## **Supporting information**

## Investigation of a benzodiazaborine library to

## identify new pH-responsive fluorophore

Hyungjin Cho, † Suji Lee, † and Min Su Han\*

Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123

Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.

\*Corresponding author: happyhan@gist.ac.kr.

+ Both authors contributed equally to this work.

### Contents

- 1. Results of primary screening for UV–Vis and fluorescence spectral measurement of starting materials (A-N, 1-17)
- 2. Results of primary screening for UV–Vis absorption of a bDAB library (A1-N17) under varied pH conditions
- 3. Results of primary screening for fluorescence response of a bDAB library (A1-N17) under varied pH conditions
- 4. Synthesis and characterization of four bDABs (E14, I16, J7, L10)
- 5. Results of secondary screening for fluorescence response of bDABs (I16, J7, L10) under varied pH conditions

1. Results of primary screening for UV–Vis and fluorescence spectral measurement of starting materials (A-N, 1-17)



o-Formylphenylboronic acids (A-N):

Figure S1. Structure of *o*-formylphenylboronic acids (A-N) used to construct a bDAB library.



**Figure S2.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective *o*-formylphenylboronic acids (**A-N**) at pH 4.0, [**A-N**] = 100  $\mu$ M in 20 mM citrate buffer with 10% DMSO.



**Figure S3.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective *o*-formylphenylboronic acids (**A-N**) at pH 6.0, [**A-N**] = 100  $\mu$ M in 20 mM phosphate buffer with 10% DMSO.



**Figure S4.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective *o*-formylphenylboronic acids (**A-N**) at pH 7.0, [**A-N**] = 100  $\mu$ M in 20 mM phosphate buffer with 10% DMSO.



**Figure S5.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective *o*-formylphenylboronic acids (**A-N**) at pH 8.0, [**A-N**] = 100  $\mu$ M in 20 mM phosphate buffer with 10% DMSO.



**Figure S6.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective *o*-formylphenylboronic acids (**A-N**) at pH 10.0, [**A-N**] = 100  $\mu$ M in 20 mM carbonate buffer with 10% DMSO.

#### Phenylhydrazines (1-17):



Figure S7. Structure of phenylhydrazines (1-17) used to construct a bDAB library.



**Figure S8.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective phenylhydrazines (1-17) at pH 4.0,  $[1-17] = 100 \ \mu$ M in 20 mM citrate buffer with 10% DMSO.



**Figure S9.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective phenylhydrazines (1-17) at pH 6.0,  $[1-17] = 100 \ \mu$ M in 20 mM phosphate buffer with 10% DMSO.



**Figure S10.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective phenylhydrazines (1-17) at pH 7.0,  $[1-17] = 100 \ \mu$ M in 20 mM phosphate buffer with 10% DMSO.



**Figure S11.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective phenylhydrazines (1-17) at pH 8.0, [1-17] = 100  $\mu$ M in 20 mM phosphate buffer with 10% DMSO.



**Figure S12.** a) UV–Vis spectra and b), c), d) fluorescence spectra of respective phenylhydrazines (1-17) at pH 10.0,  $[1-17] = 100 \ \mu$ M in 20 mM carbonate buffer with 10% DMSO.

# 2. Results of primary screening for UV–Vis absorption of a bDAB library (A1-N17) under varied pH conditions

|     | λ <sub>abs</sub> (nm) |        |        |        |         |  |  |
|-----|-----------------------|--------|--------|--------|---------|--|--|
|     | pH 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | рН 10.0 |  |  |
| A1  | 300                   | 300    | 300    | 300    | 300     |  |  |
| A2  | 300                   | 300    | 300    | 300    | 300     |  |  |
| A3  | 300                   | 300    | 300    | 300    | 350     |  |  |
| A4  | 300                   | 300    | 300    | 300    | 350     |  |  |
| A5  | 300                   | 300    | 300    | 300    | 300     |  |  |
| A6  | 300                   | 300    | 300    | 300    | 350     |  |  |
| A7  | 300                   | 300    | 300    | 300    | 350     |  |  |
| A8  | 300                   | 300    | 300    | 300    | 350     |  |  |
| A9  | 300                   | 300    | 300    | 300    | 350     |  |  |
| A10 | 310                   | 310    | 305    | 365    | 365     |  |  |
| A11 | 300                   | 300    | 300    | 300    | 340     |  |  |
| A12 | 400                   | 410    | 410    | 450    | 460     |  |  |
| A13 | 300                   | 300    | 300    | 300    | 300     |  |  |
| A14 | 300                   | 300    | 300    | 300    | 350     |  |  |
| A15 | 300                   | 300    | 300    | 300    | 350     |  |  |
| A16 | 300                   | 300    | 300    | 300    | 350     |  |  |
| A17 | 300                   | 300    | 300    | 300    | 300     |  |  |

