Supporting Information

Cu-Catalyzed Tandem Cyclization and Coupling of Enynones with Enaminones for Multisubstituted Furans & Furano-pyrroles

Dattatri,^{ab} Maneesh Kumar Reddy Singam^{ab}, Jagadeesh Babu Nanubolu^c and Maddi Sridhar Reddy^{*ab}

^aDepartment of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. ^bAcademy of Scientific and Innovative Research, Ghaziabad 201002, India. ^cAnalytical Department, CSIR-IICT, Hyderabad 500007, India.

S.NO	Table of Contents	Pages
1	General Information and methods	S1
2	Experimental Procedures	S1-S5
3	Optimization Studies	S5-S6
4	General Procedure for title compounds and Characteristic data	S6-S20
5	X-ray crystallography data	S21-S52
6	References	S55-S59
7	Copies of ¹ H and ¹³ C NMR spectra	S60

1. General Information and methods.

All reagents and solvents were purchased from commercial sources and used without purification. NMR spectra were recorded with a 300, 400 or 500 MHz spectrometer for ¹H NMR, 100 or 125 MHz for ¹³C NMR spectroscopy. Chemical shifts are reported relative to the residual signals of tetramethylsilane in CDCl₃ or deuterated solvent CDCl₃ for ¹H and ¹³C NMR spectroscopy. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), triplet (t), quartet (q), multiplet (m). HRMS were recorded by using QT of mass spectrometer. Column chromatography was performed with silica gel (100–200 mesh) as the stationary phase. All reactions were monitored by using TLC.

2. Experimental Procedures

2.1. Preparation of Enynones General Procedure (GP-1):

General Procedure for the Synthesis of 2a-2k:¹

To a 25 mL round bottom flask, the mixture of 1,3-diketones (5 mmol), AcOH (0.2 equiv), piperidine (0.1 equiv) and dry MgSO₄ (1 equiv) was added to a solution of propiolaldehyde (1.2 equiv) in toluene. The reaction was carried out at 40 °C stirring for 4 h while monitoring by TLC. After the completion of the reaction, the reaction mixture was filtered through *celite* and the resultant elute was concentrated to get the crude product. The enynone **2** was purified by chromatography on silica gel with the appropriate mixture of PE and EA in 60-90% yields (Z/E mixture, **1x** was isolated in 42% yield).

Table S1: List of Enynones

2.3. Preparation of Enaminones: General Procedure (GP-3):²

General Procedure for the Synthesis of 1a-1q:²

To a stirred solution of ketone 5 (5.0 mmol, 1.0 eq.) in 5.0 mL of toluene, 1,1-dimethoxy-N, Ndimethylmethanamine 6 (7.0 mmol, 1.4 eq.) was added and stirred at 110 °C. After completion of the reaction (monitored by TLC), it was quenched with water, extracted with ethyl acetate and dried with anhydrous Na_2SO_4 . The reaction mixture was concentrated under reduced pressure and was purified by column chromatography (hexane:ethyl acetate = 1:1) to give the desired product **1**.

Table S2: List of Enaminones.

3. Optimization Studies

Entry	Variation from the standard conditions	Yield (%) ^b
1	None	80
2	Cu(OAc) ₂ instead of Cu(OTf) ₂	40
3	AgOTf instead of Cu(OTf) ₂	60

4	CuI instead of Cu(OTf) ₂	10
5	Cu(OTf) instead of Cu(OTf) ₂	19
6	Zn(OTf) ₂ instead of Cu(OTf) ₂	2
7	DCM instead of DCE	60
8	THF instead of DCE	50
9	CH ₃ CN instead of DCE	48
10	60 °C instead of rt	55
^a Reaction conditions:	1 (1 equiv), 2 (1 equiv), Cu(OTf) ₂ (10 mol%), DCE, rt for 15-30 min. ^b isolated yield.	

4. General Procedure-A for Cu-Catalyzed	Cyclizative Coupling	of Enaminones	(1a)
with Enynones (2a) and Characteristic data:			

To a mixture of enaminone **1a** (52.5 mg, 0.3 mmol), enynone **2a** (63.6 mg, 0.3 mmol) in DCE was added Cu(OTf)₂ (10 mol%) into 10ml round-bottomed flask. The reaction mixture was stirred at rt in air for 15-30 min (monitored by TLC). After completion of reaction, the mixture was concentrated and was added with water and the aqueous layer was extracted with ethyl acetate (2×10 mL). The organic layer was evaporated and purified by column chromatography R_f = 0.50 (SiO₂, EtOAc:Hexane, 5:95) to get **3aa** as pale brown sticky solid in 80% (86.4 mg) yield.

2-(4-acetyl-5-methylfuran-2-yl)-4-oxo-2,4-diphenylbutanal (3aa):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography (R_f = 0.50, SiO₂, EtOAc:Hexane, 5:95) to give pure product as a pale yellow solid, (84.2 mg, 78 % yield). ¹H NMR (500 MHz, CDCl₃) δ 10.09 (s, 1H), 7.95 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.49 – 7.44 (m, 2H), 7.39 – 7.34 (m, 2H), 7.31 (ddd, *J* =

8.5, 4.3, 1.3 Hz, 1H), 7.24 – 7.21 (m, 2H), 6.64 (s, 1H), 4.16 (d, J = 1.8 Hz, 2H), 2.50 (s, 3H), 2.40 (s, 3H¹³C NMR (100 MHz, CDCl₃) δ 196.5, 196.0, 194.1, 158.2, 150.7, 137.6, 136.2, 133.8, 129.1, 128.8, 128.3, 128.1, 127.8, 122.4, 109.3, 57.3, 45.3, 29.3, 14.6. HRMS (ESI) calcd for C₂₃H₂₁O₄ [M+H]⁺ 361.1440, found 361.1429.

2-(4-acetyl-5-methylfuran-2-yl)-4-oxo-2-phenyl-4-(p-tolyl) butanal (3ba):

The title compound was prepared from **1b** (56.7 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a brown colour sticky solid (87.5mg, 78% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 10.09 (s, 1H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.37 (d, *J* = 6.9 Hz, 2H), 7.31 (d, *J* = 7.0 Hz, 1H), 7.26 (s, 2H), 7.22 (s, 1H), 7.14 (s, 1H), 6.64 (s, 1H), 4.14 (d, *J* = 2.9 Hz, 2H), 2.50 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H).¹³**C NMR (125 MHz, CDCl₃)** δ 196.6, 195.7, 194.1, 158.1, 150.9, 144.7, 137.7, 133.8, 131.5, 129.5, 129.1, 128.4, 128.2, 128.1, 128.0, 127.8, 127.6, 122.4, 109.3, 57.3, 45.3, 29.3, 21.8, 14.5. **HRMS (ESI)** calcd for C₂₄H₂₃O₄ [M+H]⁺ 375.1596, found 375.1584.

