Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

SUPPORTING INFORMATION

Three modes of interactions between anions and phenolic macrocycles:

a comparative study

Esma R. Abdurakhmanova,^[a] Piotr Cmoch^[a] and Agnieszka Szumna^{*[a]}

[a] Dr. E. R. Abdurakhmanova, Dr. P. Cmoch, Prof. A. Szumna Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland E-mail: agnieszka.szumna@icho.edu.pl Table of Contents

1.	General information	4	
2.	Synthesis of resorcin[4]arenes	4	
3.	General procedures for titrations	7	
4. Titrations of I-RM			
	4.1. Titration of I-RM with Pen ₄ NCl in THF	9	
5.	Titrations of Br-RA	10	
	5.1. Titration of Br-RA with Oct ₄ NCl in THF	10	
	5.2. Titration of Br-RA with Oct ₄ NCl in acetone	12	
	5.3. Titration of Br-RA with Hex ₄ NCl in THF	14	
	5.4. Titration of Br-RA with Hex ₄ NCl in acetone	16	
	5.5. Titration of Br-RA with Pen ₄ NCl in THF	18	
	5.6. DOSY titration curves for titration of Br-RA with Pen ₄ NCl in THF	20	
	5.7. Titration of Br-RA with Pen ₄ NCl in acetone	22	
	5.8. Titration of Br-RA with Pen ₄ NBr in THF	24	
	5.9. DOSY titration curves for titration of Br-RA with Pen ₄ NBr in THF	26	
6.	Titrations of I-RA	28	
	6.1. Titration of I-RA with Oct ₄ NCl in THF	28	
	6.2. Titration of I-RA with Oct ₄ NCl in acetone	30	
	6.3. Titration of I-RA with Hex ₄ NCl in THF	32	
	6.4. Titration of I-RA with Hex ₄ NCl in acetone	34	
	6.5. Titration of I-RA with Pen ₄ NCl in THF	36	
	6.6. DOSY titration curves for titration of I-RA with Pen ₄ NCl in THF	38	
	6.7. Titration of I-RA with Pen ₄ NCl in acetone	40	

	6.8. Titration of I-RA with Pen ₄ NCl in acetonitrile	42
	6.9. Titration of I-RA with Oct ₄ NBr in THF	45
	6.10.Titration of I-RA with Pen ₄ NBr in THF	47
	6.11.DOSY titration curves for titration of I-RA with Pen ₄ NBr in THF	49
	6.12.Titration of I-RA with Pen ₄ NBr in acetone	51
7.	Titration of H-RA	53
	7.1. Titration of H-RA with Pen ₄ NCl in THF	53
	7.2. Titration of H-RA with Pen ₄ NCl in acetone	55
8.	Titrations of O-RA	57
	8.1. Titration of O-RA with Pen ₄ NCl in THF	57
	8.2. DOSY titration curves for titration of O-RA with Pen ₄ NCl in THF	59
	8.3. Titration of O-RA with Pen ₄ NBr in THF	61
	8.4. Titration of O-RA with Pen ₄ NCl in acetone	63
9.	Competitive titrations	65
	9.1. Titration of H-RA+Br-RA with Pen ₄ NCl in THF	65
	9.2. Titration of O-RA+Br-RA with Pen ₄ NCl in THF	66
10.	Additional comparisons	67
11.	The search of the CCDC database	69
12.	References	85

1. General information

All solvents and chemicals used were purchased from Sigma Aldrich, TCI Europe N.V., Roth and Euriso-top, were of reagent grade and were used without further purification.

¹H NMR spectra were recorded at 303 K on Bruker 400 MHz and Varian 600 MHz instruments with residual solvent signal as internal standard.

Figure S1. Chemical structures of the macrocycles (**M**), reference compounds, and the salts used in this work and notation of NMR signals.

2. Synthesis of resorcin[4]arenes

Synthesis of 2,8,14,20-tetraisobutylresorcin[4]arene (H-RA)

Resorcin[4]arene **H-RA** was obtained by acid-catalyzed condensation of resorcinol with isovaleraldehyde in a simple one-pot reaction by the literature procedure.¹

Analytical data in agreement with literature data.¹

Resorcin[4]arene **Br-RA** was obtained by the slightly modified literature procedure.² 2,8,14,20– Tetraisobutylresorcin[4]arene **H-RA** (1.0 g, 1.4 mmol, 1.0 eq.) was dissolved in tetrahydrofuran (20 mL) to give a colorless solution. Subsequently, *N*-bromosuccinimide (1.0 g, 5.6 mmol, 4.0 eq.) was added portion wise over 15 minutes at room temperature. The reaction mixture was stirred under argon atmosphere overnight. Afterwards, the solvent was removed under reduced pressure (40 mbar) at 40 °C to give a light yellow solid. Then methanol (50 mL) was added and the mixture was heated to 85 °C for 40 minutes, followed by hot filtration. The resulting solid was washed with methanol (25 mL) and then dried under vacuum (20 mbar) at 40 °C to give **Br-RA** (1.1 g, 1.0 mmol, 70%) as a colourless powder.

