Electronic Supplementary Information

Persulfate-nitrogen doped graphene mixture as an oxidant for the synthesis of 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters and nitrite

Palani Natarajan*, Priya and Deachen Chuskit

Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University,

Chandigarh - 160 014, India

pnataraj@pu.ac.in

Table of Contents:

1.	General aspects	S2
2.	General procedure for the syntheses	S3-S5
3.	Experimental characterization data	S6-S14
4.	References	S14-S15
5.	Copies of ¹ H and ¹³ C NMR spectra	S15-S32

Experimental Section

General Aspects

Unless otherwise noted, all the reactions were performed at 25 °C. All chemicals, reagents and precursors were purchased from commercial sources with the best quality and they were used without further purification. All carbonaceous materials were purchased from commercial sources with the best quality and dried at 60 °C under vacuum before use. All solvents were dried over 3 Å/4 Å a molecular sieve, distilled and de-aerated prior to use.¹ Double-distilled water was used for all purposes. All reactions were carried out in a nitrogen gas atmosphere. Reactions were monitored by analytical thin layer chromatography on silica gel and visualization was accomplished by irradiation with short wave UV light at 254 nm and near UV at 356 nm lights. All NMR spectra were recorded on a Bruker Avance (300 MHz) spectrometer in DCM-d₂ as a solvent. Chemical shifts are expressed as δ -value in parts per million (ppm) and were calibrated using the residual protonated solvent as an internal standard. The peak patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets and so on. The coupling constants, J, are reported in Hertz (Hz). High resolution mass spectra were collected by positive mode electrospray ionization (ESI) using Waters-Q-TOF-Premier mass spectrometer. IR spectra were recorded on a Perkin Elmer Spectrum 1000 FT-IR spectrometer.

General procedure for the synthesis of 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters and nitrite

Aryl alkynoate ester (1, 1.0 mmol, 1.0 equiv.), KNO₂ (128 mg, 1.5 mmol, 1.5 equiv.), $K_2S_2O_8$ (811 mg, 3.0 mmol, 3.0 equiv.) and N-doped graphene (NG, 0.025 g/ mmol of aryl alkynoate ester) were charged to an oven-dried Schlenk-tube equipped with a magnetic stir bar. To this mixture, H_2O -CH₃CN (8:2, v/v mL, 18 mL) was added. The tube was then sealed with a glass stopper, and a N₂-gas inlet/outlet was given by a side-neck. The resulting mixture was vigorously

stirred at 25 °C in a nitrogen gas environment. After the completion (24 h, as indicated by disappearance of precursor as determined by TLC), the organic matter (product) was completely precipitated by adding NaCl (3.0 g) followed by cooling to 5 °C. Filtration was used to isolate the precipitates, which were then washed with excess of water to remove any water-soluble contaminants. In many cases, the ultimate purification was accomplished by recrystallization at low temperatures (vide infra). Spectroscopic examination and a comparison with authentic sample spectra were used to establish the product's identity and purity.

General procedure for the isolation of pure products (2) by recrystallization

The acquired product precipitates were placed fully into a glass beaker and then dissolved using a minimum amount of ethanol at room temperature. The resulting suspension was filtered to eliminate all carbonaceous materials, and the clear yellow filtrate solution was diluted with water and stored overnight at 8-10 °C. After that, the pure product was collected by filtration (using a G5-crucible) and dried under vacuum for overnight.

Procedure for the large-scale synthesis of 2d

An oven-dried round bottom flask equipped with a magnetic stir bar was charged with *p*-tolyl 3phenylpropiolate (**1d**, 1.18 g, 5.0 mmol, 1.0 equiv.), KNO₂ (638 mg, 7.5 mmol, 1.5 equiv.), $K_2S_2O_8$ (4.05 g, 15.0 mmol, 3.0 equiv.) and N-doped graphene (NG, 125 mg). To this mixture, H_2O -CH₃CN (8:2, v/v mL, 85 mL) was added. The tube was then sealed with a glass stopper, and a N₂-gas inlet/outlet was given by a side-neck. The resulting mixture was vigorously stirred at 25 °C in a nitrogen gas environment. After 24 h, the organic matter (product) was completely precipitated by adding solid NaCl followed by cooling to 5 °C. The precipitates were isolated by filtration, and then rinsed with excess water to eliminate any water-soluble contaminants. Following that, the pure product **2d** as a yellow solid in 87% (1.25 g) yield was obtained by recrystallization using the general recrystallization procedure described above.