2-(4-acetyl-5-methylfuran-2-yl)-4-(4-ethylphenyl)-4-oxo-2-phenylbutanal (3ca):

The title compound was prepared from 1c (60.9 mg, 0.3 mmol) and 2a (63.6 mg, 0.3 mmol) according to general procedure A. Purification using column chromatography ($R_f = 0.5$, SiO₂, EtOAc:Hexane, 05:95) gave pure product as a pale brown colour sticky solid (83.8 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.39 (dd, J = 9.9, 4.6 Hz,

2H), 7.34 (dd, J = 5.3, 1.7 Hz, 1H), 7.32 – 7.27 (m, 3H), 7.24 (s, 1H), 6.66 (s, 1H), 4.17 (d, J = 2.0 Hz, 2H), 2.73 (q, J = 7.6 Hz, 2H), 2.52 (s, 3H), 2.41 (s, 3H), 1.28 (t, J = 7.6 Hz, 3H).). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 195.7, 194.1, 158.1, 150.9, 150.8, 137.6, 133.9, 129.1, 128.5, 128.3, 128.1, 127.8, 122.4, 109.2, 57.2, 45.3, 29.3, 29.1, 15.3, 14.5. HRMS (ESI) calcd for C₂₅H₂₄NaO₄ [M+Na]⁺411.1572, found 411.1564.

4-([1,1'-biphenyl]-4-yl)-2-(4-acetyl-5-methylfuran-2-yl)-4-oxo-2-phenylbutanal (3da):

The title compound was prepared from **1d** (75.3 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.5$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a brown colour sticky solid (98.1 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.64 (d, J

= 7.4 Hz, 2H), 7.49 (t, J = 7.3 Hz, 2H), 7.46 – 7.37 (m, 3H), 7.35 (d, J = 6.9 Hz, 1H), 7.28 (s, 2H), 6.69 (s, 1H), 4.21 (s, 2H), 2.54 (s, 3H), 2.42 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃)** δ 196.46, 195.57, 194.07, 158.14, 150.76, 146.39, 139.72, 137.59, 134.86, 129.11, 129.08, 128.89, 128.47, 128.11, 127.77, 127.41, 127.36, 122.42, 109.32, 57.30, 45.33, 29.30, 14.53. **HRMS (ESI)** calcd for C₂₉H₂₃O₄ [M+H]⁺437.1753, found 437.1746.

2-(4-acetyl-5-methylfuran-2-yl)-4-(4-ethoxyphenyl)-4-oxo-2-phenylbutanal (3ea):

The title compound was prepared from 1e (65.7 mg, 0.3 mmol) and 2a (63.6 mg, 0.3 mmol) according to general procedure A. Purification using column chromatography ($R_f = 0.4$, SiO₂, EtOAc:Hexane, 7:93) gave pure product as a pale brown colour sticky solid (84.8 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 7.95 – 7.87 (m, 2H), 7.39 – 7.33 (m, 2H), 7.33 –

7.29 (m, 1H), 7.25 – 7.20 (m, 2H), 6.91 (d, J = 8.9 Hz, 2H), 6.64 (s, 1H), 4.11 (dd, J = 7.6, 6.0 Hz, 4H), 2.50 (s, 3H), 2.39 (s, 3H), 1.44 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 196.7, 194.5, 194.2, 163.5, 158.1, 151.0, 137.7, 130.7, 129.1, 128.0, 127.8, 122.4, 114.4, 109.2, 63.9, 57.2, 45.1, 29.3, 14.7, 14.5. HRMS (ESI) calcd for C₂₅H₂₅O₅ [M+H]⁺405.1702, found 405.1689.

2-(4-acetyl-5-methylfuran-2-yl)-4-(4-fluorophenyl)-4-oxo-2-phenylbutanal (3fa):

The title compound was prepared from **1f** (57.9 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.5$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a pale brown colour sticky solid (82.7 mg, 73% yield.¹**H NMR (400 MHz, CDCl₃)** δ 10.07 (s, 1H), 7.97 (dd, J = 8.7,

5.4 Hz, 2H), 7.39 – 7.30 (m, 3H), 7.21 (d, J = 7.2 Hz, 2H), 7.12 (t, J = 8.5 Hz, 2H), 6.65 (s, 1H), 4.11 (s, 2H), 2.50 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 194.4, 194.1, 167.4, 164.8, 158.2, 150.6, 137.5, 132.7, 131.0, 130.9, 129.1, 128.9, 128.2, 127.7, 122.5, 116.1, 115.8, 109.3, 57.3, 45.1, 29.3, 14.5. HRMS (ESI) calcd for C₂₃H₂₀FO₄ [M+H]⁺ 379.1346, found 379.1334.

2-(4-acetyl-5-methylfuran-2-yl)-4-(4-chlorophenyl)-4-oxo-2-phenylbutanal (3ga):

The title compound was prepared from 1g (62.7 mg, 0.3 mmol) and 2a (63.6 mg, 0.3 mmol) according to general procedure A. Purification using column chromatography ($R_f = 0.50 \text{ SiO}_2$, EtOAc:Hexane, 4:96) gave pure product as a brown colour sticky solid (83.9 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s,

1H), 7.88 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.37 (t, J = 7.2 Hz, 2H), 7.34 – 7.31 (m, 1H), 7.23 – 7.19 (m, 2H), 6.64 (s, 1H), 4.10 (s, 2H), 2.51 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 194.8, 194.0, 158.2, 150.5, 140.3, 137.4, 134.6, 129.7, 129.2, 129.2, 128.2, 127.7, 122.5, 109.4, 57.4, 45.1, 29.3, 14.6. HRMS (ESI) calcd for C₂₃H₂₀ClO₄ [M+H]⁺ 395.1050, found 395.1037.

2-(4-acetyl-5-methylfuran-2-yl)-4-(4-bromophenyl)-4-oxo-2-phenylbutanal (3ha):

The title compound was prepared from **1h** (75.9 mg, 0.3 mmol) and **2a** ((63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a brown solid (93.2 mg, 71% yield), mp 135-137 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.41 –

7.30 (m, 3H), 7.20 (d, J = 7.1 Hz, 2H), 6.63 (s, 1H), 4.09 (s, 2H), 2.51 (s, 3H), 2.40 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 196.2, 195.1, 194.0, 158.2, 150.5, 138.0, 137.5, 135.0, 132.2, 129.8, 129.2, 128.3, 127.8, 122.5, 109.4, 57.4, 45.0, 29.3, 14.6. HRMS (ESI) calcd for C₂₃H₁₉BrO₄ [M+H]⁺ 439.0545, found 439.0541.