Analytical data in agreement with literature data.²

¹**H-NMR** (400 MHz, DMSO-d6, 303 K) δ [ppm] = 9.12 (s, 8H, 4 × OH), 7.34 (s, 4H, 4 × CH_{arom}), 4.48 (t, J = 7.5 Hz, 4H, 4 × CH_{meth}), 2.05 (t, J = 6.7 Hz, 8H, 4 × CH₂), 1.40-1.25 (m, 4H, 4 × CH), 0.90 (s, 12H, 4 × CH₃) 0.89 (s, 12H, 4 × CH₃).

Synthesis of 1,3,5,7-Tetraiodo- 2,8,14,20-tetraisobutylresorcin[4]arene (I-RA)

Resorcin[4]arene **Br-RA** was obtained according to the literature procedure.³ To a solution of 2,8,14,20–tetraisobutylresorcin[4]arene **H-RA** (3.0 g, 4.2 mmol, 1.0 eq.) in water and ether (1 : 1), sodium hydrogen carbonate (1.5 g, 17.7 mmol, 4.0 eq.) and iodine (4.5 g, 17.7 mmol, 4.0 eq.) were added at room temperature under an argon atmosphere. The solution was stirred for 24 h at room temperature. The precipitate was filtered off and the solid residue was washed with cold acetone and dichloromethane several times to afford desired product **I-RA** as a yellow solid (0.9 g, 17%).

Analytical data in agreement with literature data.³

¹**H-NMR** (400 MHz, DMSO-d6, 303 K) δ [ppm] = 9.36 (s, 8H, 4 × OH), 7.48 (s, 4H, 4 × CH_{arom}), 4.43 (t, J = 7.5 Hz, 4H, 4 × CH_{meth}), 2.16 (t, J = 6.7 Hz, 8H, 4 × CH₂), 1.37-1.29 (m, 4H, 4 × CH), 0.91 (s, 12H, 4 × CH₃) 0.90 (s, 12H, 4 × CH₃).

Resorcin[4]arene **O-RA** was obtained accordingly literature procedure.⁴ Analytical data in agreement with literature data.⁴

Synthesis of 4,6-di(tert-butyl)-2-iodoresorcinol

2-Iodoresorcinol I-RM was obtained according to the literature procedure.⁵

To a mixture of resorcinol (1.0 g, 4.5 mmol, 1.0 eq.) dissolved in MeCN (20mL) was added Niodosuccinimide (1.03 g, 4.5 mmol, 1.0 eq.) at 0 °C. After stirring for 10 min at the same temperature, to the mixture was added an aqueous saturated solution of sodium thiosulfate (10 mL). The mixture was extracted with EtOAc (10 mL ×3), and the combined organic extract was washed with brine (5 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 30g, nhexane/EtOAc = 1/1) to give 4,6-di(tert-butyl)-2-iodoresorcinol (1.0 g, 2.8 mmol, 64%) as a colourless solid.

Analytical data in agreement with literature data.⁵

¹**H-NMR** (400 MHz, CDCl₃, 303 K) δ [ppm] = 7.18 (s, 1H, aromatic), 5.14 (s, 2H, OH), 1.35 (s, 18H, CH₃×6);¹³**C NMR** (CDCl₃, 126 MHz) δ 29.7 (6C), 35.0 (2C), 85.8 (1C), 125.6 (1C), 127.5 (2C), 150.6 (2C).

Ν	Solvent	I-RA	Br-RA
1	CHCl ₃	insoluble	insoluble
2	CH ₂ Cl ₂	insoluble	insoluble
3	Ethyl acetate	insoluble	cloudy solution
4	Benzene	cloudy solution	cloudy solution
5	Acetonitrile	insoluble	insoluble
6	Tetrahydrofuran	soluble	soluble
7	Methanol	soluble	soluble
8	Acetone	soluble	soluble
9	1,4-Dioxane	soluble	cloudy solution
10	1-Propanol	-	insoluble
11	Dimethylsulfoxide	soluble	soluble

Table 1. Solubility of resorcin[4]arenes

3. General procedures for titrations

¹H NMR titrations

To the solution of **macrocycle** (C = 0.0067 M, 0.0033 mmol) in THF-d8 (0.5 ml) a solution containing **Alk**₄**NX** (C = 0.1 M, 0.1 mmol) and the **macrocycle** (C = 0.0067 M, 0.0067 mmol) in THF-d8 (1 ml) was added. ¹H NMR spectra were recorded at 303 K using Bruker 400 MHz.

¹*H* NMR competitive titrations

To the solution of **Br-RA** (C = 0.0067 M, 0.0033 mmol) and **H-RA** or **O-RA** (C = 0.0067 M, 0.0033 mmol) in THF-d8 (0.5 ml) a solution containing **Alk4NX** (C = 0.1 M, 0.1 mmol) and the **macrocycle** (C = 0.0067 M, 0.0134 mmol) in THF-d8 (1 ml) was added. ¹H NMR spectra were recorded at 303 K using Bruker 400 MHz.

