154	1.159
C	-0.412	2.019	1.489
C	0.515	5.210	-1.036
С	-0.814	5.694	-1.189
Ν	-1.667	4.925	-0.471
С	1.675	5.873	-1.657
С	1.296	6.870	-2.761
С	-0.066	7.367	-2.760
С	-1.190	6.810	-2.023
0	-2.352	7.267	-2.111
С	2.366	7.935	-3.045
Н	1.238	6.249	-3.715

Н	-0.298 8.220 -3.406
Η	-2.440 2.782 1.260
Н	-0.720 1.206 2.149
Η	1.674 1.443 1.569
Н	2.446 3.282 0.067
Н	2.212 6.451 -0.880
Н	2.407 5.138 -2.026
Н	-2.676 5.059 -0.437
н	2 104 8 518 -3 939
н	2 455 8 616 -2 187
н	3 335 7 444 - 3 212
Br	-0.243 5.467 -5.428
T	-1.020 1.388 -7.951
T	1 8/1 3 301 10 525
	-1.8 44 5.501 -10.525
C_{-1}	0.811 0.612 5.000
C	-0.011 - 0.013 - 0.000
C	-0.103 - 0.311 3.719
C	1.219 - 0.439 - 3.464
C	2.092 - 1.120 4.495
C	1.425 -1.342 5.826
	0.100 -1.109 6.029
N	-0.798 0.034 2.566
C	0.132 0.130 1.545
C	1.414 -0.203 2.081
С	2.537 -0.216 1.236
С	2.360 0.117 -0.104
С	1.087 0.465 -0.611
С	-0.045 0.478 0.202
С	2.313 -1.841 6.920
0	-2.036 -0.466 5.168
Η	-1.028 0.742 -0.190
Н	0.987 0.728 -1.665
Η	3.218 0.115 -0.778
Н	3.525 -0.472 1.625
Η	2.402 -2.111 4.109
Η	3.039 -0.573 4.646
Η	-0.343 -1.305 7.009
Η	-1.789 0.259 2.502
Η	3.069 -1.075 7.166
Н	1.744 -2.082 7.828
Η	2.870 -2.734 6.590
Ι	1.368 2.247 4.486
Ι	1.988 4.882 5.381
TS.	3
С	-2.790 -0.779 0.743

C -4.141 -0.211 0.626

С	-4.876	-0.194 -0.579
С	-4.289	-0.701 -1.741
С	-2.944	-1.295 -1.686
С	-2.248	-1.312 -0.511
Ν	-4.880	0.340 1.609
С	-6.112	0.747 1.107
С	-6.147	0.425 -0.281
С	-7.286	0.736 -1.029
С	-8.356	1.358 -0.377
С	-8.301	1.669 0.997
С	-7.176	1.367 1.766
С	-2.385	-1.844 -2.959
0	-2.173	-0.797 1.822
Ι	-3.304	2.231 -3.373
Ι	-2.660	5.072 -5.192
Н	-7.127	1.606 2.830
Η	-9.155	2.156 1.469
Η	-9.255	1.610 -0.943
Η	-7.343	0.504 -2.094
Η	-4.845	-0.750 -2.676
Η	-3.663	0.860 -2.410
Η	-4.572	0.433 2.578
Η	-1.251	-1.753 -0.463
Η	-2.354	-1.061 -3.735
Η	-1.373	-2.244 -2.814
Η	-3.036	-2.646 -3.344
0	-5.257	-2.959 -1.572
S	-5.873	-3.499 -2.910
С	-5.474	-5.282 -2.958
С	-7.671	-3.634 -2.608
Η	-5.978	-5.718 -3.832
Η	-4.385	-5.362 -3.065
Η	-5.819	-5.741 -2.023
Η	-8.132	-4.108 -3.486
Η	-7.826	-4.229 -1.699
Η	-8.049	-2.611 -2.486
d		
С	-6.920	1.463 1.896
С	-5.878	0.800 1.231
С	-6.010	0.336 -0.119
С	-7.219	0.557 -0.809
С	-8.250	1.217 -0.150
С	-8.103	1.660 1.188
С	-4.763	-0.273 -0.453
С	-3.941	-0.161 0.660
Ν	-4.611	0.483 1.668