**Table S1.** The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (A1-A17).

| Table S2. The wavelength | or maximum absorbance | $(\lambda_{abs})$ of bDABs | (B1-B17). |
|--------------------------|-----------------------|----------------------------|-----------|
|--------------------------|-----------------------|----------------------------|-----------|

|     | λ <sub>abs</sub> (nm) |        |        |        |         |  |  |
|-----|-----------------------|--------|--------|--------|---------|--|--|
|     | pH 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | pH 10.0 |  |  |
| B1  | 310                   | 285    | 285    | 285    | 315     |  |  |
| B2  | 285                   | 285    | 285    | 285    | 315     |  |  |
| B3  | 315                   | 285    | 285    | 285    | 315     |  |  |
| B4  | 285                   | 285    | 285    | 285    | 350     |  |  |
| B5  | 315                   | 285    | 285    | 285    | 315     |  |  |
| B6  | 285                   | 285    | 285    | 285    | 315     |  |  |
| B7  | 285                   | 285    | 285    | 285    | 350     |  |  |
| B8  | 285                   | 285    | 285    | 285    | 315     |  |  |
| B9  | 285                   | 285    | 285    | 285    | 350     |  |  |
| B10 | 285                   | 285    | 285    | 285    | 370     |  |  |
| B11 | 280                   | 285    | 285    | 285    | 350     |  |  |
| B12 | 335                   | 335    | 335    | 335    | 460     |  |  |
| B13 | 310                   | 285    | 285    | 285    | 315     |  |  |

| B14 | 285 | 285 | 285 | 285 | 315 |
|-----|-----|-----|-----|-----|-----|
| B15 | 280 | 285 | 285 | 285 | 350 |
| B16 | 315 | 315 | 315 | 315 | 315 |
| B17 | 315 | 285 | 285 | 285 | 315 |
|     | 010 | 200 | 200 | 200 | 010 |

Table S3. The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (C1-C17).

|     | λ <sub>abs</sub> (nm) |        |        |        |         |  |  |  |
|-----|-----------------------|--------|--------|--------|---------|--|--|--|
|     | рН 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | pH 10.0 |  |  |  |
| C1  | 340                   | 285    | 285    | 285    | 285     |  |  |  |
| C2  | 285                   | 285    | 285    | 285    | 285     |  |  |  |
| C3  | 340                   | 285    | 285    | 285    | 290     |  |  |  |
| C4  | 285                   | 285    | 285    | 285    | 345     |  |  |  |
| C5  | 285                   | 285    | 285    | 285    | 285     |  |  |  |
| C6  | 285                   | 285    | 285    | 285    | 285     |  |  |  |
| C7  | 285                   | 285    | 285    | 285    | 350     |  |  |  |
| C8  | 285                   | 285    | 285    | 285    | 350     |  |  |  |
| C9  | 285                   | 285    | 285    | 285    | 340     |  |  |  |
| C10 | 285                   | 285    | 285    | 365    | 365     |  |  |  |
| C11 | 285                   | 285    | 285    | 285    | 345     |  |  |  |
| C12 | 285                   | 285    | 285    | 465    | 470     |  |  |  |
| C13 | 285                   | 285    | 285    | 285    | 285     |  |  |  |
| C14 | 285                   | 285    | 285    | 285    | 285     |  |  |  |
| C15 | 285                   | 285    | 285    | 285    | 350     |  |  |  |
| C16 | 340                   | 315    | 325    | 330    | 285     |  |  |  |
| C17 | 340                   | 285    | 285    | 285    | 285     |  |  |  |

Table S4. The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (D1-D17).