DOSY titrations

To the solution of **macrocycle** (C = 0.0025 M, 0.00125 mmol) in THF-d8 (0.5 ml) a solution containing **Alk4NX** (C = 0.0656 M, 0.0656 mmol) and the **macrocycle** (C = 0.0025 M, 0.0025 mmol) in THF-d8 (1 ml) was added. ¹H NMR spectra and DOSY measurement were recorded at 303 K using Bruker 600 MHz.

¹H DOSY experiments were performed on a Varian VNMRS-600 spectrometer at 298 K equipped with a 5 mm PFG AutoXID (1 H/X= 15 N- 31 P) probe. DOSY experiments were run with the DPFGDSTE (with convection compensation) pulse sequence for measurements in THF-d8 solutions. The gradient strengths were incremented as a square dependence in the range from 6 to 55 G/cm. 16 transients (with interleave option) were recorded for each increment with 3.2 s

acquisition time and 1 s relaxation delay (overall experiment time *ca.* 18 - 20 min). The duration of magnetic field gradients (δ) was 1.5 - 2 ms, whereas a diffusion delay (Δ) was chosen as 50 - 150 ms. Other parameters include the following: a sweep width of 12 000 Hz, 32 K data points. The data were processed using Varian DOSY software. The hydrodynamic diameters d_H (d_H = 2r_H) of the species were calculated using the Einstein-Stokes equation from D_{min}

$$r_H = \frac{k_b T}{6\pi\eta D}$$

 k_b – Boltzmann constant T – temperature η – viscosity coefficient D – diffusion coeffcient

4. Titrations of I-RM

Figure S2. ¹H NMR spectra of (a) **Pen4NCl**; (b) **I-RM**; (c) complex of **I-RM** and **Pen4NCl** (400 MHz, 303 K, THF-d8).

Figure S3. ¹H NMR titration curves for titration of **I-RM** with **Pen₄NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{10w}; (c) NCH₂ from salt (400 MHz, 303 K, THF-d8).

5. Titrations of Br-RA

5.1. Titration of Br-RA with Oct4NCl in THF

Figure S4. ¹H NMR spectra of (a) **Oct4NCl**; (b) **Br-RA**; (c) complex of **Br-RA** and **Oct4NCl** (400 MHz, 303 K, THF-d8).

S10

Figure S5. ¹H NMR titration curves for titration of **Br-RA** with **Oct4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

Figure S6. ¹H NMR spectra of (a) **Oct4NCl**; (b) **Br-RA**;(c) complex of **Br-RA** and **Oct4NCl** (400 MHz, 303 K, Acetone-d6).

S12

Figure S7. ¹H NMR titration curves for titration of **Br-RA** with **Oct4NCI**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

Figure S8. ¹H NMR spectra of (a) **Hex4NCl**; (b) **Br-RA**; (c) complex of **Br-RA** and **Hex4NCl** (400 MHz, 303 K, THF-d8).

Figure S9. ¹H NMR titration curves for titration of **Br-RA** with **Hex4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

5.4. Titration of Br-RA with Hex₄NCl in acetone

Figure S10. ¹H NMR spectra of (a) **Hex4NCl**; (b) **Br-RA**; (c) complex of **Br-RA** and **Hex4NCl** (400 MHz, 303 K, Acetone-d6).

Figure S11. ¹H NMR titration curves for titration of **Br-RA** with **Hex4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

5.5. Titration of Br-RA with Pen₄NCl in THF

Figure S12. ¹H NMR spectra of (a) Pen₄NCl; (b) Br-RA; (c) complex of Br-RA and Pen₄NCl (400 MHz, 303 K, THF-d8).

Figure S13. ¹H NMR titration curves for titration of **Br-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

Figure S14. DOSY titration curves for titration of **Br-RA** with **Pen4NCl**. ¹H NMR chemical shifts and diffusion coefficient changes for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt; (f) THF signal (600 MHz, 303 K, THF-d8).

5.7. Titration of Br-RA with Pen₄NCl in acetone

Figure S15. ¹H NMR spectra of (a) Pen₄NCl; (b) Br-RA; (c) complex of Br-RA and Pen₄NCl (400 MHz, 303 K, Acetone-d6).

Figure S16. ¹H NMR titration curves for titration of **Br-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

5.8. Titration of Br-RA with Pen₄NBr in THF

Figure S18. ¹H NMR titration curves for titration of **Br-RA** with **Pen4NBr**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

5.9.DOSY titration curves for titration of Br-RA with Pen₄NBr in THF

Figure S19. DOSY titration curves for titration of **Br-RA** with **Pen4NBr**. ¹H NMR chemical shifts and diffusion coefficient changes for: a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt; (f) THF signal (600 MHz, 303 K, THF-d8).