Procedure for synthesis of compound 3 from 3-nitro-4-(thiophen-3-yl)-2H-chromen-2-one (2s) a representative of 3-nitrocoumarins

To an oven dried Schlenk-tube charged with a magnetic stirring bar, 3-nitro-4-(thiophen-3-yl)-2H-chromen-2-one (2s, 137 mg, 0.5 mmol, 1.0 equiv) was taken and dissolved in dioxane- H_2O (8:2, v/v mL, 10 mL) mixture. Fe powder (224 mg, 4.0 mmol, 8.0 equiv) and NH₄Cl (40 mg, 0.75 mmol, 1.5 equiv) were then added to it, and the mixture was stirred at 90 °C. After 6 h, the reaction mixture was cooled to room temperature and volatiles were totally evaporated to dryness under reduced pressure and then vacuum dried. As such, the crude reaction mixture was treated with 4-anisaldehyde (102 mg, 91 μ l, 0.75 mmol, 1.5 equiv) in the presence of FeCl₃ (16 mg, 20 mol%) as a catalyst and dioxane (10 mL) as a solvent. The resulting solution was then stirred for 24 h at 90 °C in a nitrogen gas atmosphere. Afterwards, the volatiles were evaporated under reduced pressure and then admixed with aqueous NaCl solution (20 mL). The organic matters are extracted with ethyl acetate, dried over Na₂SO₄ and evaporated under reduced pressure to yield a pale-yellow gummy-solid, which was purified by a column chromatography using a mixture of ethyl acetate and hexane as eluent to provide the expected product 3 as a paleyellow solid in 66% yield. ¹H NMR (CD₂Cl₂, 300 MHz)²: δ 8.54 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 5.6 Hz, 1H), 8.20 (d, J = 8.0 Hz, 2H), 8.13 (d, J = 5.6 Hz, 1H), 7.47-7.61 (m, 3H), 7.12 (d, J = 8.4 Hz, 2H), 3.95 (s, 3H). ¹³C NMR (CD₂Cl₂, 75 MHz): δ 156.8, 155.1, 150.2, 146.3, 135.9, 135.1, 129.7, 129.0, 126.2, 125.8, 125.6, 121.3, 119.9, 119.6, 113.4, 113.1, 109.5, 50.8.

Procedure for NG isolation and recycle

An oven-dried round bottom flask equipped with a magnetic stir bar was charged with *p*-tolyl 3phenylpropiolate (**1d**, 1.18 g, 5.0 mmol, 1.0 equiv.), KNO₂ (638 mg, 7.5 mmol, 1.5 equiv.), $K_2S_2O_8$ (4.05 g, 15.0 mmol, 3.0 equiv.) and N-doped graphene (NG, 125 mg). To this mixture, H_2O -CH₃CN (8:2, v/v mL, 85 mL) was added. The tube was then sealed with a glass stopper, and a N₂-gas inlet/outlet was given by a side-neck. The resulting mixture was vigorously stirred at 25 °C in a nitrogen gas environment. After 24 h, the organic matter (product) was completely precipitated by adding solid NaCl followed by cooling to 5 °C. The precipitates were isolated by filtration, and then rinsed with excess water to eliminate any water-soluble contaminants. The acquired precipitates were placed fully into a glass beaker and then dissolved using a minimum amount of ethanol at room temperature. The insoluble NG was easily recovered by a simple filtration, washed with excess ethanol and dried under vacuum. Afterwards, the recovered NG was employed for **2d** synthesis again. The process was repeated up to four times.