|     | λ <sub>abs</sub> (nm) |        |        |        |         |  |
|-----|-----------------------|--------|--------|--------|---------|--|
|     | pH 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | pH 10.0 |  |
| D1  | 310                   | 310    | 315    | 315    | 350     |  |
| D2  | 310                   | 310    | 315    | 315    | 350     |  |
| D3  | 310                   | 310    | 315    | 315    | 320     |  |
| D4  | 310                   | 310    | 315    | 315    | 350     |  |
| D5  | 310                   | 310    | 315    | 315    | 350     |  |
| D6  | 310                   | 310    | 315    | 315    | 350     |  |
| D7  | 310                   | 310    | 315    | 315    | 360     |  |
| D8  | 310                   | 310    | 315    | 315    | 360     |  |
| D9  | 310                   | 310    | 315    | 350    | 350     |  |
| D10 | 350                   | 310    | 370    | 370    | 365     |  |

| D11 | 285 | 285 | 285 | 350 | 350 |
|-----|-----|-----|-----|-----|-----|
| D12 | 415 | 415 | 445 | 455 | 430 |
| D13 | 310 | 310 | 315 | 315 | 350 |
| D14 | 310 | 310 | 315 | 315 | 350 |
| D15 | 310 | 310 | 315 | 350 | 350 |
| D16 | 310 | 310 | 315 | 315 | 350 |
| D17 | 310 | 285 | 285 | 315 | 350 |

Table S5. The wavelength for maximum absorbance  $(\lambda_{abs})$  of bDABs (E1-E17).

|     |        | λ <sub>abs</sub> (nm) |        |        |         |  |  |  |
|-----|--------|-----------------------|--------|--------|---------|--|--|--|
|     | рН 4.0 | рН 6.0                | рН 7.0 | рН 8.0 | рН 10.0 |  |  |  |
| E1  | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E2  | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E3  | 310    | 310                   | 310    | 310    | 315     |  |  |  |
| E4  | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E5  | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E6  | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E7  | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E8  | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E9  | 310    | 310                   | 310    | 365    | 365     |  |  |  |
| E10 | 355    | 310                   | 370    | 375    | 370     |  |  |  |
| E11 | 310    | 310                   | 310    | 360    | 360     |  |  |  |
| E12 | 415    | 415                   | 445    | 450    | 435     |  |  |  |
| E13 | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E14 | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E15 | 310    | 310                   | 310    | 360    | 360     |  |  |  |
| E16 | 310    | 310                   | 310    | 310    | 365     |  |  |  |
| E17 | 310    | 310                   | 310    | 310    | 365     |  |  |  |

Table S6. The wavelength for maximum absorbance  $(\lambda_{abs})$  of bDABs (F1-F17).

|    | λ <sub>abs</sub> (nm) |        |        |        |         |  |
|----|-----------------------|--------|--------|--------|---------|--|
|    | pH 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | pH 10.0 |  |
| F1 | 300                   | 300    | 300    | 300    | 300     |  |
| F2 | 300                   | 300    | 300    | 300    | 350     |  |
| F3 | 310                   | 300    | 300    | 300    | 315     |  |
| F4 | 300                   | 300    | 300    | 300    | 350     |  |
| F5 | 300                   | 300    | 300    | 300    | 305     |  |
| F6 | 300                   | 300    | 300    | 300    | 355     |  |
| F7 | 300                   | 300    | 300    | 300    | 350     |  |

| <b>F9</b> 300 300 300 300 300  | 355 |
|--------------------------------|-----|
| <b>F10</b> 310 310 310 310 310 | 370 |
| <b>F11</b> 285 285 285 285     | 350 |
| <b>F12</b> 340 410 410 445     | 450 |
| <b>F13</b> 300 300 300 300 300 | 305 |
| <b>F14</b> 300 300 300 300 300 | 350 |
| <b>F15</b> 300 300 300 300 300 | 350 |
| <b>F16</b> 300 300 300 300 300 | 305 |
| <b>F17</b> 300 300 300 300 300 | 305 |

Table S7. The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (G1-G17).