6. Titrations of I-RA

6.1. Titration of I-RA with Oct4NCl in THF

4.5 4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8.5

8.0

7.5

7.0

6.5

6.0

10.5 10.0

9.5

9.0

Figure S21. ¹H NMR titration curves for titration of **I-RA** with **Oct4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

6.2. Titration of I-RA with Oct4NCl in acetone

MHz, 303 K, Acetone-d6).

Figure S23. ¹H NMR titration curves for titration of **I-RA** with **Oct4NCI**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

6.3. Titration of I-RA with Hex₄NCl in THF

6.0 5.5 f1 (ppm) 10.5 10.0 0.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Figure S25. ¹H NMR titration curves for titration of **I-RA** with **Hex4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

6.4. Titration of I-RA with Hex4NCl in acetone

MHz, 303 K, Acetone-d6).

Figure S27. ¹H NMR titration curves for titration of **I-RA** with **Hex4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

6.5. Titration of I-RA with Pen₄NCl in THF

^{5.5} f1 (ppm) 10.5 10.0 7.5 6.5 4.5 3.5 2.5 1.5 0.5 9.5 9.0 8.5 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

Figure S29. ¹H NMR titration curves for titration of **I-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

Figure S30. DOSY titration curves for titration of **I-RA** with **Pen4NCI**. ¹H NMR chemical shifts and diffusion coefficient changes for: a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt; (f) THF signal (600 MHz, 303 K, THF-d8).

Figure S31. ¹H NMR spectra of (a) **Pen4NCl**; (b) **I-RA**; (c) complex of **I-RA** and **Pen4NCl** (400 MHz, 303 K, Acetone-d6).

Figure S32. ¹H NMR titration curves for titration of **I-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

Figure S33. ¹H NMR spectra of (a) Pen₄NCl; (b) I-RA; (c) complex of I-RA and Pen₄NCl (400 MHz, 303 K, Acetonitrile-d3).

Figure S34. ¹H NMR titration curves for titration of **I-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetonitrile-d3).

6.9. Titration of I-RA with Oct₄NBr in THF

6.0 5.5 f1 (ppm) Figure S35. ¹H NMR spectra of (a) Oct₄NBr; (b) I-RA; (c) complex of I-RA and Oct₄NBr (400 MHz, 303 K, THF-d8).

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.5 10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

Figure S36. ¹H NMR titration curves for titration of **I-RA** with **Oct4NBr**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

6.10. Titration of I-RA with Pen₄NBr in THF

Figure S38. ¹H NMR titration curves for titration of **I-RA** with **Pen4NBr**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

Figure S39. DOSY titration curves for titration of **I-RA** with **Pen4NBr**. ¹H NMR chemical shifts and diffusion coefficient changes for: a) OH and THF signal; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (600 MHz, 303 K, THF-d8).

6.12. Titration of I-RA with Pen₄NBr in acetone

Figure S40. ¹H NMR spectra of (a) **Pen4NBr**; (b) **I-RA**;(c) complex of **I-RA** and **Pen4NBr** (400 MHz, 303 K, Acetone-d6).

Figure S41. ¹H NMR titration curves for titration of **I-RA** with **Pen4NBr**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

7. Titration of H-RA

7.1. Titration of H-RA with Pen₄NCl in THF

Figure S42. ¹H NMR spectra of (a) Pen₄NCl; (b) H-RA; (c) complex of H-RA and Pen₄NCl (400 MHz, 303 K, THF-d8).

Figure S43. ¹H NMR titration curves for titration of **H-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{up}; (d) CH_{bridge}; (e) CH₂ from lower rim alkyl chain; (f) NCH₂ from salt (400 MHz, 303 K, THF-d8).

7.2. Titration of H-RA with Pen₄NCl in acetone

Figure S44. ¹H NMR spectra of (a) **Pen₄NCl**; (b) **H-RA**; (c) complex of **H-RA** and **Pen₄NCl** (400 MHz, 303 K, Acetone-d6).

Figure S45. ¹H NMR titration curves for titration of **H-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{up}; (d) CH_{bridge}; (e) CH₂ from lower rim alkyl chain; (f) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

8. Titrations of O-RA

8.1. Titration of O-RA with Pen₄NCl in THF

Figure S47. ¹H NMR titration curves for titration of **O-RA** with **Pen4NCI**. ¹H NMR chemical shifts change for: (a) CH_{low}; (b) CH_{up}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

Figure S48. DOSY titration curves for titration of **O-RA** with **Pen4NCI**. ¹H NMR chemical shifts and diffusion coefficient changes for: (a) CH_{low} ; (b) CH_{up} ; (c) CH_{bridge} ; (d) CH_2 from lower rim alkyl chain; (e) NCH₂ from salt (600 MHz, 303 K, THF-d8).