Procedure for control experiments

TEMPO (2 equiv., 2,2,6,6-tetramethyl-1-piperidinyloxy) was added to the standard reaction conditions. Resultant mixture was stirred under nitrogen gas atmosphere at 25 °C for 24 h. Afterwards, TLC and NMR measurements were performed on the reaction mixture, which revealed that there was no product 2d.

BHT (2 equiv. butyl-hydroxytoluene) was added to the standard reaction conditions. Resultant mixture was stirred under nitrogen gas atmosphere at 25 °C for 24 h. Following that, TLC and NMR tests were performed on the reaction mixture, which revealed that there was no product 2d.

Experimental characterization data for products

7-Methoxy-3-nitro-4-phenyl-2H-chromen-2-one (2a)³: Synthesized from **1a** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 50% aqueous ethanol solution. Obtained 265 mg, 89% Yield. Yellow solid. $R_f = 0.2$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3316, 3122, 3016, 1738, 1617, 1541, 1463, 1020, 765. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.53-7.50 (m, 3H), 7.38-7.34 (m, 2H), 7.17 (d, J = 8.6 Hz, 1H), 6.93 (d, J = 2.2 Hz, 1H), 6.87 (dd, J = 8.6, 2.2 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 164.7, 155.2, 154.1, 148.0, 134.6, 130.8, 130.3, 129.5, 129.3, 128.1, 114.2, 111.2, 101.3, 56.4. HRMS (ESI) calcd for C₁₆H₁₁NO₅ [M+H]⁺ 298.0715, found 298.0721.

7-Ethoxy-3-nitro-4-phenyl-2H-chromen-2-one (**2b**)³: Synthesized from **1b** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 50% aqueous ethanol solution. Obtained 290 mg, 93% Yield. Yellow solid. $R_f = 0.2$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3291, 2926, 2856, 1741, 1611, 1541, 1423. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.58-7.51 (m, 3H), 7.36-7.33 (m, 2H), 7.18 (d, J = 9.0 Hz, 1H), 6.90 (d, J = 2.4 Hz, 1H), 6.85 (dd, J = 8.6, 2.4 Hz, 1H), 4.13 (q, J = 7.4 Hz, 2H), 1.49 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 164.5, 155.1, 154.1, 148.2, 134.4, 130.8, 130.4, 129.6, 129.3, 128.1, 114.8, 110.9, 101.5, 64.7, 14.5. HRMS (ESI) calcd for $C_{17}H_{13}NO_5$ [M+H]⁺ 312.0872, found 312.0879.

3-Nitro-4-phenyl-2H-chromen-2-one (**2c**)⁴: Synthesized from **1c** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 40% aqueous ethanol solution. Obtained 244 mg, 91% Yield. Yellow solid. $R_f = 0.4$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3045, 2932, 2854, 1742, 1604, 1541, 1421, 763. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.71-7.68 (m, 1H), 7.55-7.47 (m, 4H), 7.39-7.31 (m, 4H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.5, 153.1, 147.2, 136.9, 134.2, 130.9, 129.4, 128.9, 128.2, 125.7, 118.1, 117.5, 115.3. HRMS (ESI) calcd for C₁₅H₉NO₄ [M+H]⁺ 268.0610, found 268.0617.

7-Methyl-3-nitro-4-phenyl-2H-chromen-2-one (2d)³: Synthesized from **1d** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 40% aqueous ethanol solution. Obtained 249 mg, 88% Yield. Yellow solid. $R_f = 0.3$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 3064, 3035, 2997, 1736, 1617, 1541, 1462, 744. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.58-7.53 (m, 3H), 7.39-7.36 (m, 2H), 7.29 (s, 1H), 7.18 (d, J = 8.2 Hz, 1H), 7.11 (d, J = 8.6 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.7, 153.2, 147.4, 146.2, 136.3, 130.8, 129.4, 129.2, 129.0, 128.1, 126.9, 117.8, 115.5, 22.1. HRMS (ESI) calcd for C₁₆H₁₁NO₄ [M+H]⁺ 282.0766, found 282.0764.