|     | λ <sub>abs</sub> (nm) |        |        |        |         |  |  |
|-----|-----------------------|--------|--------|--------|---------|--|--|
|     | рН 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | рН 10.0 |  |  |
| G1  | 285                   | 285    | 285    | 285    | 340     |  |  |
| G2  | 285                   | 285    | 285    | 285    | 340     |  |  |
| G3  | 315                   | 315    | 315    | 315    | 320     |  |  |
| G4  | 285                   | 285    | 285    | 285    | 345     |  |  |
| G5  | 285                   | 285    | 285    | 285    | 345     |  |  |
| G6  | 285                   | 285    | 285    | 285    | 345     |  |  |
| G7  | 285                   | 285    | 285    | 285    | 345     |  |  |
| G8  | 285                   | 300    | 300    | 300    | 345     |  |  |
| G9  | 285                   | 285    | 285    | 300    | 340     |  |  |
| G10 | 310                   | 310    | 315    | 365    | 365     |  |  |
| G11 | 285                   | 285    | 285    | 340    | 340     |  |  |
| G12 | 420                   | 415    | 455    | 460    | 450     |  |  |
| G13 | 285                   | 285    | 285    | 285    | 345     |  |  |
| G14 | 285                   | 285    | 285    | 285    | 345     |  |  |
| G15 | 285                   | 285    | 285    | 300    | 345     |  |  |
| G16 | 285                   | 285    | 285    | 285    | 345     |  |  |
| G17 | 285                   | 285    | 285    | 285    | 345     |  |  |

Table S8. The wavelength for maximum absorbance ( $\lambda_{\text{abs}})$  of bDABs (H1-H17).

|    | λ <sub>abs</sub> (nm) |        |        |        |         |  |  |
|----|-----------------------|--------|--------|--------|---------|--|--|
|    | pH 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | рН 10.0 |  |  |
| H1 | 350                   | 300    | 300    | 300    | 290     |  |  |
| H2 | 350                   | 300    | 300    | 300    | 290     |  |  |
| H3 | 350                   | 300    | 300    | 300    | 355     |  |  |
| H4 | 300                   | 300    | 300    | 300    | 290     |  |  |

| H5  | 350 | 300 | 300 | 300 | 290 |
|-----|-----|-----|-----|-----|-----|
| H6  | 300 | 300 | 300 | 300 | 290 |
| H7  | 300 | 300 | 300 | 300 | 290 |
| H8  | 300 | 300 | 300 | 300 | 290 |
| H9  | 300 | 300 | 290 | 300 | 290 |
| H10 | 300 | 300 | 300 | 300 | 370 |
| H11 | 285 | 285 | 285 | 300 | 350 |
| H12 | 360 | 365 | 360 | 360 | 470 |
| H13 | 350 | 300 | 300 | 300 | 20  |
| H14 | 300 | 300 | 300 | 300 | 260 |
| H15 | 300 | 300 | 300 | 300 | 355 |
| H16 | 350 | 300 | 300 | 300 | 290 |
| H17 | 350 | 300 | 300 | 300 | 290 |

Table S9. The wavelength for maximum absorbance ( $\lambda_{abs})$  of bDABs (I1-I17).

|            |        |        | λ <sub>abs</sub> (nm) |        |         |
|------------|--------|--------|-----------------------|--------|---------|
|            | pH 4.0 | рН 6.0 | рН 7.0                | рН 8.0 | pH 10.0 |
| <b>I</b> 1 | 340    | 290    | 290                   | 290    | 290     |
| 12         | 290    | 290    | 290                   | 290    | 290     |
| 13         | 345    | 290    | 290                   | 290    | 290     |
| 14         | 290    | 290    | 290                   | 290    | 290     |
| 15         | 290    | 290    | 290                   | 290    | 290     |
| 16         | 290    | 290    | 290                   | 290    | 290     |
| 17         | 290    | 290    | 290                   | 290    | 290     |
| 18         | 290    | 290    | 290                   | 290    | 290     |
| 19         | 290    | 290    | 290                   | 290    | 290     |
| 110        | 290    | 300    | 290                   | 295    | 370     |
| I11        | 290    | 290    | 290                   | 290    | 345     |
| l12        | 355    | 355    | 360                   | 365    | 470     |
| I13        | 340    | 290    | 290                   | 290    | 290     |
| 114        | 290    | 290    | 290                   | 290    | 290     |
| 115        | 340    | 290    | 290                   | 290    | 355     |
| I16        | 340    | 290    | 300                   | 290    | 290     |
| l17        | 340    | 290    | 290                   | 290    | 290     |

Table S10. The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (J1-J17).

