Supporting information for

Synthesis and Crystal Structures of Unsymmetrical Wave-

shaped Heptathienoacenes

Zhiping Wu[§], Wan Xu[§], Chunli Li, Zhiying Ma, Guangxia Wang* and Hua Wang*

Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China

E-mail address: wangguangxia@henu.edu.cn and hwang@henu.edu.cn

Table of contents

¹ H N	MR, ¹³ C NMR and HRMS Spectra/ Data of new compounds	S2	
1.	NMR and HRMS Spectra/ Data of 2	S2	
2.	NMR and HRMS Spectra/ Data of 4	S3	
3.	NMR and HRMS Spectra/ Data of 7	S5	
4.	NMR and HRMS Spectra/ Data of 8	S6	
5.	NMR and HRMS Spectra of 10	S8	
6.	NMR and HRMS Spectra/ Data of 11	S9	
7.	NMR and HRMS Spectra of UHT-1	S11	
8.	NMR and HRMS Spectra of UHT-2	S12	
9.	NMR and HRMS Spectra of UHT-3	S14	
X-ra	y crystallographic data of UHT-1, UHT-2 and UHT-3	S16	
Opti	Optimized structures information for UHT-1, UHT-2 and UHT-3		

¹H NMR, ¹³C NMR and HRMS Spectra/ Data of new compounds

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of 2

Figure S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of **2**

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Agilent 7200 GC QTOF MS

Sample Serial Number: Zwj-1-132-w-s

Operator: Zhang, Fang

Date: 2016/05/31

Operation Mode: EI-Positive

Single Mass Analysis Tolerance = 5.0 ppm / DBE: min = 0, max = 50.0 C: 0.50; H: 0.120; S: 0.10; Si: 0.3; [79Br]: 0.3; I: 0.3

	Formula (M)	m/z	m/z (Calc)	Diff (ppm)	DBE
+	C11 H10 Br I S3 Si	471.7952	471.7936	-3.29	7
	C13 H8 S7 Si3	471.7952	471.7973	4.51	13
	C14 H11 Br3 Si2	471.7952	471.7944	-1.71	10
	C15 H7 Br2 I	471.7952	471.7954	0.36	11
	C16 H4 S6 Si3	471.7952	471.794	-2.64	18
	C20 H Br S3 Si2	471.7952	471.7957	1.02	22
	C7 H18 Br2 S4 Si3	471.7952	471.795	1.78	1
	C8 H14 Br I S4 Si	471.7952	471.797	3.85	2

Figure S3. HRMS(EI) data of 2

Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of 4

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Waters Micromass GCT Premier

Sample Serial Number: Zwj-1-178

Operator: Li, Guangping

Date: 2016/12/29

Operation Mode: EI-Positive

Single Mass Analysis

Tolerance = 2.0 mDa / DBE: min = -1.5, max = 50.0

C: 0-60; H: 0-80; Br: 0-2; I: 0-2; S: 0-3; Si: 0-3

1	Mass	Cale. Mass	Diff (ppm)	DBE	Formula
	471.7944	471.7942	0.4	7.0	C11H10SiS3BrI
	471.7944	471.7932	2.5	6.0	C10H14Si3S3Br2
	471.7944	471.7959	-3.2	11.0	C15H7Br2I
	471.7944	471.7962	-3.8	22.0	C20HSi2S3Br
_					

Figure S6. HRMS(EI) data of 4

Figure S8. ¹³C NMR (150 MHz, CDCl₃) spectrum of 7

Instrument: Thermo Fisher Scientific LTQ FTICR-MS ~

Card Serial Number: W181553↔

↵

Sample Serial Number: WZP-3-16-col↔

Operator: Songw Date: 2018/11/01←

Operation Mode: DART Positive Ion Mode

Elemental composition search on mass 399.75

n/z= 394.75-404.75				
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
399.7541	399.7541	0.05	7.0	C ₈ H ₂ BrIS ₃
	399.7553	-2.85	3.5	C ₂ O ₄ N ₃ BrIS ₂