7-Ethyl-3-nitro-4-phenyl-2H-chromen-2-one (2e)³: Synthesized from 1e according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 40% aqueous ethanol solution. Obtained 258 mg, 87% Yield. Yellow solid. $R_f = 0.3$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3053, 2929, 2854, 1737, 1613, 1541, 1422, 846, 761. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.58-7.52 (m, 3H), 7.39-7.35 (m, 2H), 7.31 (d, J = 1.0 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 7.17-7.14 (m, 1H), 2.78 (q, J = 7.8 Hz, 2H), 1.30 (t, J = 7.8 Hz, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.8, 153.2, 152.4, 147.4, 136.2, 130.8, 129.4, 129.2, 129.2, 128.1, 125.9, 116.4, 115.6, 29.2, 15.2. HRMS (ESI) calcd for $C_{17}H_{13}NO_4$ [M+H]⁺ 296.0923, found 296.0929.

7-(*tert***-butyl)-3-nitro-4-phenyl-2H-chromen-2-one (2f)**³: Synthesized from 1f according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 40% aqueous ethanol solution. Obtained 289 mg, 89% Yield. Yellow solid. $R_f = 0.3$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 3052, 2930, 2852, 1736, 1635, 1542, 1456, 842, 757. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.55-7.50 (m, 3H), 7.46 (d, J = 1.8 Hz, 1H), 7.38-7.32 (m, 3H), 7.21 (d, J = 8.2 H, 1H), 1.37 (s, 9H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 159.3, 153.8, 153.2, 147.3, 136.1, 130.8, 129.4, 129.2, 128.8, 128.1, 123.4, 115.3, 114.5, 35.6, 31.1. HRMS (ESI) calcd for C₁₉H₁₇NO₄ [M+H]⁺ 324.1236, found 324.1241.

3-Nitro-4,7-diphenyl-2H-chromen-2-one (2g)³: Synthesized from **1g** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 30% aqueous ethanol solution. Obtained 269 mg, 78% Yield. Yellow solid. $R_f = 0.23$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3122, 3045, 2993, 2932, 2853, 1738, 1617, 1544, 1422, 872, 762. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.70 (s, 1H), 7.65 (d, J = 7.0 Hz, 2H), 7.59-7.46 (m, 7H), 7.41 (d, J = 4.6 Hz, 2H), 7.35 (d, J = 8.0 Hz, 1H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.8, 153.5, 147.8, 147.3, 138.4, 130.9, 129.8 129.5, 129.4, 129.3, 129.2, 129.1, 128.1, 127.6, 124.5, 116.7, 115.4. HRMS (ESI) calcd for C₂₁H₁₃NO₄ [M+H]⁺ 344.0923, found 344.0919.

3-Nitro-4-phenyl-2H-benzo[g]chromen-2-one (2h)³: Synthesized from **1h** according to the general procedure. The precipitate obtained was purified by following a general recrystallization procedure in 30% aqueous ethanol solution. Obtained 268 mg, 84% Yield. Yellow solid. $R_f = 0.21$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3211, 3116, 3013, 2987, 2894, 1743, 1637, 1544, 1466, 851, 749. ¹H NMR (300 MHz, CD₂Cl₂) δ 8.61-8.56 (m, 1H), 7.91 (dd, J = 6.2, 2.4 Hz, 1H), 7.78-7.71 (m, 2H), 7.66 (d, J = 8.6 Hz, 1H), 7.60-7.57 (m, 3H), 7.45-7.41 (m, 2H), 7.22 (d, J = 8.6 Hz, 1H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.4, 151.1, 148.5, 136.4, 135.8, 130.9, 130.4, 129.6, 129.4, 128.3, 128.1, 125.6, 123.2, 123.0, 122.9, 113.2. HRMS (ESI) calcd for C₁₉H₁₁NO₄ [M+H]⁺ 318.0766, found 318.0772.