2-(4-acetyl-5-methylfuran-2-yl)-4-oxo-2-phenyl-4-(4-(trifluoromethyl) phenyl) butanal (3ia):

The title compound was prepared from **1i** (72.9 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.5$, SiO2, EtOAc:Hexane, 5:95) gave pure product as a brown colour sticky solid (78.3 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.04 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.23 – 7.19 (m, 2H), 6.65 (s, 1H), 4.14 (s, 2H), 2.51 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 195.1, 194.0, 158.3, 150.3, 139.0, 137.3, 129.3, 128.6, 128.3, 127.7, 125.9, 125.9, 122.6, 109.5, 57.5, 45.1, 29.3, 14.6.HRMS (ESI) calcd for C₂₄H₂₀O₄ [M+H]⁺429.1314, found 429.1304.

2-(4-acetyl-5-methylfuran-2-yl)-4-(3-methoxyphenyl)-4-oxo-2-phenylbutanal (3ja):

The title compound was prepared from **1j** (61.5 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.4$, SiO₂, EtOAc:Hexane, 8:92) gave pure product as a pale brown colour sticky solid (72.5 mg, 62% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 10.09 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.44 (s, 1H), 7.37 (t, J = 7.5 Hz, 3H), 7.34 – 7.28 (m, 1H), 7.22 (d, J

= 7.3 Hz, 2H), 7.13 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.65 (s, 1H), 4.14 (s, 2H), 3.83 (s, 3H), 2.51 (s, 3H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 196.4, 195.9, 194.1, 159.9, 158.1, 150.7, 137.5, 137.5, 129.8, 129.1, 128.1, 127.7, 122.4, 120.9, 120.3, 112.4, 109.3, 57.3, 55.5, 45.3, 29.3, 14.5.HRMS (ESI) calcd for C₂₄H₂₃O₅ [M+H]⁺ 391.1545, found 391.1534.

2-(4-acetyl-5-methylfuran-2-yl)-4-(benzo[d][1,3]dioxol-5-yl)-4-oxo-2-phenylbutanal (3ka):

The title compound was prepared from 1k (65.7 mg, 0.3 mmol) and 2a (63.6 mg, 0.3 mmol) according to general procedure A. Purification using column chromatography ($R_f = 0.30$, SiO₂, EtOAc:Hexane, 8:92) gave pure product as a brown colour sticky solid (83.6 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 7.57 (dd, J = 8.2, 1.4 Hz, 1H), 7.36 (dd, J = 11.8, 4.5 Hz, 3H),

7.33 – 7.27 (m, 1H), 7.21 (d, J = 7.2 Hz, 2H), 6.84 (d, J = 8.2 Hz, 1H), 6.64 (s, 1H), 6.04 (s, 2H), 4.08 (d, J = 1.3 Hz, 2H), 2.50 (s, 3H), 2.39 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃)** δ 196.5, 194.1, 194.1, 158.1, 152.3, 150.9, 148.4, 137.6, 131.0, 129.1, 128.1, 127.7, 124.7, 122.4, 109.2, 108.0, 102.1, 57.3, 45.2, 29.3, 14.5. **HRMS (ESI)** calcd for C₂₄H₂₁O₆ [M+H]⁺ 405.1338, found 405.1330.

2-(4-acetyl-5-methylfuran-2-yl)-4-(3-chloro-4-methoxyphenyl)-4-oxo-2-phenylbutanal(3la):

The title compound was prepared from 11 (71.7 mg, 0.3 mmol) and 2a (63.6 mg, 0.3 mmol) according to general procedure A. Purification using column chromatography ($R_f = 0.40$, SiO₂, EtOAc:Hexane, 8:92) gave pure product as a brown sticky solid (73.7 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 7.97 (d, J = 2.2 Hz, 1H), 7.86 (dd, J = 8.7, 2.2 Hz, 1H), 7.37

(dd, J = 8.1, 6.4 Hz, 2H), 7.32 (dd, J = 5.2, 1.8 Hz, 1H), 7.24 – 7.18 (m, 2H), 6.96 (d, J = 8.7 Hz, 1H), 6.64 (s, 1H), 4.07 (s, 2H), 3.97 (s, 3H), 2.51 (s, 3H), 2.40 (s, 3H).¹³**C** NMR (100 MHz, CDCl₃) δ 196.3, 194.1, 193.7, 159.3, 158.2, 150.6, 137.5, 130.7, 129.8, 129.1, 128.8, 128.2, 127.8, 123.1, 122.4, 111.5, 109.3, 57.3, 56.6, 44.9, 29.3, 14.5. HRMS (ESI) calcd for C₂₀H₂₂ClO₅ [M+H]⁺ 425.1156, found 425.1139.

2-(4-acetyl-5-methylfuran-2-yl)-4-(3,4-dichlorophenyl)-4-oxo-2-phenylbutanal(3ma):

The title compound was prepared from **1m** (72.9 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 4:96) gave pure product as a pale brown sticky solid (80.9 mg, 63% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 10.04 (s, 1H), 7.99 (d, J = 1.6 Hz, 1H), 7.75 (dd, J = 8.3, 1.6 Hz, 1H),

7.53 (d, J = 8.3 Hz, 1H), 7.41 – 7.31 (m, 3H), 7.20 (d, J = 7.2 Hz, 2H), 6.65 (s, 1H), 4.06 (s, 2H), 2.52 (s, 3H), 2.40 (s, 3H).¹³**C** NMR (100 MHz, CDCl₃) δ 195.8, 193.9, 193.8, 158.2, 150.2, 138.3, 137.2, 135.8, 133.5, 130.9, 130.3, 129.2, 129.0, 128.3, 127.7, 127.2, 122.5, 109.5, 57.5, 44.8, 29.3, 14.5. HRMS (ESI) calcd for $C_{23}H_{19}Cl_2O_4$ [M+H]⁺429.0660, found 429.0653.

