Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Redox activated amines in organophotoinduced alkylation of coumarins

Shashank Singh[‡], Krishna N. Tripathi[‡] and Ravi P. Singh*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India

ravips@chemistry.iitd.ac.in

Table of Content

Entry	Contents	Page No
1.	General Information	S2
2.	Preparation of Starting material	S2-S6
	(i) Preparation of Coumarins	S2-S4
	(ii) Preparation of Pyridinium Salts	S5-S6
3.	Optimization Studies	S7-S10
4.	Control Experiment	S11
5.	General procedure and characterization of products.	S12-S18
6.	Crystallographic data	S19-S24
7.	References	S25
8.	¹ H and ¹³ C spectra of compounds	S26-S75

Experimental section

1. General Information. Nuclear magnetic resonance (NMR) spectra were recorded in deuterated solvents with residual protonated solvent signal as internal reference on a BrukerAva-300, BrukerAva-400 and BrukerAva-500. Chemical shifts are reported in parts per million using the solvent resonance internal standard (chloroform, 7.26 and 77.0 ppm). Data is reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet), coupling constant, and integration. Electrospray and electron impact high resolution mass spectrometry was performed by Bruker mass spectrometer. The data is recorded as the ionization method followed by the calculated and measured masses. Solvents for starting material preparation and coupling reactions were dried before use. Green LEDs (2.50 W, λ = 530 nm) Rebel LED, mounted on a 25 mm cool base was purchased from commercial supplier Luxeon Star LEDs Quadica Developments Inc.10-3447 30 Ave N. Lethbridge, Alberta T1H 7B5 Canada.

2. Preparation of Starting Materials

2.1. Preparation of Coumarins. Preparation of 3-Cyanocoumarins (1a-1e)

3-Cyanocoumarins were synthesized using known literature procedure.¹ To a solution of salicylaldehyde (10.0 mmol) and malononitrile (660 mg, 10.0 mmol) in EtOH (10.0 mL) was added NH₄OAc (462 mg, 6.0 mmol) slowly. The reaction mixture was stirred at room temperature for 4h to form the precipitations. Then the precipitate was filtered and washed with EtOH and dried in vacuum. Next, the products were dissolved in EtOH by gentle heating at 75 °C and then 1 mL HCl was added in reaction mixture. Whole solution was vigorously stirred at 75 °C for 30 min. After that the material was poured in ice water. The resulting solid was filtered and washed with cold water, subsequently dried under vacuum. The crude product was purified by column chromatography (ethyl acetate/Hexane =3:7-4:6).

2.1.1 Synthesis of coumarin-3-carboxylate (1f-1l)

Ethyl coumarin-3-carboxylate **1g** was synthesized following known literature procedure.² To a solution of salicylaldehyde (1.83 g, 15 mmol) in 30 mL of ethanol was added diethyl malonate (2.88 g, 18 mmol), 2 drops of acetic acid and piperidine (0.15 mL). The reaction mixture was stirred under reflux for 8 h, After completion of the reaction, dilution was done with ice-cold water (50 mL)., the cake was filtered and washed with cold water. The product was dried under vacuum to give a white solid (3.07 g, 94% yield).

Coumarin-3-carboxylate 1f,1h-1l were synthesized from known literature in three steps.³

2.1.2 Synthesis of 2H-Chromenones (1m-1n)

3-Phenyl-2H-chromen-2-one (1m) and 3-(Pyridin-3-yl)-2H-chromen-2-one (1n) was synthesized following known literature procedure.⁴ Salicylaldehyde (1 mmol) and two equivalents of 'BuOK were added in a 25 mL tube equipped with a stirring bar. Then, 1 mL of DMF and 2-phenylacetonitrile and 3-pyridineacetonitrile (1.5 mmol) were injected by syringe. After that, the tube was closed and heated up to 110 °C for 16 h. When the reaction was completed, the reaction mixture was cooled to room temperature and quenched with distilled water and the resulted solution was extracted with ethyl acetate and dried over MgSO₄. The crude product was purified by column chromatography (ethyl acetate/Hexane = 1:25-1:8).

2.2 Preparation of Pyridinium Salts

All Pyridinium Salts (2) were synthesized by following known literature procedure.⁵ The respective primary amine (1.2 equiv.), 2,4,6-triphenylpyrylium tetrafluoroborate (1.0 equiv.) and EtOH were mixed in a flask with a magnetic stirring bar. The reaction mixture was refluxed in oil bath at 80 °C for 4 h. After completion of reaction the mixture was then allowed to cool at room. After that solution is diluted with Et_2O (2-3x volume of EtOH used) and vigorously stirred for 2 h. The white resulting solid was filtered and washed with Et_2O (3x 25 mL).