6,8-Dimethyl-3-nitro-4-phenyl-2H-chromen-2-one (2i): Synthesized from **1i** according to the general procedure. However, instead of 24 h specified in the general synthetic procedure, the reaction was carried out for 48 hours. The precipitate obtained was purified by following the general recrystallization procedure in 30% aqueous ethanol solution. Obtained 204 mg, 69% Yield. Yellow solid. $R_f = 0.2$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 3067, 3036, 2998, 1739, 1613, 1543, 1422. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.65-7.56 (m, 3H), 7.31 (dd, J = 7.6, 1.4 Hz, 2H), 7.26 (s, 1H), 6.68 (s, 1H), 2.49 (s, 3H), 2.27 (s, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 160.7, 154.8, 149.5, 135.1, 133.8, 133.3, 129.8, 129.4, 127.8, 126.2, 125.3, 116.7, 115.6, 20.9, 17.6. HRMS (ESI) calcd for C₁₇H₁₃NO₄ [M+H]⁺ 296.0923, found 296.0930.

5,7-Dimethyl-3-nitro-4-phenyl-2H-chromen-2-one (2j): Synthesized from **1j** according to the general procedure. However, instead of 24 h specified in the general synthetic procedure, the reaction was carried out for 48 hours. The precipitate obtained was purified by following the general recrystallization procedure in 30% aqueous ethanol solution. Obtained 15 mg, 5% Yield. Yellow solid. $R_f = 0.2$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3129, 3066, 3038, 2999, 1738, 1619, 1541, 1464, 921, 817, 744. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.57-7.54 (m, 3H), 7.32 (s, 1H), 7.24-7.21 (m, 2H), 6.68 (s, 1H), 2.47 (s, 3H), 2.25 (s, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 166.1, 159.7, 150.5, 136.6, 134.4, 133.6, 129.3, 128.6, 128.2, 126.5, 126.3, 119.9, 112.6, 20.9, 15.5. HRMS (ESI) calcd for C₁₇H₁₃NO₄ [M+H]⁺ 296.0923, found 296.0927.

3-Nitro-4-phenyl-7-(trifluoromethoxy)-2H-chromen-2-one (2k): Synthesized from 1k according to the general procedure. The crude reaction mixture was purified by chromatography on a silica gel. Obtained 257 mg, 73% Yield. Yellow wax. $R_f = 0.14$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3051, 2987, 1743, 1637, 1544, 1466, 1312, 1160, 1015. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.67-7.61 (m, 3H), 7.33-7.29 (m, 3H), 7.21 (d, J = 8.8 Hz, 1H), 7.13-7.10 (m, 1H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 159.7, 156.5, 154.3, 152.6, 132.7, 130.5, 130.3, 129.3, 127.8, 120.3 (q, J = 258 Hz), 118.2, 117.1, 109.1, 107.9. ¹⁹F NMR (CD₂Cl₂) δ -58.9. HRMS (ESI) calcd for C₁₆H₈NO₅F₃ [M+H]⁺ 352.0433, found 352.0439.

7-Bromo-3-nitro-4-phenyl-2H-chromen-2-one (2l)³: Synthesized from **11** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 30% aqueous ethanol solution. Obtained 297 mg, 86% Yield. Yellow solid. $R_f = 0.4$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 3066, 2914, 1748, 1616, 1595, 1547, 1456, 1015, 765. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.68 (s, 1H), 7.58-7.54 (m, 3H), 7.46-7.42 (m, 1H), 7.38 (d, J = 7.2 Hz, 2H), 7.17 (d, J = 8.4 Hz, 1H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.1, 152.9, 146.7, 136.6, 131.3, 130.2, 129.6, 129.3, 128.8, 128.5 128.1, 120.9, 117.2. HRMS (ESI) calcd for C₁₅H₈BrNO₄ [M+H]⁺ 345.9715, found 345.9721.

7-Chloro-3-nitro-4-phenyl-2H-chromen-2-one (2m)³: Synthesized from 1m according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 40% aqueous ethanol solution. Obtained 224 mg, 74% Yield. Yellow solid. $R_f = 0.4$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 3069, 2922, 1742, 1639, 1541, 1463, 756. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.61-7.56 (m, 3H), 7.51 (d, J = 1.6 Hz, 1H), 7.38 (d, J = 7.2 Hz, 2H), 7.29 (dd, J = 8.4, 1.6 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.2, 153.0, 146.8, 140.7, 131.3, 130.2, 129.6, 128.6, 128.1, 126.5, 117.9, 116.6. HRMS (ESI) calcd for C₁₅H₈ClNO₄ [M+H]⁺ 302.0220, found 302.0224.