2-(4-acetyl-5-methylfuran-2-yl)-4-(4-chloro-3-(trifluoromethyl)phenyl)-4-oxo-2-phenylbutanal (3na):

The title compound was prepared from **1n** (83.1 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to General procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a brown sticky solid (77.6 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.22 (d, J = 1.2 Hz, 1H), 8.03 (dd, J = 8.3, 1.6 Hz, 1H), 7.61 (d, J =

8.3 Hz, 1H), 7.36 (dt, *J* = 14.2, 6.9 Hz, 3H), 7.20 (d, *J* = 7.1 Hz, 2H), 6.66 (s, 1H), 4.09 (s, 2H), 2.52 (s, 3H), 2.41 (s, 3H).¹³**C** NMR (125 MHz, CDCl₃) δ 195.7, 193.9, 193.8, 158.3, 150.0, 138.0, 137.1, 134.7, 132.3, 132.2, 129.3, 128.4, 127.7, 127.5, 122.6, 109.6, 57.6, 44.6, 29.3, 14.5. HRMS (ESI) calcd for C₂₄H₁₉ClF₃O₄ [M+H]⁺463.0924, found 463.0917.

4-(3-(4-acetyl-5-methylfuran-2-yl)-4-oxo-3-phenylbutanoyl) benzonitrile (3oa):

The title compound was prepared from **10** (60 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.40$, SiO₂, EtOAc:Hexane, 7:93) gave pure product as a pale brown sticky solid (67 mg, 58% yield).¹**H NMR (500 MHz, CDCl₃)** δ 10.04 (s, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.38 (t, J =

7.4 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.19 (d, J = 7.3 Hz, 2H), 6.64 (s, 1H), 4.10 (d, J = 2.6 Hz, 2H), 2.52 (s, 3H), 2.41 (s, 3H).¹³**C** NMR (100 MHz, CDCl₃) δ 195.7, 194.7, 193.9, 158.3, 150.0, 139.2, 137.2, 132.7, 129.3, 128.7, 128.4, 127.7, 122.6, 117.8, 116.9, 109.5, 57.6, 44.9, 29.3, 14.5. HRMS (ESI) calcd for C₂₄H₂₀NO₄ [M+H]⁺ 386.1392, found 386.1381.

2-(4-acetyl-5-methylfuran-2-yl)-4-(4-nitrophenyl)-4-oxo-2-phenylbutanal (3pa):

The title compound was prepared from **1p** (66 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.30$, SiO₂, EtOAc:Hexane, 10:90) gave pure product as a brown sticky solid (72.9 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.29 (d, J = 8.5 Hz, 2H), 8.08 (d, J = 8.6 Hz, 2H), 7.36 (dt, J = 14.0, 6.9 Hz, 3H), 7.20 (d, J = 7.2 Hz, 2H), 6.66 (s, 1H), 4.14 (s, 2H), 2.52 (s, 3H), 2.41 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 195.6, 194.6, 193.9, 158.3, 150.6, 149.9, 140.7, 137.1, 129.3, 128.4, 127.7, 124.0, 122.6, 109.6, 57.7, 45.1, 29.3, 14.6. HRMS (ESI) calcd for C₂₃H₂₀NO₆ [M+H]⁺ 406.1291, found 406.1283.

2-(4-acetyl-5-methylfuran-2-yl)-4-oxo-2-phenyl-4-(thiophen-3-yl)butanal (3qa):

The title compound was prepared from **1q** (54.3 mg, 0.3 mmol) and **2a** (63.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a dark brown colour sticky solid (65.8 mg, 65% yield).¹**H NMR (400 MHz, CDCl₃)** δ 10.03 (s, 1H), 7.74 (dd, J = 3.8, 1.0 Hz, 1H), 7.65 (dd, J = 4.9, 1.0 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.32 (dd, J = 5.3, 1.8

Hz, 1H), 7.24 – 7.20 (m, 2H), 7.12 (dd, J = 4.9, 3.9 Hz, 1H), 6.66 (s, 1H), 4.06 (s, 2H), 2.50 (s, 3H), 2.39 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 195.9, 194.1, 188.9, 158.3, 150.3, 143.4, 137.3, 134.5, 132.5, 129.2, 128.3, 128.2, 127.8, 122.4, 109.7, 57.5, 45.3, 29.3, 14.5. HRMS (ESI) calcd for C₂₁H₁₈NaO₄S [M+H]⁺ 389.0823, found 389.0829.

2-(4-acetyl-5-methylfuran-2-yl)-4-oxo-4-phenyl-2-(p-tolyl)butanal (3ab):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2b** (67.8 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a yellow colour sticky solid (78.5 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 7.94 (d, J = 7.3 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 6.63 (s, 1H), 4.13 (d, J = 2.1 Hz, 2H), 2.49 (s, 3H), 2.39 (s, 3H), 2.34 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 196.4, 196.1, 194.1,

158.1, 150.9, 138.0, 136.3, 134.4, 133.7, 129.8, 128.8, 128.3, 127.6, 122.4, 109.2, 57.0, 45.1, 29.3, 21.1, 14.5. **HRMS (ESI)** calcd for C₂₄H₂₃O₄ [M+H]⁺ 375.1596, found 375.1588.

2-(4-acetyl-5-methylfuran-2-yl)-2-(4-methoxyphenyl)-4-oxo-4-phenylbutanal (3ac):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2c** (72.6 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography (R_f = 0.4, SiO₂, EtOAc:Hexane, 8:92) gave pure product as a sticky solid (80.7 mg, 69% yield). ¹**H** NMR (400 MHz, **CDCl**₃) δ 10.02 (s, 1H), 7.94 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.61 – 7.54 (m, 1H), 7.45 (td, *J* = 7.6, 3.6 Hz, 2H), 7.16 – 7.12 (m, 2H), 6.91 – 6.87 (m, 2H), 6.63 (s, 1H), 4.11 (d, *J* = 3.7 Hz, 2H), 3.80 (s, 3H), 2.49 (s, 3H), 2.39 (s, 3H).¹³**C** NMR (100 MHz, CDCl₃) δ 196.2, 196.2, 194.1, 159.4, 158.1,

150.9, 136.3, 133.7, 129.2, 129.0, 128.8, 128.3, 122.4, 114.5, 109.2, 56.7, 55.4, 45.1, 29.3, 14.5. **HRMS (ESI)** calcd for $C_{24}H_{23}O_5$ [M+H]⁺ 391.1545, found 391.1537.