|    | λ <sub>abs</sub> (nm) |        |        |        |         |  |  |  |  |
|----|-----------------------|--------|--------|--------|---------|--|--|--|--|
|    | рН 4.0                | рН 6.0 | рН 7.0 | рН 8.0 | pH 10.0 |  |  |  |  |
| J1 | 320                   | 320    | 310    | 315    | 330     |  |  |  |  |

| J2  | 315 | 310 | 310 | 315 | 315 |
|-----|-----|-----|-----|-----|-----|
| J3  | 320 | 310 | 310 | 315 | 315 |
| J4  | 310 | 310 | 310 | 315 | 315 |
| J5  | 315 | 310 | 310 | 315 | 315 |
| J6  | 320 | 310 | 310 | 315 | 325 |
| J7  | 315 | 310 | 310 | 315 | 325 |
| J8  | 330 | 310 | 310 | 315 | 325 |
| J9  | 305 | 310 | 310 | 315 | 315 |
| J10 | 315 | 310 | 315 | 315 | 355 |
| J11 | 285 | 285 | 285 | 285 | 315 |
| J12 | 330 | 330 | 330 | 330 | 465 |
| J13 | 315 | 310 | 310 | 315 | 315 |
| J14 | 320 | 310 | 310 | 315 | 315 |
| J15 | 315 | 310 | 310 | 315 | 350 |
| J16 | 325 | 310 | 310 | 315 | 315 |
| J17 | 320 | 310 | 310 | 315 | 325 |

Table S11. The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (K1-K17).

|     |        |        | λ <sub>abs</sub> (nm) |        |         |
|-----|--------|--------|-----------------------|--------|---------|
|     | рН 4.0 | рН 6.0 | рН 7.0                | рН 8.0 | рН 10.0 |
| K1  | 335    | 295    | 295                   | 295    | 295     |
| K2  | 335    | 295    | 295                   | 295    | 295     |
| K3  | 340    | 295    | 295                   | 295    | 295     |
| K4  | 295    | 295    | 295                   | 295    | 295     |
| K5  | 295    | 295    | 295                   | 295    | 295     |
| K6  | 295    | 295    | 295                   | 295    | 295     |
| K7  | 295    | 295    | 295                   | 295    | 330     |
| K8  | 335    | 295    | 295                   | 295    | 295     |
| K9  | 295    | 295    | 295                   | 295    | 340     |
| K10 | 330    | 295    | 295                   | 295    | 370     |
| K11 | 295    | 295    | 295                   | 295    | 340     |
| K12 | 380    | 380    | 400                   | 405    | 465     |
| K13 | 335    | 295    | 295                   | 295    | 295     |
| K14 | 295    | 295    | 295                   | 295    | 295     |
| K15 | 295    | 295    | 295                   | 295    | 350     |
| K16 | 340    | 295    | 295                   | 295    | 365     |
| K17 | 340    | 295    | 295                   | 295    | 295     |

|     |        |        | λ <sub>abs</sub> (nm) |        |         |
|-----|--------|--------|-----------------------|--------|---------|
|     | рН 4.0 | рН 6.0 | рН 7.0                | рН 8.0 | рН 10.0 |
| L1  | 295    | 310    | 310                   | 310    | 355     |
| L2  | 295    | 310    | 310                   | 310    | 355     |
| L3  | 295    | 310    | 310                   | 310    | 355     |
| L4  | 295    | 310    | 310                   | 310    | 355     |
| L5  | 295    | 310    | 310                   | 310    | 355     |
| L6  | 295    | 310    | 310                   | 310    | 355     |
| L7  | 295    | 310    | 310                   | 310    | 355     |
| L8  | 320    | 310    | 310                   | 330    | 355     |
| L9  | 310    | 310    | 310                   | 310    | 355     |
| L10 | 295    | 310    | 310                   | 310    | 370     |
| L11 | 310    | 310    | 310                   | 310    | 350     |
| L12 | 340    | 345    | 345                   | 455    | 450     |
| L13 | 295    | 310    | 310                   | 310    | 310     |
| L14 | 295    | 310    | 310                   | 310    | 355     |
| L15 | 310    | 310    | 310                   | 310    | 355     |
| L16 | 315    | 310    | 310                   | 310    | 340     |
| L17 | 310    | 310    | 310                   | 310    | 310     |

Table S12. The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (L1-L17).