7-Fluoro-3-nitro-4-phenyl-2H-chromen-2-one (2n)³: Synthesized from **1n** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 50% aqueous ethanol solution. Obtained 206 mg, 72% Yield. Yellow solid. $R_f = 0.36$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 3098, 2987, 2906, 1751, 1617, 1542, 1458, 816, 764. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.61-7.56 (m, 3H), 7.38 (d, J = 7.2 Hz, 2H), 7.33-7.28 (m, 1H), 7.20 (dd, J = 8.4, 2.2 Hz, 1H), 7.08-7.06 (m, 1H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 165.8 (d, J = 256.9 Hz), 154.2, 154.3, 153.1, 147.0, 131.4 (d, J = 11.2 Hz), 131.2, 129.6, 128.8, 128.1, 114.9 (d, J = 3.1 Hz), 114.2 (d, J = 23.2 Hz), 105.4 (d, J = 25.6 Hz). ¹⁹F NMR (CD₂Cl₂) δ -113.6. HRMS (ESI) calcd for C₁₅H₈FNO₄ [M+H]⁺ 286.0516, found 286.0511.

6-Methoxy-3-nitro-4-phenyl-2H-chromen-2-one (20)³: Synthesized from **10** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 50% aqueous ethanol solution. Obtained 260 mg, 87% Yield. Yellow solid. $R_f = 0.2$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 3318, 3121, 3014, 1735, 1632, 1571, 1544, 1423, 756. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.58-7.53 (m, 3H), 7.41-7.37 (m, 3H), 7.27-7.24 (m, 1H), 6.69 (d, J = 3.0 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 156.8, 153.5, 147.2, 146.9, 137.1, 131.0, 129.3, 129.0, 128.1, 121.6, 118.7, 118.5, 111.4, 56.2. HRMS (ESI) calcd for C₁₆H₁₁NO₅ [M+H]⁺ 298.0715, found 298.0719.

6-Chloro-3-nitro-4-phenyl-2H-chromen-2-one (2p): Synthesized from 1p according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 40% aqueous ethanol solution. Obtained 251 mg, 83% Yield. Yellow solid. $R_f = 0.4$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3107, 3052, 2927, 1746, 1623, 1547, 1424, 874, 756. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.78-7.73 (m, 2H), 7.59-7.55 (m, 3H), 7.38-7.34 (m, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 152.8, 151.7, 146.1, 137.2, 137.1, 131.4, 131.2, 129.7, 128.1, 128.0, 119.6, 119.3, 118.5. HRMS (ESI) calcd for C₁₅H₈ClNO₄ [M+H]⁺ 302.0220, found 302.0227.

3-Nitro-4-(*p***-tolyl)-2H-chromen-2-one (2q)³**: Synthesized from **1q** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 40% aqueous ethanol solution. Obtained 260 mg, 92% Yield. Pale-yellow solid. R_f = 0.3 in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 3116, 3021, 2988, 1742, 1638, 1546, 1467, 757. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.71-7.65 (m, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.37-7.32 (m, 4H), 7.30-7.27 (m, 2H), 2.46 (s, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 153.6, 152.9, 147.3, 141.5, 136.6, 134.2, 130.1, 129.3, 128.1, 125.9, 125.5, 118.2, 117.4, 21.7. HRMS (ESI) calcd for C₁₆H₁₁NO₄ [M+H]⁺ 282.0766, found 282.0762.