С	-4.290 -0.918 -1.693
С	-2.831 -1.326 -1.679
С	-2.068 -1.178 -0.572
С	-2.557 -0.606 0.696
0	-1.835 -0.498 1.704
С	-2.282 -1.879 -2.956
õ	-5 147 -2 166 -1 833
Š	-5 509 -2 656 -3 391
C	-7 315 -2 569 -3 370
C	5 275 1 137 3 181
T T	6018 0886 4718
I T	-0.010 0.000 -4.710
I TT	-5.035 2.401 -2.710
п	-0.803 1.811 2.924
H	-8.935 2.1/4 1.6/2
Н	-9.191 1.403 -0.670
Η	-7.328 0.246 -1.849
Η	-4.496 -0.292 -2.578
Η	-4.210 0.711 2.575
Η	-1.015 -1.470 -0.589
Η	-2.524 -1.215 -3.802
Η	-1.193 -2.005 -2.896
Η	-2.711 -2.870 -3.188
Η	-5.678 -4.908 -4.091
Η	-4.196 -4.619 -3.106
Н	-5.814 -4.764 -2.286
Н	-7.658 -3.101 -4.269
Н	-7.681 -3.047 -2.453
Н	-7.581 -1.507 -3.435
Н	-4 437 1 765 -3 650
TS	4
C	• 0 796 _2 237 _0 348
C	0.790 2.257 0.540 0.207 -1.422 0.704
C	-0.451 - 0.213 - 0.479
C	-0.507 0.363 -0.864
C	-0.307 0.303 -0.804
C	0.001 - 0.314 - 1.3/4
	0.040 - 1.083 - 1.701
N	0.194 -1./11 2.044
C	-0.450 -0.695 2.719
	-0.850 0.786 1.757
C	-0.057 0.200 1.757
C C	-1.503 1.457 2.199
C C C	-1.503 1.457 2.199 -1.743 1.611 3.562
C C C C	-1.503 1.457 2.199 -1.743 1.611 3.562 -1.352 0.618 4.493
C C C C C C	-1.503 1.457 2.199 -1.743 1.611 3.562 -1.352 0.618 4.493 -0.699 -0.544 4.089
C C C C C C O	-1.503 1.457 2.199 -1.743 1.611 3.562 -1.352 0.618 4.493 -0.699 -0.544 4.089 -1.436 1.266 -1.159
C C C C C C C C C C C C C C C C C C C	-1.503 1.457 2.199 -1.743 1.611 3.562 -1.352 0.618 4.493 -0.699 -0.544 4.089 -1.436 1.266 -1.159 -0.184 0.000 -3.363

S	-3.457 0.593 -1.469	
С	-3.648 1.739 -2.860	
С	-4.125 1.601 -0.123	
Ι	2.167 2.338 -0.718	
Н	-0.388 -1.303 4.809	
Н	-1.560 0.771 5.554	
Н	-2.240 2.512 3.925	
Н	-1.794 2.227 1.485	
Н	0.533 1.200 -0.800	
Н	0.595 -2.550 2.457	
Н	1.040 -2.295 -2.515	
Н	-1.255 0.039 -3.620	
Н	0.183 1.037 -3.443	
Н	0.332 -0.634 -4.094	
Н	-4.698 2.058 -2.913	
Н	-2.977 2.593 -2.695	
Н	-3.368 1.201 -3.774	
Н	-5.200 1.751 -0.294	
Н	-3.959 1.054 0.812	
Н	-3.594 2.563 -0.110	
Н	0.753 3.518 -2.173	
I	-0.296 4.321 -3.253	
	01290 11821 81288	
4		
4 C	-0.159 0.324 0.052	
4 C C	-0.159 0.324 0.052 -0.025 -0.024 1.466	
4 C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130	
4 C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425	
4 C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046	
4 C C C C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649	
4 C C C C C C C N	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333	
4 C C C C C C C C N C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579	
4 C C C C C C C C C C N C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579 0.907 -0.476 3.490	
4 C C C C C C C C C C C C C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579 0.907 -0.476 3.490 1.687 -0.717 4.637	
4 C C C C C C C C C C C C C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579 0.907 -0.476 3.490 1.687 -0.717 4.637 1.035 -1.047 5.822	
4 C C C C C C C C C C C C C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579 0.907 -0.476 3.490 1.687 -0.717 4.637 1.035 -1.047 5.822 -0.376 -1.145 5.887	
4 C C C C C C C C C C C C C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579 0.907 -0.476 3.490 1.687 -0.717 4.637 1.035 -1.047 5.822 -0.376 -1.145 5.887 -1.175 -0.911 4.771	
4 C C C C C C C C C C C C C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579 0.907 -0.476 3.490 1.687 -0.717 4.637 1.035 -1.047 5.822 -0.376 -1.145 5.887 -1.175 -0.911 4.771 3.617 0.678 -0.773	
4 C C C C C C C C C C C C C C C C C C C	-0.1590.3240.052-0.025-0.0241.4661.197-0.1252.1302.4440.1031.4252.3330.454-0.0461.1200.552-0.649-1.044-0.2932.333-0.519-0.5753.5790.907-0.4763.4901.687-0.7174.6371.035-1.0475.822-0.376-1.1455.887-1.175-0.9114.7713.6170.678-0.773-1.2590.420-0.514	
4 C C C C C C C C C C C C C C C C C C C	-0.159 0.324 0.052 -0.025 -0.024 1.466 1.197 -0.125 2.130 2.444 0.103 1.425 2.333 0.454 -0.046 1.120 0.552 -0.649 -1.044 -0.293 2.333 -0.519 -0.575 3.579 0.907 -0.476 3.490 1.687 -0.717 4.637 1.035 -1.047 5.822 -0.376 -1.145 5.887 -1.175 -0.911 4.771 3.617 0.678 -0.773 -1.259 0.420 -0.514 -2.262 -0.986 4.817	
4 C C C C C C C C C C C C C C C C C C C	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
4 C C C C C C C C C C C C C C C C C C C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4 C C C C C C C C C C C C C C C C C C C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