Table S13. The wavelength for maximum absorbance ( $\lambda_{abs}$ ) of bDABs (M1-M17).

|     |        |        | λ <sub>abs</sub> (nm) |        |         |
|-----|--------|--------|-----------------------|--------|---------|
|     | pH 4.0 | рН 6.0 | рН 7.0                | рН 8.0 | pH 10.0 |
| M1  | 300    | 285    | 300                   | 300    | 355     |
| M2  | 300    | 285    | 285                   | 285    | 355     |
| M3  | 315    | 300    | 300                   | 300    | 325     |
| M4  | 285    | 285    | 300                   | 300    | 350     |
| M5  | 300    | 285    | 300                   | 285    | 350     |
| M6  | 300    | 310    | 310                   | 300    | 355     |
| M7  | 315    | 315    | 315                   | 300    | 355     |
| M8  | 300    | 315    | 300                   | 315    | 360     |
| M9  | 285    | 285    | 285                   | 300    | 355     |
| M10 | 315    | 315    | 310                   | 370    | 370     |
| M11 | 285    | 285    | 300                   | 285    | 350     |
| M12 | 420    | 335    | 450                   | 455    | 450     |
| M13 | 300    | 300    | 300                   | 300    | 345     |
| M14 | 300    | 315    | 300                   | 300    | 350     |
| M15 | 300    | 315    | 300                   | 300    | 355     |
| M16 | 315    | 305    | 300                   | 300    | 345     |

| M17 | 310 | 305 | 300 | 300 | 345 |
|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |

|     |        |        | λ <sub>abs</sub> (nm) |        |         |
|-----|--------|--------|-----------------------|--------|---------|
|     | pH 4.0 | рН 6.0 | рН 7.0                | рН 8.0 | рН 10.0 |
| N1  | 285    | 300    | 300                   | 300    | 340     |
| N2  | 305    | 300    | 300                   | 300    | 310     |
| N3  | 325    | 300    | 300                   | 300    | 335     |
| N4  | 285    | 300    | 300                   | 300    | 350     |
| N5  | 305    | 300    | 300                   | 300    | 310     |
| N6  | 285    | 300    | 300                   | 300    | 310     |
| N7  | 285    | 300    | 300                   | 300    | 350     |
| N8  | 285    | 300    | 300                   | 300    | 310     |
| N9  | 285    | 300    | 300                   | 300    | 310     |
| N10 | 310    | 310    | 310                   | 310    | 365     |
| N11 | 285    | 300    | 300                   | 300    | 345     |
| N12 | 365    | 410    | 415                   | 460    | 460     |
| N13 | 305    | 300    | 300                   | 300    | 310     |
| N14 | 285    | 300    | 300                   | 300    | 310     |
| N15 | 310    | 300    | 300                   | 300    | 350     |
| N16 | 310    | 310    | 310                   | 315    | 310     |
| N17 | 310    | 300    | 300                   | 300    | 310     |

Table S14. The wavelength for maximum absorbance ( $\lambda_{abs})$  of bDABs (N1-N17).

3. Results of primary screening for fluorescence response of a bDAB library (A1-N17) under pH conditions



**Figure S13.** Change of fluorescence intensity of bDABs (**A1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S14.** Change of fluorescence intensity of bDABs (**B1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) at based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100 µM in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S15.** Change of fluorescence intensity of bDABs (**C1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S16.** Change of fluorescence intensity of bDABs (**D1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S17.** Change of fluorescence intensity of bDABs (**E1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S18.** Change of fluorescence intensity of bDABs (**F1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S19.** Change of fluorescence intensity of bDABs (**G1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S20.** Change of fluorescence intensity of bDABs (**H1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S21.** Change of fluorescence intensity of bDABs (**I1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S22.** Change of fluorescence intensity of bDABs (**J1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S23.** Change of fluorescence intensity of bDABs (**K1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S24.** Change of fluorescence intensity of bDABs (**L1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S25.** Change of fluorescence intensity of bDABs (**M1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.



**Figure S26.** Change of fluorescence intensity of bDABs (**N1-17**) by a change of pH under 3 different  $\lambda_{ex}$  (300/350/400 nm) based on  $\lambda_{em}$  (emission wavelength of maximum intensity) at pH 4, [bDAB] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.