Figure S10. ¹H NMR (400 MHz, CDCl₃) spectrum of 8

Figure S12. HRMS(DART) data of 8

5. NMR and HRMS Spectra of 10

Figure S13. ¹H NMR (400 MHz, CDCl₃) spectrum of 10

210 190 170 150 130 110 90 70 50 30 10 -10

Figure S14. ¹³C NMR (100 MHz, 323K, CDCl₃) spectrum of 10

Figure S15. HRMS(MALDI) spectrum of 10

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectrum of 11

Figure S17. ¹³C NMR (150 MHz, CDCl₃) spectrum of **11**

 National Center for Organic Mass Spectrometry in Shanghai

 Shanghai Institute of Organic Chemistry

 Chinese Academic of Sciences

 High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FTICR-MS

Card Serial Number: W18019↔

Ł

⊣

Sample Serial Number: WZP-3-49-PTLC-2-2↔

Operator: Songw Date: 2018/12/26↔

Operation Mode: DART Positive Ion Mode

Elemental composition search on mass 618.75

m/z= 613.75-623.75					
m/z	Theo.	Delta	RDB	Composition	
	Mass	(ppm)	equiv.		
618.7469	618.7472	-0.42	13.5	C ₁₉ H ₁₃ Br ₂ S ₆ Si	
	618.7463	0.98	14.5	C ₁₈ H ₉ O ₅ Br ₂ S ₄ Si	
	618.7484	-2.30	10.0	C ₁₃ H ₁₁ O ₄ N ₃ Br ₂ S ₅ S	
	618.7450	3.15	15.0	C ₁₆ H ₇ O ₄ N ₃ Br ₂ S ₄ Si	
	618.7497	-4.47	9.5	C ₁₅ H ₁₃ O ₅ Br ₂ S ₅ Si	

Figure S18. HRMS(DART) data of 11

7. NMR and HRMS Spectra of UHT-1

Figure S19. ¹H NMR (400 MHz, CDCl₃) spectrum of UHT-1

Figure S20. ¹³C NMR (150 MHz, CDCl₃) spectrum of UHT-1

Figure S21. HRMS(MALDI) spectrum of UHT-1

8. NMR and HRMS Spectra of UHT-2

Figure S23. ¹³C NMR (150 MHz, CDCl₃) spectrum of UHT-2

Figure S24. HRMS(MALDI) spectrum of UHT-2

9. NMR and HRMS Spectra of UHT-3

Figure S25. ¹H NMR (300 MHz, CDCl₃) spectrum of UHT-3

210 190 170 150 130 110 90 70 50 30 10 -10

Figure S26. ¹³C NMR (150 MHz, CDCl₃) spectrum of UHT-3

Figure S27. HRMS(MALDI) spectrum of UHT-3

X-ray crystallographic data of UHT-1, UHT-2 and UHT-3

Table S1. Crystal data and structure refinement for UHT-1, UHT-2 and UHT-3

Identification code	UHT-1	UHT-2	UHT-3
Empirical formula	$C_{19}H_{12}S_7Si$	$C_{19}H_{12}S_7Si$	$C_{19}H_{12}S_7Si$
CCDC	2158361	2158362	2158363
Formula weight	492.80	492.80	492.80
Temperature	150.01 K	150.0 K	149.99 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	orthorhombic
Space group	$P_{1} 2_{1}/c_{1}$	$P_{1} 2_{1}/c_{1}$	Ima2
Unit cell dimensions	a = 15.2026 (7) Å	a = 20.2064 (6) Å	a = 7.0326 (3) Å
	b = 10.9247 (5) Å	b = 9.8434 (2) Å	b = 30.5918 (13) Å
	c = 12.3831 (7) Å	c = 10.4751 (3) Å	c = 10.3680 (4) Å
Volume	2042.20 (18) Å ³	2034.36 (9) Å ³	2030.57 (16) Å ³
Z	4	4	4
Density (calculated)	1.603 Mg/m ³	1.609 Mg/m ³	1.467 Mg/m ³
Absorption coefficient	0.834 mm ⁻¹	0.838 mm ⁻¹	0.764 mm ⁻¹
F(000)	1008	1008	1008
Crystal size	0.24 x 0.2 x 0.04 mm ³	0.36 x 0.28 x 0.06 mm ³	0.19 x 0.12 x 0.09 mm ³
Theta range for data collection	2.301 to 28.306°.	2.312 to 28.289°.	5.326 to 52.676°.
Index ranges	-20<=h<=20, -14<=k<=14,	-26<=h<=22, -13<=k<=12,	$-8 \le h \le 4, -31 \le k \le 38,$
	-16<=l<=16	-13<=l<=13	$-12 \le 1 \le 12$
Reflections collected	26055	19939	5150
Independent reflections	5058 [R(int) = 0.0326]	5026 [R(int) = 0.0479]	2278 [Rint = 0.0319]
Max. and min. transmission	0.7457 and 0.6899	0.7457 and 0.6011	0.746 and 0.508
Data / restraints / parameters	5058 / 0 / 247	5026 / 0 / 247	2278/7/162
Goodness-of-fit on F ²	1.068	1.035	1.016
Final R indices [I>2sigma(I)]	R1 = 0.0322, wR2 = 0.0821	R1 = 0.0370, wR2 = 0.0880	$R_1 = 0.0235, wR_2 = 0.0618$
R indices (all data)	R1 = 0.0395, wR2 = 0.0876	R1 = 0.0491, wR2 = 0.0960	$R_1 = 0.0237, wR_2 = 0.0620$
Largest diff. peak and hole	0.469 and -0.272 e.Å ⁻³	0.588 and -0.360 e.Å ⁻³	0.40 and -0.29 e.Å ⁻³