H 4.207 1.465 -0.278 O 3.558 0.022 1.965 *****

Analysis Info Analysis Name	D:\Data\2016\JUNE\SPPU\CHEMISTBY\PD LOKHANDE\	Acquisition I	Date 6/7/2010	6 7:10:08 PM
Method Sample Name Comment	dlc-ms350mz_10min_90b.m MS -21	Operator Instrument		1819696.00184
Acquisition Para	ameter			

0.2 Por
0.3 Bai
200 °C
4.0 l/min
Waste
0°C

 Meas. m/z
 #
 Ion Formula
 m/z
 err [ppm]
 mSigma
 # mSigma
 Score
 rdb
 e⁻
 Conf
 N-Rule
 Adduct

 212.0711
 1
 C13H10NO2
 212.0706
 -2.5
 4.8
 1
 100.00
 9.5
 even
 ok
 M+H

Savitribai Phule Pune	University - Central	Instrumentation Facility
-----------------------	-----------------------------	--------------------------

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\2016\JUNE\SPPU\CHEMISTRY\PD LOKHANDE\MAH dlc-ms350mz_10min_90b.m MS -24			Acquisition Date 6/7/2016 AHAVIRIMS-24_BC4_01_281 Operator CIF Instrument impact HD	5 7:42:18 PM 7.d 1819696.00184
Acquisition Para	ameter	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Source Type	ESI	Set Capillary	3500 V	Set Dry Heater	200 ℃
Focus	Active	Set End Plate Offset	-500 V	Set Dry Gas	4.0 //min
Scan Begin	50 m/z	Set Charging Voltage	2000 V	Set Divert Valve	Waste
Scan End	600 m/z	Set Corona	0 nA	Set APCI Heater	0 ℃

Savitribai Phule Pune University - Central Instrumentation Facility	
---	--

Analysis Info Analysis Name	D:\Data\2016\JUNE\SPPU\CHEMISTRY\PD LOKHANDE\MA	Acquisition I HAVIR\MS -22	Date 6/6/2016 2_BC2_01_280	8:39:13 PM 4.d
Method	dlc-ms350mz_10min_90b.m	Operator	CIF	
Sample Name Comment	MS -22	Instrument	impact HD	1819696.00184

ameter				
ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Active	Set Capillary	3500 V	Set Dry Heater	200 °C
50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 Vmin
600 m/z	Set Charging Voltage	2000 V	Set Divert Valve	Waste
	Set Corona	0 nA	Set APCI Heater	0°C
	ameter ESI Active 50 m/z 600 m/z	ameter ESI Ion Polarity Active Set Capillary 50 m/z Set End Plate Offset 600 m/z Set Charging Voltage Set Corona	ameter ESI Ion Polarity Positive Active Set Capillary 3500 V 50 m/z Set End Plate Offset -500 V 600 m/z Set Charging Voltage 2000 V Set Corona 0 nA	ameter ESI Ion Polarity Positive Set Nebulizer Active Set Capillary 3500 V Set Dry Heater 50 m/z Set End Plate Offset -500 V Set Dry Gas 600 m/z Set Corona 0 nA Set APCI Heater

 Meas. m/z
 # Ion Formula
 m/z
 err [ppm]
 mSigma
 # mSigma
 Score
 rdb
 e[−] Conf
 N-Rule
 Adduct

 237.0664
 1
 C14H9N202
 237.0659
 -2.4
 27.3
 1
 100.00
 11.5
 even
 ok
 M+H

Savitribai Phule Pune University -	Central Instrumentation Facility
------------------------------------	----------------------------------

Analysis Info Analysis Name	D:\Data\2016\JUNE\SPPU\CHEMISTRY\PD LOKHANDE	Acquisition I	Date 6/7/201 3_BC3_01_28	6 7:31:35 PM 16.d
Method Sample Name Comment	dlc-ms350mz_10min_90b.m MS -23	Operator Instrument	CIF impact HD	1819696.00184

Acquisition Para	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar	
ocus	Active	Set Capillary	3500 V	Set Dry Heater	200 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 Vmin	
Scan End	600 m/z	Set Charging Voltage	2000 V	Set Divert Valve	Waste	
		Set Corona	0 nA	Set APCI Heater	℃ 0	

N Bn 3n	<139	-129.1 -127.2 -127.2 -127.2			1.81		
na j berefit delavate an and ann a dan a bir stiftet a searaid, bei sen an tabien stifte et de	Båd som stad åde då som bland sid		6 and was stated as to be a state of the sta	unitationia and a silver day and post had been	ana laborat in administra da ang din stand		andelika ator, sida sa da at da s
and in a main of the later is a fit of the desired of the second second second second in the desired of the desired of the second	in a finde a more a la situada la si ana tika	and the second secon	l del i i mendio din di stil di stano din	a a l u find i ann fhafan dha ann bul a	a va s al fa sud si fa da a fa sud si fa	al average and a second se	