2-(4-acetyl-5-methylfuran-2-yl)-2-(4-fluorophenyl)-4-oxo-4-phenylbutanal (3ad):

The title compound was prepared from 1a (52.5 mg, 0.3 mmol) and 2d (69 mg, 0.3 mmol) according to general procedure A. Purification using column chromatography (R_f = 0.50, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a pale brown sticky solid(77 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.98 – 7.91 (m, 2H), 7.59 (ddd, J = 6.9, 2.4, 1.2 Hz, 1H), 7.46 (dd, J = 10.6, 4.8 Hz, 2H), 7.24 – 7.17 (m, 2H), 7.05 (ddd, J = 12.2, 6.2, 2.7 Hz, 2H), 6.63 (s, 1H), 4.13 (d, J = 3.0 Hz, 2H), 2.51 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2,

195.9, 194.0, 163.6, 161.2, 158.4, 150.5, 136.1, 133.9, 133.4, 129.7, 129.6, 128.9, 128.3, 122.5, 116.1, 115.9, 109.5, 56.7, 45.5, 29.3, 14.5. **HRMS (ESI)** calcd for C₂₃H₂₀FO₄ [M+H]⁺ 379.1346, found 379.1335.

2-(4-acetyl-5-methylfuran-2-yl)-2-(4-chlorophenyl)-4-oxo-4-phenylbutanal (3ae):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2e** (73.8 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography (R_f = 0.50, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a pale brown sticky solid(78 mg, 66% yield). ¹H NMR (**400 MHz, CDCl₃**) δ 10.08 (s, 1H), 7.96 (dt, *J* = 8.5, 1.6 Hz, 2H), 7.64 – 7.59 (m, 1H), 7.52 – 7.46 (m, 2H), 7.37 – 7.33 (m, 2H), 7.22 – 7.18 (m, 2H), 6.65 (s, 1H), 4.15 (d, *J* = 3.7 Hz, 2H), 2.53 (s, 3H), 2.42 (s, 3H).¹³C NMR (**125 MHz, CDCl₃**) δ

196.1, 195.8, 194.0, 158.5, 150.2, 136.2, 136.0, 134.2, 133.9, 129.3, 129.2, 128.9, 128.3, 122.5, 109.5, 56.8, 45.4, 29.3, 14.5. **HRMS (ESI)** calcd for C₂₃H₂₀ClO₄ [M+H]⁺ 395.1050, found 395.1040.

2-(4-acetyl-5-methylfuran-2-yl)-2-(4-bromophenyl)-4-oxo-4-phenylbutanal (3af):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2f** (86.7 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography (R_f = 0.50, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a brown colour sticky solid (84 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.14 – 7.65 (m, 2H), 7.60 (dd, J = 10.5, 4.3 Hz, 1H), 7.53 – 7.42 (m, 5H), 7.15 – 7.07 (m, 2H), 6.62 (s, 1H), 4.13 (d, J = 3.8 Hz, 2H), 2.51 (s,

3H), 2.40 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 196.0, 195.8, 193.9, 158.5, 150.2, 136.8, 136.0, 133.9, 132.2, 129.6, 128.8, 128.3, 122.5, 122.4, 109.6, 56.8, 45.3, 29.3, 14.5. HRMS (ESI) calcd for C₂₃H₂₀BrO₄ [M+H]⁺ 439.0545, found 439.0535.

2-(4-acetyl-5-methylfuran-2-yl)-4-oxo-4-phenyl-2-(3-(trifluoromethyl) phenyl) butanal (3ag):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2g** (84 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.5$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a brown colour sticky solid (79.6 mg, 62% yield).¹**H** NMR (500 MHz, **CDCl₃**) δ 10.10 (s, 1H), 7.93 (dd, J = 8.3, 1.1 Hz, 2H), 7.59 (dt, J 15.4, 4.5 Hz, 2H), 7.46 (ddd, J = 22.8, 11.1, 5.3 Hz, 5H), 6.65 (s, 1H), 4.25 – 4.02 (m,

2H), 2.51 (s, 3H), 2.40 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 196.0, 195.7, 193.9, 158.7, 149.9, 139.0, 136.0,

134.0, 131.5, 129.6, 128.9, 128.3, 125.1, 125.0, 124.6, 124.6, 122.6, 109.8, 57.1, 45.6, 29.3, 14.5. **HRMS (ESI)** calcd for $C_{24}H_{20}F_{3}O_{4}$ [M+H]⁺ 429.1314, found 429.1313.

Methyl 4-(2-(4-acetyl-5-methylfuran-2-yl)-1,4-dioxo-4-phenylbutan-2-yl) benzoate (3ah):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2h** (71.1 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography (R_f = 0.3, SiO₂, EtOAc:Hexane, 12:88) gave pure product as a brown sticky solid (70.4 mg, 61% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 7.93 (dd, J = 8.3, 1.1 Hz, 2H), 7.67 – 7.63 (m, 2H), 7.60 (dd, J = 4.9, 3.7 Hz, 1H), 7.48 (dd, J = 10.7, 4.8 Hz, 2H), 7.40 – 7.36 (m, 2H), 6.64 (s, 1H), 4.17 (d, J = 2.3 Hz, 2H), 2.53 (s, 3H), 2.41 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 195.6, 195.5, 193.7, 158.9, 149.5, 143.8, 143.2,

142.3, 135.7, 134.1, 132.7, 129.0, 128.8, 128.3, 122.6, 118.4, 112.1, 109.9, 57.2, 45.6, 29.3, 14.6. **HRMS (ESI)** calcd for $C_{24}H_{20}NO_4$ [M+H]⁺ 386.1392, found 386.1385.

2-(4-acetyl-5-methylfuran-2-yl)-2-(4-nitrophenyl)-4-oxo-4-phenylbutanal (3ai):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2i** (81 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.30$, SiO₂, EtOAc:Hexane, 10:90) gave pure product as a pale brown sticky solid (75.2 mg, 60% yield). **1H NMR (400 MHz, CDCI3)** δ 10.11 (s, 1H), 8.04 – 7.99 (m, 2H), 7.97 – 7.89 (m, 2H), 7.63 – 7.56 (m, 1H), 7.47 (dd, J = 10.7, 4.8 Hz, 2H), 7.36 – 7.30 (m, 2H), 6.63 (s, 1H), 4.18 (d, J = 1.8 Hz, 2H), 3.91 (s, 3H), 2.51 (s, 3H), 2.40 (s, 3H). ¹³C **NMR (125 MHz, CDCI₃)** δ 196.1, 195.7, 193.9, 166.6, 158.5, 150.2, 142.8,

136.0, 133.9, 130.2, 129.9, 128.9, 128.3, 127.9, 122.5, 109.6, 52.4, 45.4, 29.3, 14.5.**HRMS (ESI)** calcd for C₂₅H₂₃O₆ [M+H]⁺419.1495, found 419.1479.