Optimized structures information for UHT-1, UHT-2 and UHT-3

Atomic Type	Coordinates (Angstroms)		
	Х	У	Z
S	5.239346	-0.905621	0.001710
S	3.105375	-3.285014	0.004551
S	-0.077896	-3.534558	0.000641
S	-0.851401	0.635891	-0.005659
S	-3.815603	-2.399815	0.000039
S	-6.323025	-0.427459	0.003274
S	-4.118044	3.164134	-0.000801
Si	5.629411	2.266337	0.001297
С	4.541997	0.722888	-0.004176
С	3.168816	0.656703	-0.006428
Н	2.543738	1.542984	-0.011997
С	3.664557	-1.624061	0.002714
С	2.648349	-0.675514	-0.002172
С	1.456138	-2.689311	-0.000069
С	1.351518	-1.303186	-0.003083
С	-0.906265	-1.985026	-0.002787
С	-0.021649	-0.910945	-0.004496
С	-2.264878	-1.571763	-0.002479
С	-2.401669	-0.187500	-0.003526
С	-3.762026	0.246949	-0.001797
С	-4.625315	-0.847886	0.000133
С	-4.507078	1.467190	-0.000550
С	-5.883457	1.278835	0.002265
С	-6.638067	2.487054	0.004238
Н	-7.719350	2.546672	0.006582
С	-5.817750	3.580500	0.002908
Н	-6.104024	4.622843	0.003870
С	4.486491	3.763615	-0.145191
Н	3.902164	3.737670	-1.070652
Н	3.787168	3.824058	0.695178
Н	5.073630	4.688578	-0.150914
С	6.609750	2.344409	1.615639
Н	7.259478	1.470662	1.733604
Н	7.245634	3.236509	1.644146
Н	5.942396	2.379650	2.482837
С	6.818865	2.197833	-1.466147
Н	6.274637	2.156304	-2.415189
Н	7.464810	3.082835	-1.487409

Table S2. Cartesian Coordinates (Å) and Thermal Eneries of Optimized Structure of **UHT-1** in the Ground State (S_0) Calculated at the B3LYP /6-31G(d,p) Level of Theory.

B3LYP/6-31G(d,p)

E =-3808.09551268 hartree

of imaginary frequencies = 0

<Thermal Energies>

Zero-point correction=	0.251276 (Hartree/Particle)
Thermal correction to Energy=	0.278129
Thermal correction to Enthalpy=	0.279073
Thermal correction to Gibbs Free Energy=	0.192175
Sum of electronic and zero-point Energies=	-3807.844236
Sum of electronic and thermal Energies=	-3807.817383
Sum of electronic and thermal Enthalpies=	-3807.816439
Sum of electronic and thermal Free Energies=	-3807.903338

Table S3. Cartesian Coordinates (Å) and Thermal Eneries of Optimized Structure of UHT-2 in the
Ground State (S ₀) Calculated at the B3LYP /6-31G(d,p) Level of Theory.

Atomic Type		Coordinates (Angstroms)	
	Х	у	Z
S	0.816888	0.604914	-0.005649
S	-0.027445	-3.552124	0.000657
S	6.287032	-0.567364	0.002889
S	-5.300022	-0.834715	0.001913
S	3.733384	-2.469350	-0.000024
S	-3.206382	-3.249563	0.004790
S	5.623065	3.700148	0.001957
Si	-5.636329	2.343468	0.001129
С	-1.419296	-1.297420	-0.003043
С	0.826950	-2.016848	-0.002793
С	2.192236	-1.625984	-0.002454
С	-2.705474	-0.648164	-0.002039
С	2.353428	-0.243587	-0.003494
С	-3.203574	0.692504	-0.006439
Н	-2.563711	1.568214	-0.012179
С	3.718473	0.169043	-0.001951
С	-0.039826	-0.928346	-0.004500
С	-4.575499	0.781828	-0.004214
С	5.886442	1.164311	0.002064
С	4.172401	2.750714	-0.001033
Н	3.208037	3.237839	-0.002748
С	4.462290	1.409008	-0.000696
С	-1.547308	-2.681608	-0.000012
С	4.561022	-0.930402	-0.000106
С	6.648276	2.296928	0.003744
Н	7.722752	2.404945	0.005975