Figure S49. ¹H NMR spectra of (a) **Pen₄NBr**; (b) **O-RA**; (c) complex of **O-RA** and **Pen₄NBr** (400 MHz, 303 K, THF-d8).

f1 (ppm)

Figure S50. ¹H NMR titration curves for titration of **O-RA** with **Pen4NBr**. ¹H NMR chemical shifts change for: (a) CH_{low}; (b) CH_{up}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

8.4. Titration of O-RA with Pen₄NCl in acetone

(400 MHz, 303 K, Acetone-d6).

Figure S52. ¹H NMR titration curves for titration of **H-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) CH_{low}; (b) CH_{up}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

9.1. Titration of H-RA+Br-RA with Pen₄NCl in THF

Figure S53. ¹H NMR titration curves for titration of **H-RA** + **Br-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{up}; (d) CH_{bridge}; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

9.2. Titration of O-RA+Br-RA with Pen₄NCl in THF

Figure S54. ¹H NMR titration curves for titration of **O-RA** + **Br-RA** with **Pen4NCl**. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

10.Additional comparisons

Figure S55. Comparison of interactions **Br-RA** and **I-RA** with **Alk**₄**NX** salts in THF. ¹H NMR chemical shifts change for: (a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, THF-d8).

Figure S56. Comparison of interactions **Br-RA** and **I-RA** with **Alk**₄**NX** salts in Acetone. ¹H NMR chemical shifts change for: a) OH; (b) CH_{low}; (c) CH_{bridge}; (d) CH₂ from lower rim alkyl chain; (e) NCH₂ from salt (400 MHz, 303 K, Acetone-d6).

11. The search of the CCDC database

Search Overview

Search:	search22
Date/Time done:	Thu Jan 13 15:04:08 2022
Database(s):	CSD version 5.41 updates (Mar 2020) CSD version 5.41 (November 2019) CSD version 5.41 updates (May 2020)
Restriction Info:	No refcode restrictions applied
Filters:	None
Percentage Complete	<i>d</i> : 100%
Number of Hits:	13

Single query used. Search found structures that:

AJUROM Reference:	J.L.Atwood, A.Szumna (2002) <i>J.Supramol.Chem.</i> , 2, 479
AJUSAZ Reference:	J.L.Atwood, A.Szumna (2002) J.Supramol.Chem. ,2,479
IKASAO Reference:	P.O.Brown, G.D.Enright, J.A.Ripmeester (2002) <i>J.Supramol.Chem.</i> , 2, 497
ITAMIZ Reference:	H.Mansikkamaki, M.Nissinen, K.Rissanen (2004) Angew.Chem.,Int.Ed. , 43, 1243
QOFMIH Reference:	A.Shivanyuk, E.F.Paulus, K.Rissanen, E.Kolehmainen, V.Bohmer (2001) <i>ChemEur.J.</i> , 7, 1944
QOFMON Reference:	A.Shivanyuk, E.F.Paulus, K.Rissanen, E.Kolehmainen, V.Bohmer (2001) <i>ChemEur.J.</i> ,7, 1944
QOFNAA Reference:	A.Shivanyuk, E.F.Paulus, K.Rissanen, E.Kolehmainen, V.Bohmer (2001) <i>ChemEur.J.</i> , 7, 1944
QOFNUU Reference:	A.Shivanyuk, E.F.Paulus, K.Rissanen, E.Kolehmainen, V.Bohmer (2001) <i>ChemEur.J.</i> ,7, 1944
TOJFII Reference:	S.Busi, H.Saxell, R.Frohlich, K.Rissanen (2008) <i>CrystEngComm</i> , 10, 1803
VEKRUA Reference:	S.V.Shishkina, A.Tarnovskiy, V.Rozhkov, O.V.Shishkin, O.Lukin, A.Shivanyuk (2012) <i>Tetrahedron ,68,</i> 9429
VEKSEL Reference:	S.V.Shishkina, A.Tarnovskiy, V.Rozhkov, O.V.Shishkin, O.Lukin, A.Shivanyuk (2012) <i>Tetrahedron ,68,</i> 9429
XUTBET Reference:	H.Mansikkamaki, M.Nissinen, C.A.Schalley, K.Rissanen (2003) <i>New J.Chem.</i> , 27, 88
Reference:	H.Mansikkamaki, M.Nissinen, C.A.Schalley, K.Rissanen (2003) <i>New J.Chem.</i> , 27, 88

Search: search22 (Thu Jan 13 15:04:08 2022): Hits 1-13

Search Overview

Search:	search23
Date/Time done:	Thu Jan 13 15:27:32 2022
Database(s):	CSD version 5.41 updates (Mar 2020) CSD version 5.41 (November 2019) CSD version 5.41 updates (May 2020)
Restriction Info:	No refcode restrictions applied
Filters:	None
Percentage Complete	<i>d</i> : 100%
Number of Hits:	11

Single query used. Search found structures that:

DOXTIU	N.K.Beyeh, A.Valkonen, K.Rissanen (2009)
<i>Reference:</i>	Supramol.Chem. , 21, 142
FEQQUO	H.Mansikkamaki, C.A.Schalley, M.Nissinen, K.Rissanen
<i>Reference:</i>	(2005) <i>New J.Chem. ,</i> 29, 116
FEQRID	H.Mansikkamaki, C.A.Schalley, M.Nissinen, K.Rissanen
<i>Reference:</i>	(2005) <i>New J.Chem. ,29,</i> 116
FEQROJ	H.Mansikkamaki, C.A.Schalley, M.Nissinen, K.Rissanen
<i>Reference:</i>	(2005) <i>New J.Chem. ,</i> 29, 116
ITAMOF	H.Mansikkamaki, M.Nissinen, K.Rissanen (2004)
Reference:	Angew.Chem.,Int.Ed. , 43, 1243
QEHYEI	H.Mansikkamaki, S.Busi, M.Nissinen, A.Ahman,
Reference:	K.Rissanen (2006) <i>ChemEur.J.</i> ,12, 4289
QEHYIM	H.Mansikkamaki, S.Busi, M.Nissinen, A.Ahman,
Reference:	K.Rissanen (2006) <i>ChemEur.J.</i> ,12, 4289
QEMLAW	H.Mansikkamaki, S.Busi, M.Nissinen, A.Ahman,
Reference:	K.Rissanen (2006) <i>ChemEur.J.</i> ,12, 4289
TOJFAA	S.Busi, H.Saxell, R.Frohlich, K.Rissanen (2008)
<i>Reference:</i>	<i>CrystEngComm ,</i> 10, 1803
XUTBOD	H.Mansikkamaki, M.Nissinen, C.A.Schalley, K.Rissanen
<i>Reference:</i>	(2003) <i>New J.Chem. ,27,</i> 88
XUTBUJ	H.Mansikkamaki, M.Nissinen, C.A.Schalley, K.Rissanen
Reference:	(2003) <i>New J.Chem.</i> , 27, 88

Search: search23 (Thu Jan 13 15:27:32 2022): Hits 1-11
Search:	search14		
Date/Time done:	Thu Jan 13 14:37:29 2022		
Database(s):	CSD version 5.41 updates (Mar 2020) CSD version 5.41 (November 2019) CSD version 5.41 updates (May 2020)		
Restriction Info:	No refcode restrictions applied		
Filters:	None		
Percentage Complete	<i>d:</i> 100%		
Number of Hits:	4		

Summary of queries used. Search found structures that:

Query 6

Query

IZOLAM	
Reference:	Fangfang Pan, Ngong Kodiah Beyeh, R.H.A.Ras,
	K.Rissanen (2016) Cryst.Growth Des. ,16,6729
KOGQUS	
Reference:	A.T.Gubaidullin, Y.E.Morozova, A.R.Mustafina,
	E.Kh.Kazakova, I.A.Litvinov, A.I.Konovalov (1999)
	Mendeleev Commun. ,9
WUNWEJ	
Reference:	N.Kodiah Beyeh, A.Ala-Korpi, Fangfang Pan,
	Hyun Hwa Jo, E.V.Anslyn, K.Rissanen (2015) ChemEur.J. ,21,9556
XAGVAC	
Reference:	A.Shivanyuk, T.P.Spaniol, K.Rissanen, E.Kolehmainen, V.Bohmer (2000) <i>Angew.Chem.,Int.Ed.</i> , 39, 3497

Search:	search20		
Date/Time done:	Thu Jan 13 14:56:35 2022		
Database(s):	CSD version 5.41 updates (Mar 2020) CSD version 5.41 (November 2019) CSD version 5.41 updates (May 2020)		
Restriction Info:	No refcode restrictions applied		
Filters:	None		
Percentage Complete	<i>d</i> : 100%		
Number of Hits:	7		

Search: search20 (Thu Jan 13 14:56:35 2022): Hits: 1-7

QACNIT			
Reference:	N.K.Beyeh, M.Cetina, M.Lofman, M.Luostarinen, A.Shivanyuk, K.Rissanen (2010) <i>Supramol.Chem.</i> ,22, 737		
QACNOZ			
Reference:	N.K.Beyeh, M.Cetina, M.Lofman, M.Luostarinen, A.Shivanyuk, K.Rissanen (2010) Supramol.Chem. ,22,737		
QACPER			
Reference:	N.K.Beyeh, M.Cetina, M.Lofman, M.Luostarinen, A.Shivanyuk, K.Rissanen (2010) Supramol.Chem. ,22,737		
QEHYEI			
Reference:	H.Mansikkamaki, S.Busi, M.Nissinen, A.Ahman, K.Rissanen (2006) <i>ChemEur.J.</i> ,12, 4289		
SUPTII			
Reference:	Fangfang Pan, Ngong Kodiah Beyeh, K.Rissanen (2015) <i>J.Am.Chem.Soc.</i> , 137, 10406		
UQELEJ			
Reference:	Fangfang Pan, Ngong Kodiah Beyeh, R.H.A.Ras, K.Rissanen (2016) <i>CrystEngComm ,</i> 18, 5724		
VUCQER			
Reference:	N.Kodiah Beyeh, A.Valkonen, S.Bhowmik, Fangfang Pan, K.Rissanen (2015) Org.Chem.Front. , 2, 340		