4-(4-Fluorophenyl)-3-nitro-2H-chromen-2-one (2r)³: Synthesized from **1r** according to the general procedure. The precipitate obtained was purified by following the general recrystallization procedure in 50% aqueous ethanol solution. Obtained 232 mg, 81% Yield. Yellow solid. $R_f = 0.3$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) v 2976, 2865, 1748, 1599, 1548, 1422, 749. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.73 (t, J = 7.4 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.40-7.32 (m, 3H), 7.29-7.24 (m, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 164.0 (d, J = 250.6 Hz), 153.2, 153.1, 146.2, 137.0, 134.6, 130.3 (d, J = 8.4 Hz), 129.1, 125.6, 124.7 (d, J = 3.4 Hz), 117.8, 117.6, 116.7 (d, J = 21.8 Hz). HRMS (ESI) calcd for C₁₅H₈FNO₄ [M+H]⁺ 286.0516, found 286.0513.

3-Nitro-4-(thiophen-3-yl)-2H-chromen-2-one (2s)²: Synthesized from 1s according to the general procedure. The crude reaction mixture was purified by chromatography on a silica gel. Obtained 233 mg, 85% Yield. Yellow oil. $R_f = 0.3$ in 9:1 hexane-ethyl acetate mixture. IR (KBr, cm⁻¹) *v* 2974, 1742, 1606, 1545, 1424, 765. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.57-7.51 (m, 2H), 7.40-7.36 (m, 1H), 7.31-7.25 (m, 2H), 7.20-7.17 (m, 1H), 7.14-7.11 (m, 1H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 159.3, 152.4, 146.5, 133.2, 131.6, 129.1, 128.0, 127.6, 127.3, 124.4, 122.6, 120.7, 116.5. HRMS (ESI) calcd for C₁₃H₇SNO₄ [M+H]⁺ 274.0174, found 274.0170.

References

1 B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, Pearson Education, 1989 (ISBN: 978-81-7758-957-3).

2 T. U. Kumar, Y. Bobde, S. Pulya, K. Rangan, B. Ghosh and A. Bhattacharya, *ChemistrySelect* 2019, **4**, 10726-10730.

3 S. Sau and P. Mal, Chem. Commun., 2021, 57, 9228-9231.

4 W. Liu, Y. Zhang and H. Guo, J. Org. Chem., 2018, 83, 10518-10524.

Figure S1. ¹H (top) and ¹³C (bottom) NMR spectra of 2a in CD_2Cl_2 .

Figure S2. ¹H (top) and ¹³C (bottom) NMR spectra of 2b in CD_2Cl_2 .

Figure S3. ¹H (top) and ¹³C (bottom) NMR spectra of 2c in CD_2Cl_2 .

Figure S4. ¹H (top) and ¹³C (bottom) NMR spectra of 2d in CD_2Cl_2 .

Figure S5. ¹H (top) and ¹³C (bottom) NMR spectra of 2e in CD₂Cl₂.

Figure S6. ¹H (top) and ¹³C (bottom) NMR spectra of 2f in CD_2Cl_2 .

Figure S7. ¹H (top) and ¹³C (bottom) NMR spectra of 2g in CD_2Cl_2 .

Figure S8. ¹H (top) and ¹³C (bottom) NMR spectra of 2h in CD_2Cl_2 .

Figure S9. ¹H (top) and ¹³C (bottom) NMR spectra of 2i in CD_2Cl_2 .

Figure S10. 1 H (top) and 13 C (bottom) NMR spectra of 2j in CD₂Cl₂.

Figure S11. ¹H (top) and ¹³C (bottom) NMR spectra of 2l in CD_2Cl_2 .

Figure S12. ¹H (top) and ¹³C (bottom) NMR spectra of 2m in CD_2Cl_2 .

Figure S13. ¹H (top) and ¹³C (bottom) NMR spectra of 2n in CD_2Cl_2 .

Figure S14. ¹H (top) and ¹³C (bottom) NMR spectra of 20 in CD_2Cl_2 .

Figure S15. ¹H (top) and ¹³C (bottom) NMR spectra of 2p in CD_2Cl_2 .

Figure S16. ¹H (top) and ¹³C (bottom) NMR spectra of 2q in CD_2Cl_2 .

Figure S17. ¹H (top) and ¹³C (bottom) NMR spectra of 2r in CD₂Cl₂.