**Table S15.** Fluorescence intensity at respective wavelength ( $\lambda_{em}$ ) of **E14** by a change of pH under three different  $\lambda_{ex}$ , [**E14**] = 100 µM in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.

| λ <sub>ex</sub> | λ <sub>em</sub> | рН 4.0 | рН 6.0 | рН 7.0 | рН 8.0 | рН 10.0 |
|-----------------|-----------------|--------|--------|--------|--------|---------|
| 300 nm          | 410 nm          | 879    | 411    | 327    | 565    | 2       |
| 350 nm          | 405 nm          | 59     | 38     | 15     | 14     | 2       |
| 400 nm          | 485 nm          | 0      | 0      | 0      | 0      | 37      |

**Table S16.** Fluorescence intensity at respective wavelength ( $\lambda_{em}$ ) of **I16** by a change of pH under three different  $\lambda_{ex}$ , [**I16**] = 100 µM in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.

| λ <sub>ex</sub> | λ <sub>em</sub> | рН 4.0 | рН 6.0 | рН 7.0 | рН 8.0 | рН 10.0 |
|-----------------|-----------------|--------|--------|--------|--------|---------|
| 300 nm          | 355 nm          | 11     | 651    | 740    | 1587   | 1515    |
| 350 nm          | 450 nm          | 13     | 0      | 1      | 0      | 0       |
| 400 nm          | 500 nm          | 0      | 0      | 0      | 0      | 0       |

**Table S17.** Fluorescence intensity at respective wavelength ( $\lambda_{em}$ ) of **J7** by a change of pH under three different  $\lambda_{ex}$ , [**J7**] = 100  $\mu$ M in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.

| λ <sub>ex</sub> | λ <sub>em</sub> | pH 4.0 | рН 6.0 | рН 7.0 | рН 8.0 | рН 10.0 |
|-----------------|-----------------|--------|--------|--------|--------|---------|
| 300 nm          | 380 nm          | 697    | 594    | 602    | 511    | 1075    |
| 350 nm          | 405 nm          | 63     | 52     | 53     | 92     | 18      |
| 400 nm          | 500 nm          | 0      | 0      | 0      | 0      | 0       |

**Table S18.** Fluorescence intensity at respective wavelength ( $\lambda_{em}$ ) of **L10** by a change of pH under three different  $\lambda_{ex}$ , [**L10**] = 100 µM in 20 mM buffers pH 4.0 citrate; pH 6.0 phosphate; pH 7.0 phosphate; pH 8.0 phosphate; pH 10.0 carbonate with 10% DMSO.

| λ <sub>ex</sub> | λ <sub>em</sub> | pH 4.0 | рН 6.0 | pH 7.0 | pH 8.0 | рН 10.0 |
|-----------------|-----------------|--------|--------|--------|--------|---------|
| 300 nm          | 450 nm          | 1210   | 942    | 718    | 205    | 19      |
| 350 nm          | 450 nm          | 57     | 55     | 38     | 71     | 124     |
| 400 nm          | 450 nm          | 17     | 6      | 19     | 96     | 611     |

4. Synthesis and characterization of four bDABs (E14, I16, J7, L10)



J7 : R = 4-OBn, R' = 3-Br L10 : R = 4-Cl, R' = 4-CN

Scheme S1. Synthesis of four bDABs (E14, I16, J7, L10).



Figure S27. <sup>1</sup>H NMR spectrum (400 MHz, CHLOROFORM-D) of E14.



Figure S28. <sup>13</sup>C NMR spectrum (101 MHz, CHLOROFORM-D) of E14.



Figure S29. <sup>1</sup>H NMR spectrum (400 MHz, DMSO-D6) of I16.



Figure S30. <sup>13</sup>C NMR spectrum (151 MHz, DMSO-D6) of I16.



Figure S31. <sup>1</sup>H NMR spectrum (400 MHz, CHLOROFORM-D) of J7.



Figure S32. <sup>13</sup>C NMR spectrum (101 MHz, CHLOROFORM-D) of J7.



Figure S33. <sup>1</sup>H NMR spectrum (400 MHz, DMSO-D6) of L10.

![](_page_31_Figure_0.jpeg)

Figure S34. <sup>13</sup>C NMR spectrum (151 MHz, DMSO-D6) of L10.