Search:	search21		
Date/Time done:	Thu Jan 13 15:02:37 2022		
Database(s):	CSD version 5.41 updates (Mar 2020) CSD version 5.41 (November 2019) CSD version 5.41 updates (May 2020)		
Restriction Info:	No refcode restrictions applied		
Filters:	None		
Percentage Complete	<i>d</i> : 100%		
Number of Hits:	13		

Search: search21 (Thu Jan 13 15:02:37 2022): Hits 1-11

CALJUX	Ngong Kodiah Beyeh, Fangfang Pan, K.Rissanen (2015)
Reference:	Angew.Chem.,Int.Ed. , 54, 7303
DOQTUA	N.Kodiah Beyeh, A.Ala-Korpi, M.Cetina, A.Valkonen,
Reference:	K.Rissanen (2014) <i>ChemEur.J.</i> , 20, 15144
DOQVAI	N.Kodiah Beyeh, A.Ala-Korpi, M.Cetina, A.Valkonen,
Reference:	K.Rissanen (2014) <i>ChemEur.J. ,20,</i> 15144
IZOLAM	Fangfang Pan, Ngong Kodiah Beyeh, R.H.A.Ras,
Reference:	K.Rissanen (2016) <i>Cryst.Growth Des.</i> , 16, 6729
KATQEC	H.Mansikkamaki, M.Nissinen, K.Rissanen (2005)
Reference:	<i>CrystEngComm</i> , 7 ,519
KOGQUS Reference:	A.T.Gubaidullin, Y.E.Morozova, A.R.Mustafina, E.Kh.Kazakova, I.A.Litvinov, A.I.Konovalov (1999) <i>Mendeleev Commun. ,</i> 9
LAJXIG	N.Kodiah Beyeh, Fangfang Pan, S.Bhowmik, T.Makela,
Reference:	R.H.A.Ras, K.Rissanen (2016) <i>ChemEur.J.</i> ,22, 1355
QACNEP Reference:	N.K.Beyeh, M.Cetina, M.Lofman, M.Luostarinen, A.Shivanyuk, K.Rissanen (2010) <i>Supramol.Chem.</i> ,22, 737
QACNUF Reference:	N.K.Beyeh, M.Cetina, M.Lofman, M.Luostarinen, A.Shivanyuk, K.Rissanen (2010) <i>Supramol.Chem.</i> ,22, 737
UREBAW	Ngong Kodiah Beyeh, Fangfang Pan, R.H.A.Ras (2016)
Reference:	<i>Asian J.Org.Chem ,</i> 5, 1027
WUNWEJ	N.Kodiah Beyeh, A.Ala-Korpi, Fangfang Pan,
Reference:	Hyun Hwa Jo, E.V.Anslyn, K.Rissanen (2015) <i>ChemEur.J.</i> ,21, 9556

XAGVAC	A.Shivanyuk, T.P.Spaniol, K.Rissanen, E.Kolehmainen,
Reference:	V.Bohmer (2000) <i>Angew.Chem.,Int.Ed.</i> , 39, 3497
ZISGAL Reference:	N.Kodiah Beveh. M.Cetina. K.Rissanen (2014)

Chem.Commun. ,**50,**1959

Search:	search5		
Date/Time done:	Thu Jan 13 13:28:12 2022		
Database(s):	CSD version 5.41 updates (Mar 2020) CSD version 5.41 (November 2019) CSD version 5.41 updates (May 2020)		
Restriction Info:	No refcode restrictions applied		
Filters:	None		
Percentage Complete	<i>d</i> : 100%		
Number of Hits:	17		

AHOHIQ Reference:	R.Pinalli, G.Brancatelli, A.Pedrini, M.Melegari, S.Geremia, (2015) CSD Communication(Private Communication),	E.Dalcanal
CUYZIG Reference:	M.Melegari, C.Massera, F.Ugozzoli, E.Dalcanale (2010) <i>CrystEngComm</i> , 12, 2057	
GIPPED Reference:	G.Bracantelli (2018) CSD Communication(Private Communication) ,	
GIPPIH Reference:	G.Bracantelli (2018) CSD Communication(Private Communication) ,	
GIYPIQ Reference:	E.Biavardi, C.Massera (2019) Acta Crystallogr.,Sect.E:Cryst.Commun. , 75, 277	
MIQJEE <i>Reference:</i>	G.Bracantelli (2018) CSD Communication(Private Communication) ,	
MOXROI Reference:	E.Biavardi, F.Ugozzoli, C.Massera (2015) <i>Chem.Commun.</i> ,51, 3426	
MOXSAV Reference:	E.Biavardi, F.Ugozzoli, C.Massera (2015) <i>Chem.Commun. ,</i> 51, 3426	
MOXSID Reference:	E.Biavardi, F.Ugozzoli, C.Massera (2015) <i>Chem.Commun. ,</i> 51, 3426	
SORREY Reference:	E.Biavardi, S.Federici, C.Tudisco, D.Menozzi, C.Masser A.Sottini, G.G.Condorelli, P.Bergese, E.Dalcanal <i>Angew.Chem.,Int.Ed.</i> , 53, 9183	a, e (2014)
SORROI <i>Reference:</i>	E.Biavardi, S.Federici, C.Tudisco, D.Menozzi, C.Masser A.Sottini, G.G.Condorelli, P.Bergese, E.Dalcanal <i>Angew.Chem.,Int.Ed.</i> , 53, 9183	a, e (2014)