S18

С	-3.737495	-1.579519	0.002966
С	-4.467318	3.821116	-0.140670
Н	-3.770104	3.869307	0.702261
Н	-3.880345	3.785516	-1.064155
Н	-5.038602	4.755927	-0.148149
С	-6.618703	2.436774	1.613412
Н	-7.238161	3.340358	1.641854
Н	-7.284702	1.574974	1.728410
Н	-5.952894	2.458378	2.482242
С	-6.823415	2.298401	-1.469112
Н	-6.277890	2.248745	-2.417014
Н	-7.488129	1.428962	-1.424213
Н	-7.453638	3.194663	-1.490396

B3LYP/6-31G(d,p)

E =-3808.09201832 hartree

of imaginary frequencies = 0

<thermal energies=""></thermal>	
Zero-point correction=	0.251087 (Hartree/Particle)
Thermal correction to Energy=	0.277908
Thermal correction to Enthalpy=	0.278852
Thermal correction to Gibbs Free Energy=	0.191808
Sum of electronic and zero-point Energies=	-3807.840932
Sum of electronic and thermal Energies=	-3807.814111
Sum of electronic and thermal Enthalpies=	-3807.813166
Sum of electronic and thermal Free Energies=	-3807.900211

Table S4. Cartesian Coordinates (Å) and Thermal Eneries of Optimized Structure of UHT-3 in the Ground State (S_0) Calculated at the B3LYP /6-31G(d,p) Level of Theory.

Atomic Type	Coordinates (Angstroms)		
	Х	У	Z
С	6.193997	2.899319	-1.542585
Н	5.246285	3.447176	-1.577437
Н	6.263289	2.300052	-2.456174
Н	7.003870	3.637363	-1.562021
С	6.199681	2.892507	1.547861
Н	5.251725	3.439486	1.589058
Н	6.273172	2.289230	2.458484
Н	7.009135	3.631013	1.567223
Н	8.782463	1.522188	-0.004416
Н	8.019625	0.197339	0.879305
Н	8.016906	0.201972	-0.892829
С	-6.771602	2.260662	-0.000085
Н	-7.847753	2.350570	-0.000134

С	-5.990760	1.141088	-0.000052
С	-4.570975	1.409777	0.000014
С	-4.303597	2.756122	0.000028
Н	-3.347538	3.259427	0.000064
С	-4.630204	-0.931064	0.000014
С	-3.806440	0.182478	0.000052
С	-2.434561	-0.206943	0.000091
С	-2.250263	-1.586692	0.000080
С	-0.878687	-1.953446	0.000064
С	-0.032148	-0.849640	0.000064
С	1.352780	-1.197492	0.000050
С	1.509140	-2.583254	0.000021
С	2.628230	-0.551972	0.000019
С	3.698833	-1.437332	-0.000068
С	4.972726	-0.806450	-0.000214
Н	5.915647	-1.340634	-0.000374
С	4.890659	0.569261	-0.000252
С	7.927923	0.836507	-0.004962
S	-5.770053	3.680926	-0.000052
S	-6.362023	-0.597202	-0.000063
S	-3.776926	-2.456054	0.000044
S	-0.913862	0.668526	0.000128
S	0.002498	-3.474742	0.000102
S	3.173247	-3.121462	-0.000141
S	3.199691	1.088895	-0.000145
Si	6.310260	1.813000	0.000032

B3LYP/6-31G(d,p)

E =-3808.09542180 hartree

of imaginary frequencies = 0

<Thermal Energies>

Zero-point correction=	0.251118 (Hartree/Particle)
Thermal correction to Energy=	0.277910
Thermal correction to Enthalpy=	0.278854
Thermal correction to Gibbs Free Energy=	0.191987
Sum of electronic and zero-point Energies=	-3807.844303
Sum of electronic and thermal Energies=	-3807.817512
Sum of electronic and thermal Enthalpies=	-3807.816568
Sum of electronic and thermal Free Energies=	-3807.903435