2-(4-acetyl-5-methylfuran-2-yl)-2-(4-nitrophenyl)-4-oxo-4-phenylbutanal (3aj):

The title compound was prepared from **1a** (52.5 mg, 0.3 mmol) and **2j** (77.1 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.3$, SiO₂, EtOAc:Hexane, 15:85) gave pure product as a yellow colour sticky solid (72.9 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.11 (s, 1H), 8.20 (d, J = 8.9 Hz, 2H), 7.98 – 7.89 (m, 2H), 7.61 (d, J = 7.4 Hz, 1H), 7.47 (dd, J = 15.0, 8.3 Hz, 4H), 6.65 (s, 1H), 4.20 (d, J = 1.9 Hz, 2H), 2.53 (s, 3H), 2.41 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ

195.5, 195.4, 193.7, 159.0, 149.5, 147.5, 145.2, 135.7, 134.2, 129.1, 129.0, 128.4, 124.0, 122.7, 110.0, 57.2, 45.7, 29.3, 14.6. **HRMS (ESI)** calcd for $C_{23}H_{20}NO_6$ [M+H]⁺406.1291, found 406.1282.

2-(4-acetyl-5-methylfuran-2-yl)-2-(2,3-dimethylphenyl)-4-oxo-4-phenylbutanal(3ak):

The title compound mixture was prepared from **1a** (52.5 mg, 0.3 mmol) and **2k** (72 mg, 0.3 mmol) according to general procedure **A**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a sticky pale yellow sticky solid (80.3 mg, 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 10.04 (s, 1H), 7.99 – 7.90 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.12 (d, J = 7.9 Hz, 1H), 6.98 (d, J = 1.6 Hz, 1H), 6.93 (dd, J = 7.9, 1.9 Hz, 1H), 6.64 (s, 1H), 4.12 (d, J = 6.3 Hz, 2H),

2.49 (s, 3H), 2.39 (s, 3H), 2.24 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 196.2, 194.2, 158.0, 151.0, 137.5, 136.8, 136.4, 134.8, 133.7, 130.4, 128.8, 128.3, 125.1, 122.4, 109.2, 57.0, 45.0, 29.3, 20.2, 19.5, 14.5. HRMS (ESI) calcd for C₂₅H₂₅O₄ [M+H]⁺ 389.1753, found 389.1741.

General procedure-B for the synthesis of 2-ester polysubstituted 1*H*-pyrrole (5)

A mixture of enynone **2** (69 mg, 0.3 mmol) and $Cu(OTf)_2$ (10.8 mg, 0.1 mmol) in DCE (5 mL) was stirred at 60 °C for 1 min, and enaminone **4** (66.9 , 0.3 mmol) was added slowly at 60 °C. The reaction was monitored by TLC to ensure its completion. The reaction mixture was cooled to ambient temperature and evaporated all the volatiles under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: EtOAc:Hexane = 5:95, v/v), affording **5** (78.3 mg, 60%) as a pale yellow solid.

1-(5-(2-(4-fluorophenyl)-1,5-diphenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-one (5a):

The title compound was prepared from **4** (66.9 mg, 0.3 mmol) and **2d** (69 mg, 0.3 mmol) according to general procedure **B**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a pale yellow solid (78.3 mg, 60% yield), mp 136-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 8.9, 5.4 Hz, 2H), 7.26 – 7.24 (m, 2H), 7.23 (s, 2H), 7.16 (dd, J = 3.4, 1.4 Hz, 2H), 7.13 – 7.12 (m, 2H), 7.11 (dd, J = 3.4, 1.3 Hz, 2H), 6.98 (t, J = 8.8 Hz, 2H), 6.59 (s, 1H), 6.09 (s, 1H), 2.40 (s, 3H), 2.20 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.2, 162.8, 160.8, 158.2,

143.7, 138.8, 136.7, 132.3, 131.6, 129.5, 129.5, 128.8, 128.7, 128.6, 128.2, 128.0, 127.0, 126.3, 122.5, 121.4, 29.2, 14.4. **HRMS (ESI)** calcd for C₂₉H₂₃FNO₂ [M+H]⁺436.1713, found 436.1741.

1-(5-(2-(4-bromophenyl)-1,5-diphenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-one (5b):

The title compound was prepared from **4** (66.9 mg, 0.3 mmol) and **2f** (86.7 mg, 0.3 mmol) according to general procedure **B**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a pale yellow solid (90.5 mg, 61% yield), mp 142-144 °C. ¹H NMR (400

MHz, **CDCl**₃) δ 7.45 – 7.43 (m, 1H), 7.43 – 7.41 (m, 1H), 7.28 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.26 – 7.23 (m, 2H), 7.21 – 7.17 (m, 3H), 7.16 – 7.12 (m, 4H), 6.63 (s, 1H), 6.14 (s, 1H), 2.44 (s, 3H), 2.24 (s, 3H).¹³**C NMR (100 MHz**, **CDCl**₃) δ 194.1, 158.3, 143.5, 138.7, 136.9, 134.5, 132.2, 131.5, 129.5, 128.8, 128.7, 128.6, 128.2, 128.0, 127.1, 126.0, 122.5, 121.5, 120.3, 112.2, 109.7, 29.2, 14.4. **HRMS (ESI)** calcd for C₂₉H₂₃BrNO₂ [M+H]⁺ 496.0912, found 496.0915.

4-(3-(4-acetyl-5-methylfuran-2-yl)-1,5-diphenyl-1H-pyrrol-2-yl) benzonitrile (5c):

The title compound was prepared from **4** (66.9 mg, 0.3 mmol) and **2h** (132.6 mg, 0.3 mmol) according to general procedure **B**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a pale yellow solid (79.5 mg, 60% yield), mp 150-152 °C. ¹H **NMR (500 MHz, CDCl₃)** δ 7.58 – 7.53 (m, 2H), 7.43 – 7.38 (m, 2H), 7.26 – 7.24 (m, 2H), 7.22 (s, 1H), 7.18 – 7.14 (m, 3H), 7.12 – 7.07 (m, 4H), 6.63 (s, 1H), 6.11 (s, 1H), 2.41 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 193.9, 158.5, 143.0, 140.4, 138.3, 137.4, 132.2, 131.9, 128.9, 128.6, 128.3, 128.2, 127.3, 125.2, 122.6, 122.3, 119.4, 112.5, 109.6, 109.5, 29.1, 14.4. **HRMS (ESI)** calcd for $C_{30}H_{23}N_2O_2$ [M+H]⁺ 443.1760, found 443.1748.