Search: search5 (Thu Jan 13 13:28:12 2022): Hits 1-11

Search: search5 (Thu Jan 13 13:28:12 2022): Hits: 12-17

E.Biavardi, S.Federici, C.Tudisco, D.Menozzi, C.Masser	a,
Angew.Chem.,Int.Ed. , 53 ,9183	e (2014)
R.Pinalli, G.Brancatelli, A.Pedrini, M.Melegari, S.Geremia, (2015) CSD Communication(Private Communication),	E.Dalcanale
R.Pinalli, G.Brancatelli, A.Pedrini, M.Melegari, S.Geremia, (2015) CSD Communication(Private Communication),	E.Dalcanale
R.Pinalli, G.Brancatelli, A.Pedrini, M.Melegari, S.Geremia, (2015) CSD Communication(Private Communication),	E.Dalcanale
H.Mansikkamaki, M.Nissinen, K.Rissanen (2002) <i>Chem.Commun. ,</i> 1902	
H.Mansikkamaki, M.Nissinen, C.A.Schalley, K.Rissanen (2003) <i>New J.Chem.</i> , 27, 88	
	 A.Sottini, G.S.Condoreni, F.Dergese, L.Datcariate Angew.Chem., Int.Ed., 53,9183 R.Pinalli, G.Brancatelli, A.Pedrini, M.Melegari, S.Geremia, (2015) <i>CSD Communication(Private Communication)</i>, R.Pinalli, G.Brancatelli, A.Pedrini, M.Melegari, S.Geremia, (2015) <i>CSD Communication(Private Communication)</i>, R.Pinalli, G.Brancatelli, A.Pedrini, M.Melegari, S.Geremia, (2015) <i>CSD Communication(Private Communication)</i>, H.Mansikkamaki, M.Nissinen, K.Rissanen (2002) <i>Chem.Commun.</i>, 1902 H.Mansikkamaki, M.Nissinen, C.A.Schalley, K.Rissanen (2003) <i>New J.Chem.</i>, 27,88

Search:	search8		
Date/Time done:	Thu Jan 13 13:50:37 2022		
Database(s):	CSD version 5.41 updates (Mar 2020) CSD version 5.41 (November 2019) CSD version 5.41 updates (May 2020)		
Restriction Info:	No refcode restrictions applied		
Filters:	None		
Percentage Complete	<i>d</i> : 100%		
Number of Hits:	5		

Search: search8	(Thu Jan	13 13:50:37	2022): Hits: 1-5
-----------------	----------	-------------	------------------

I	DIFPEP	
Referen	ice:	N.Sahin, D.Semeril, E.Brenner, D.Matt, I.Ozdemir, C.Kaya, L.Toupet (2013) <i>Eur.J.Org.Chem.</i> ,4443
	DOXTEQ Reference:	N.K.Beyeh, A.Valkonen, K.Rissanen (2009) Supramol.Chem. , 21, 142
l	LICTIC	
Referen	ice:	N.Sahin, D.Serneril, E.Brenner, D.Matt, I.Ozedmir, C.Kaya, L.Toupet (2013) <i>ChemCatChem</i> , 5 ,1116
I	MUTHOA	
1	Reference:	G.BRANCATELLI, T.Barbosa, E.Dalcanale, S.Geremia (2015) CSD Communication(Private Communication),
	VAJXIQ	
(2015)	Reference: Turk.J.Chem.	N.Sahin, D.Semeril, E.Brenner, D.Matt, C.Kaya, L.Toupet , 39, 1171

12.References

- ³ M. Kobayashi, M. Takatsuka, R. Sekiya and T. Haino, Org. Biomol. Chem., 2015, 13, 1647
- ⁴ E. Roman, C. Peinador, S. Mendoza, A. E. Kaifer, J. Org. Chem., 1999, 64, 2577.
- ⁵ K. Uchida, S. Yoshida, T. Hosoya, *Synthesis*, 2016, **48**, 4099.

 ¹ P.Timmerman, W. Verboom, D. N. Reinhoudt, *Tetrahedron*, 1996, **52**, 2663.
 ² S. Merget, L. Catti, S. Zev, D. T. Major, N. Trapp, K. Tiefenbacher, Chem. Eur. J., 2021, **27**, 4447.