- b) a) 0.20 291 nm pH 1.0 116 0.20 350 nm pH 2.0 pH 3.0 0.15 pH 4.0 pH 5.0 pH 6.0 0.15 pH 7.0 pH 8.0 O.10 90.10 pH 9.0 pH 10.0 pH 11.0 pH 12.0 0.05 0.05 рН 13.0 pH 13.8 0.00 0.00 300 350 400 450 500 9 10 11 12 13 14 2 5 ż 8 1 3 4 6 Wavelength (nm) pН **C)** 200d) pH 1.0 λ<sub>ex</sub>: 350 nm λ<sub>ex</sub>: 291 nm рН 2.0 рН 3.0 pH 1.0 pH 2.0 150 . pH 4.0 . pH 3.0 150 pH 4.0 pH 5.0 . рН 6.0 E. I. (AU) . pH 5.0 F. I. (AU) pH 7.0 pH 6.0 . pH 8.0 . pH 7.0 100 pH 9.0 pH 8.0 pH 9.0 . pH 10.0 pH 11.0 pH 12.0 pH 10.0 pH 11.0 50 50 . pH 13.0 pH 13.8 pH 12.0 pH 13.0 . pH 13.8 0 0 350 400 450 500 550 400 450 500 550 600 650 Wavelength (nm) Wavelength (nm) f) e) 200 2.5 .  $\lambda_{em}$ : 412 nm (under  $\lambda_{ex}$ : 291 nm) Ŧ 468 nm (under  $\lambda_{ex}$ : 350 nm) λ<sub>em</sub>: 2.0 150 F. I. at  $\lambda_{em}$  (AU) F<sub>468</sub>/F<sub>412</sub> 1.5 100 1.0 50 0.5
- 5. Results of secondary screening for fluorescence response of bDABs (I16, J7, L10) under varied pH conditions

**Figure S35.** The change of optical properties of **I16** (10  $\mu$ M) under the pH variations (pH 1.0-13.8), a) and b) UV/vis spectral change, c, d), and e) fluorescence spectral change, f) plot of F<sub>468</sub>/F<sub>412</sub> versus pH value, where F<sub>468</sub> and F<sub>412</sub> are emission values at wavelengths of 468 and 412 nm, respectively.

0.0

2 3 4 5

1

8

pН

6 7

9 10 11 12 13 14

0

1

2 3 4

5

6 7 8

pН

9

10 11 12 13 14

![](_page_33_Figure_0.jpeg)

**Figure S36.** The change of optical properties of **J7** (25  $\mu$ M) under the pH variations (pH 1.0-13.8), a) and b) UV/vis spectral change, c, d), and e) fluorescence spectral change, f) plot of F<sub>460</sub>/F<sub>405</sub> versus pH value, where F<sub>460</sub> and F<sub>405</sub> are emission values at wavelengths of 460 and 405 nm, respectively.

![](_page_34_Figure_0.jpeg)

**Figure S37.** The change of optical properties of **L10** (25  $\mu$ M) under the pH variations (pH 1.0-13.8), a) and b) UV/vis spectral change, c, d), and e) fluorescence spectral change, f) plot of F<sub>435</sub>/F<sub>410</sub> versus pH value, where F<sub>435</sub> and F<sub>410</sub> are emission values at wavelengths of 435 and 410 nm, respectively.

![](_page_35_Figure_0.jpeg)

**Figure S38.** Plot of the fluorescence intensities of a) **J7** (25  $\mu$ M) and b) **L10** (25  $\mu$ M) under three different pH conditions over a period of 30 min,  $\lambda_{ex}$  = 359, 378 nm, respectively.

![](_page_36_Figure_0.jpeg)

**Figure S39.** Fluorescence intensity of a) **I16** (10  $\mu$ M), b) **J7** (25  $\mu$ M), and c) **L10** (25  $\mu$ M) at three different pH condition in the absence (control) and presence of various ion species (Na<sup>+</sup>: 10 mM; K<sup>+</sup>: 10 mM; Ca<sup>2+</sup>: 1 mM; Mg<sup>2+</sup>: 1 mM; Cu<sup>2+</sup>: 1 mM; Ni<sup>2+</sup>: 1 mM; F<sup>-</sup>: 1 mM; Cl<sup>-</sup>: 1 mM; HSO<sub>4</sub><sup>-</sup>: 1 mM; SCN<sup>-</sup>: 1 mM; H<sub>2</sub>PO<sub>4</sub><sup>-</sup>: 1 mM; NO<sub>3</sub><sup>-</sup>: 1 mM),  $\lambda_{ex}$  =350, 359, 378 nm, respectively.

![](_page_37_Figure_0.jpeg)

**Figure S40.** Reversibility of fluorescence response of a) **I16** (10  $\mu$ M), b) **J7** (25  $\mu$ M), and c) **L10** (25  $\mu$ M) between low pH and high pH,  $\lambda_{ex}$  =350, 359, 378 nm, respectively.