1-(5-(2-(2,3-dimethylphenyl)-1,5-diphenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-one (5d):

The title compound was prepared from **4** (66.9 mg, 0.3 mmol) and **2j** (72 mg, 0.3 mmol) according to general procedure **B**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a pale yellow solid (89.4 mg, 67% yield), mp 140-142 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (s, 1H), 7.19 – 7.14 (m, 6H), 7.11 (dd, J = 7.9, 1.6 Hz, 2H), 6.97 (dd, J = 7.1, 5.2 Hz, 4H), 6.88 (dd, J = 6.4, 5.0 Hz, 1H), 6.76 (s, 1H), 2.57 (s, 3H), 2.27 (s, 3H), 2.22 (s, 3H), 2.14 (s, 3H).¹³C

NMR (100 MHz, CDCl₃) δ 208.2, 136.0, 134.9, 132.5, 129.3, 129.0, 128.6, 128.1, 127.3, 126.6, 122.8, 113.5, 107.8, 103.8, 29.2, 19.7, 14.5. HRMS (ESI) calcd for C₃₁H₂₈NO₂ [M+H]⁺ 446.2120, found 446.2102.

1-(5-(1-benzyl-2-(4-fluorophenyl)-5-phenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-one (5e): The title

compound was prepared from **4** (71.1 mg, 0.3 mmol) and **2d** (69 mg, 0.5 mmol) according to general procedure **B**. Purification using column chromatography (R_f = 0.50, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a white colour solid (78.1 mg, 58% yield), mp 145-147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 3H), 7.30 (d, *J* = 1.8 Hz, 1H), 7.28 (dd, *J* = 3.5, 1.7 Hz, 1H), 7.22 (dddd, *J* = 7.7, 4.3, 2.4, 1.8 Hz, 3H), 7.18 – 7.14 (m,

2H), 6.94 – 6.88 (m, 2H), 6.83 – 6.79 (m, 2H), 6.44 (s, 1H), 6.18 (s, 1H), 5.09 (s, 2H), 2.42 (s, 3H), 2.18 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 194.2, 162.6, 160.7, 158.5, 143.8, 139.0, 137.5, 132.7, 131.7, 129.2, 129.1, 128.7, 128.6, 127.9, 127.2, 126.3, 126.0, 122.5, 120.1, 115.3, 115.2, 112.2, 109.5, 49.2, 29.2, 14.5. HRMS (ESI) calcd for C₃₀H₂₅FNO₂ [M+H]⁺ 450.1869, found 450.1860.

1-(5-(1-benzyl-2-(4-bromophenyl)-5-phenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-one (5f):

The title compound was prepared from **4** (71.1 mg, 0.3 mmol) and **2f** (86.7 mg, 0.3 mmol) according to general procedure **B**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a white colour solid (91.6 mg, 60% yield), mp 148-150 °C. ¹H **NMR (400 MHz, CDCl₃)** δ 7.41 – 7.37 (m, 4H), 7.34 (dt, J = 6.6, 4.2 Hz, 3H), 7.23 (s, 1H), 7.20 (dt, J = 4.6, 3.2 Hz, 4H), 6.86 (d, J = 6.7 Hz, 2H), 6.51 (s, 1H), 6.26 (s, 1H), 5.14 (s, 2H), 2.48 (s, 3H), 2.25 (s, 3H). ¹³C

NMR (75 MHz, CDCl₃) δ 194.1, 158.7, 143.6, 138.9, 137.6, 134.6, 132.6, 131.5, 129.1, 128.7, 128.6, 127.9, 127.2, 126.0, 122.5, 120.2, 120.0, 112.4, 109.3, 49.2, 29.2, 14.5. HRMS (ESI) calcd for C₃₀H₂₅BrNO₂ [M+H]⁺ 510.1069, found 510.1093.

1-(5-(1-benzyl-2-(4-nitrophenyl)-5-phenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-one (5g):

The title compound was prepared from **4** (71.1 mg, 0.3 mmol) and **2j** (77.1 mg, 0.3 mmol) according to general procedure **B**. Purification using column chromatography ($R_f = 0.50$, SiO₂, EtOAc:Hexane, 5:95) gave pure product as a white colour solid (78.5 mg, 55% yield), mp 155-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.04 (m, 2H), 7.46 – 7.43 (m, 1H), 7.42 (t, J = 2.2 Hz, 1H), 7.38 (qd, J = 6.4, 2.9 Hz, 5H), 7.25 (s, 1H), 7.24 – 7.19 (m, 2H), 6.90 – 6.81 (m, 2H), 6.60 (s, 1H), 6.31 (s,

1H), 5.15 (s, 2H), 2.50 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 159.0, 145.9, 145.1, 143.0, 142.6, 138.5, 138.2, 132.2, 129.2, 128.8, 128.7, 128.3, 127.6, 127.4, 126.0, 124.9, 123.9, 122.7, 121.5, 112.9, 109.4, 49.3, 29.2, 14.5. HRMS (ESI) calcd for C₃₀H₂₅N₂O₄ [M+H]⁺ 477.1814, found 477.1861.

General procedure for the synthesis of 6:

To a solution of **5f** (0.20 mmol, 102 mg) in MeOH (2 mL) was added NaBH₄ (0.40 mmol, 15.12 mg) at room temperature and the reaction mixture was stirred at the same temperature for 30 min under nitrogen atmosphere. The mixture was poured into H₂O (5 mL) and extracted with EtOAc (10 mL). The organic layer was washed with brine (10 mL) and dried with Na₂SO₄. After removal of the solvent, the residue was subjected to column chromatography to get **6** as brown color sticky solid (56.3 mg, 55% yield), ($R_f = 0.4$, SiO₂ EtOAc:Hexane, 10:90).

1-(5-(1-benzyl-2-(4-bromophenyl)-5-phenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-ol (6): ¹H NMR

(500 MHz, CDCl₃) δ 7.38 (t, J = 2.0 Hz, 2H), 7.36 (dd, J = 4.0, 1.5 Hz, 3H), 7.34 (d, J = 1.7 Hz, 1H), 7.33 – 7.31 (m, 1H), 7.26 (s, 1H), 7.22 (d, J = 1.9 Hz, 1H), 7.20 (d, J = 1.8 Hz, 2H), 7.19 (t, J = 1.9 Hz, 1H), 6.85 (d, J = 6.7 Hz, 2H), 6.49 (s, 1H), 6.04 (s, 1H), 5.14 (s, 2H), 4.74 (q, J = 6.4 Hz, 1H), 2.21 (s, 3H), 1.32 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 143.4, 139.1, 137.1, 135.0, 132.9, 131.3, 129.2, 128.6, 128.5, 128.4, 127.7, 127.0, 126.9, 126.2, 125.1, 121.8, 119.7, 110.9, 109.2, 62.8, 49.2,24.0, 12.0. HRMS (ESI) calcd for

C₃₀H₂₅BrNO [M-OH] 494.1120, found 494.1109.

General Procedure for the Preparation of Oxime Ether 7:

Compound **5f** (0.2 mmol, 102 mg), methoxylamine hydrochloride (0.4 mmol, 2.0 equiv, 33.2 mg), anhydrous Na₂SO₄ (.4 mmol, 2.0 equiv, 56.8 mg), pyridine (.2 mmol, 1.0 equiv, .016 ml), and methanol (2 ml) were added to a 10 ml round-bottom flask. The reaction mixture was stirred at room temperature overnight. The mixture was diluted with saturated NH₄Cl solution (25 mL) and extracted with EtOAc (3×25 mL). The organic layers were combined, washed with brine, and dried over anhydrous MgSO₄. The solvent was removed under vacuum, and the residue was purified by flash column chromatography (R_f = 0.8, SiO₂ EtOAc:Hexane, 2:98) as the eluent to give the desired product 7 (51.8 mg, 85% yield).

(E)-1-(5-(1-benzyl-2-(4-bromophenyl)-5-phenyl-1H-pyrrol-3-yl)-2-methylfuran-3-yl)ethan-1-one O-

methyl oxime (7): ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 5H), 7.38 – 7.31 (m, 3H), 7.28 – 7.19 (m, 4H), 6.93 – 6.78 (m, 2H), 6.53 (s, 1H), 6.16 (s, 1H), 5.17 (s, 2H), 3.94 (s, 3H), 2.42 (s, 3H), 2.00 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 150.8, 150.3, 143.3, 139.1, 137.2, 134.8, 132.9, 131.4, 129.1, 128.6, 128.5, 127.8, 127.1, 126.1, 125.3, 112.0, 109.3, 61.8, 49.1, 14.2, 14.1. HRMS (ESI) calcd for C₃₁H₂₈BrN₂O₂ [M+H]⁺ 539.1334, found 539.1326.

5. X-ray crystallography data

Sample Preparation for Crystal Growth: The compound **3ha** was dissolved in CDCl₃ in beaker and kept for slow evaporation at room temperature. Formation of needle shape crystals was observed after seven days. The single crystals were then subjected to X-ray diffraction analysis.

Figure caption: ORTEP diagram of KB187 compound with the atom-numbering. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radius. CCDC deposition number 2164031 contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/</u>

Crystal data for KB187: $C_{23}H_{19}O_2Br_1$, M = 439.29, Monoclinic, Space group $P2_1/n$ (No. 14), a = 11.9543(16)Å, b = 13.1009(16)Å, c = 12.3965(14)Å, $a = 90^\circ$, $\beta = 98.422(3)^\circ$, $\gamma = 90^\circ$, V = 1920.5(4)Å³, Z = 4, $D_c = 1.519$ g/cm³, $F_{000} = 896$, Bruker D8 QUEST PHOTON-III-C7 detector, Mo-Ka radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{max} = 56^\circ$, $\mu = 2.167$ mm⁻¹, 29016 reflections collected, 4708 unique ($R_{int} = 0.0521$), 255 parameters, RI = 0.0389, wR2 = 0.0939, R indices based on 3349 reflections with I > 2 σ (I) (refinement on F^2), Final GooF = 1.026, largest difference hole and peak = -0.530 and 0.382 e.Å⁻³.

Data collection and Structure solution details:

X-ray data for the compound were collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2-3] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H =

0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms]. **CCDC deposition number 2164031** contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://www.ccdc.cam.ac.uk/structures/</u>

- 1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. Sheldrick G. M. (2015). ActaCrystallogr C71: 3-8.
- Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57–91.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) KB187_0m

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: KB187_0m

Bond precision:	C-C = 0.0030 A	Wavelength=0.71073	
Cell:	a=11.9543(16)	b=13.1009(16)	c=12.3965(14)
	alpha=90	beta=98.422(3)	gamma=90
Temperature:	293 K		
	Calculated	Reporte	d
Volume	1920.5(4)	1920.5(4)
Space group	P 21/n	P 21/n	
Hall group	-P 2yn	-P 2yn	
Moiety formula	C23 H19 Br 04	C23 H19	Br O4
Sum formula	C23 H19 Br 04	C23 H19	Br O4
Mr	439.28	439.29	
Dx,g cm-3	1.519	1.519	
Z	4	4	
Mu (mm-1)	2.167	2.167	
F000	896.0	896.0	
F000'	895.26		
h, k, lmax	15, 17, 16	15,17,1	6
Nref	4784	4708	
Tmin, Tmax	0.551,0.634	0.612,0	.746
Tmin'	0.540		

Correction method= # Reported T Limits: Tmin=0.612 Tmax=0.746 AbsCorr = MULTI-SCAN

Data completeness= 0.984 Theta(max)= 28.317

R(reflections)= 0.0389(3349)

S = 1.026

Npar= 255

wR2(reflections)= 0.1072(4708)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

PLAT905_ALERT_3_C Negative K value in the Analysis of Variance PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 PLAT913_ALERT_3_C Missing ‡ of Very Strong Reflections in FCF	-0.879 74 19	Report Report Note
Alert level G	1130	
PLAT019_ALERT_1_G _diffrn_measured_fraction_theta_full/*_max < 1.0	0.994	Report
PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K)	293	Check
PLAT200_ALERT_1_G Reporteddiffrn_ambient_temperature (K)	293	Check
PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety	C23	Check
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 03 .	107.3	Degree
PLAT793_ALERT_4_G Model has Chirality at C9 (Centro SPGR)	R	Verify
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	1	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	1	Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File	7	Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	12	Info
0 SIFPT loval & = Most likely a serious problem - resolve or expl	in	

0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

Datablock KB187_0m - ellipsoid plot

6. References

- 1) M. Ni, J. Zhang, X. Liang, Y. Jiang, T-P. Loh, Chem. Commun., 2017, 53, 12286.
- 2) Y. Yu, Y. Chen, W. Wu, H. Jiang., Chem. Commun., 2017, 53, 640.
- 3) Li, C.; Li, J.; Zhou, F.; Li, C.; Wu, W. J. Org. Chem., 2019, 84, 11958.
- 4) H. Suzuki, S. Yoshioka, A. Igesaka, H. Nishioka, Y. Takeuchi, *Tetrahedron.*, 2013, **69**, 6399.