S2: Katritzky pyridinium salt Substrate Scope (2a-2l)

3: Optimization

S3.1: Optimization of Catalyst loading

S3.2: Optimization of Et₃N

60

4

Et₃N

S3.3: Optimization for concentration of reaction

Concentration

Entry	Concentration (M)	Yield (%)
1	0.4	56
2	0.13	55
3	0.1	65
4	0.05	32

S3.4: Optimization of substrate loading

Equiv. of **2a**

Equiv	Yield (%)
1	32
1.2	38
1.5	52
2	65
3	63

4. Control Experiment

5. General methods of deaminative alkylation reaction

Coumarin (0.4 mmol, 2.0 equiv.), Pyridinium Salts (0.2 mmol, 1 equiv.) were taken in a long neck round bottom flask and 10 mol % of Eosin Y was added into it, the RB was capped with septum. After that, 2.0 equiv. of DIPEA and 3.0 equiv. of Et₃N followed by 2 mL of dry DCE were added into the reaction mixture via a syringe. The mixture was degassed and filled with N₂ (three times). The reaction mixture was irradiated with green LED for 48 h. The light system was covered with aluminium foil so that heat should maintain during reaction period. After completion (monitored through TLC), reaction was quenched with water and extracted with DCM (3 x 10 mL), washed with brine solution. After removal of solvent in vacuo, the product was purified by silica gel chromatography using EtOAc-hexane (1:9 to 4:6) as eluent to provide the desired product **3**.

4-cyclohexyl-2-oxo-2*H***-chromene-3-carbonitrile (3a): Physical state**: white solid; **Yield**: 33 mg (65 %). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.67 (t, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 2H), 3.33 (s, 1H), 2.23-2.17 (m, 2H), 1.97 (d, *J* = 7.1 Hz, 2H), 1.86 (d, *J* = 10.6 Hz, 3H), 1.45 (t, *J* = 8.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 157.7, 153.7, 135.0, 125.3, 118.2, 117.4, 114.2, 100.8, 29.9, 26.5, 25.4. HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. For C₁₆H₁₅NO₂Na, 276.0994; Found: 276.0991.

4-cycloheptyl-2-oxo-2H-chromene-3-carbonitrile (3b): Physical state: white solid: **Yield**: 27 mg (50 %). ¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.67 (s, 1H), 7.40 (d, *J* = 8.3 Hz, 2H), 1.95 (s, 4H), 1.75-1.69 (m, 6H), 1.58 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 124.9, 118.4, 32.8, 29.9, 28.2. **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. For C₁₇H₁₇NO₂Na 290.1151; Found: 290.1157.

4-cyclopentadecyl-2-oxo-2*H***-chromene-3-carbonitrile (3c): Physical state**: white solid; **Yield**: 54 mg (72 %). ¹**H NMR** (300 MHz, CDCl₃) δ 7.93 (d, *J* = 7.3 Hz, 1H), 7.73 – 7.60 (m, 1H), 7.49 – 7.30 (m, 2H), 3.40 (bs, 1H), 2.10 (dd, *J* = 18.5, 11.5 Hz, 2H), 1.88 (d, *J* = 5.9 Hz, 2H), 1.67-1.37 (m, 24H); ¹³**C NMR** (75 MHz, CDCl₃) δ 170.4, 153.9, 134.5, 127.8, 125.5, 124.7, 118.3, 116.6, 113.7, 102.2, 45.5, 34.4, 32.0, 27.4, 26.8, 26.6, 26.5, 26.4. **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. For C₂₅H₃₃NO₂Na, 402.2403; Found: 402.2398.

4-cyclopentyl-2-oxo-2*H***-chromene-3-carbonitrile (3d):** Physical state: brown solid Yield: 27 mg (58 %). ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 8.1 Hz, 1H), 7.68 (t, *J* = 7.8 Hz, 1H), 7.39 (dd, *J* = 15.6, 7.9 Hz, 2H), 3.88 – 3.64 (m, 1H), 2.26 – 2.04 (m, 6H), 1.90 (s, 2H); ¹³C NMR (75MHz, CDCl₃) δ 170.5, 157.5, 153.8, 134.9, 126.1, 125.1, 118.5, 117.3, 113.9, 101.3, 43.1, 33.4, 27.7; HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. For C₁₅H₁₃NO₂Na, 262.0838; Found: 262.0836.

4-(2,3-dihydro-1H-inden-2-yl)-2-oxo-2*H***-chromene-3-carbonitrile (3e): Physical state**: brown solid; Yield: 35 mg (62 %). ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.64 (m, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.31 (s, 4H), 7.22 (t, *J* = 7.7 Hz, 1H), 4.58 – 4.41 (m, 1H), 3.64-3.51 (m, 4H).¹³C NMR (101 MHz, CDCl₃) δ 168.9, 156.9, 153.9, 140.7, 134.9, 127.7, 126.3, 125.3, 118.6, 116.4, 113.6, 102.3, 41.9, 39.9; HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. For C₁₉H₁₃NO₂Na, 310.0838; Found: 310.0849.

4-isopropyl-2-oxo-2*H***-chromene-3-carbonitrile (3f): Physical state**: brown solid **Yield**: 23 mg (60 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.69 (t, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 8.6 Hz, 2H), 3.75 (dt, *J* = 14.3, 7.1 Hz, 1H), 1.61 (d, *J* = 7.2 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 157.6, 153.8, 135.0, 126.1, 125.3, 118.4, 117.1, 113.9, 100.8, 29.8, 20.8; **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. For C₁₃H₁₂NO₂Na, 214.0862; Found: 214.0874.

4-(sec-butyl)-2-oxo-2*H***-chromene-3-carbonitrile (3g): Physical state**: white solid; **Yield**: 26 mg (58 %). ¹**H NMR** (500 MHz, CDCl₃) δ 7.96 (d, *J* = 6.7 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.40 (dd, *J* = 15.4, 7.9 Hz, 2H), 3.50 (s, 1H), 2.08 – 1.97 (m, 2H), 1.58 (d, *J* = 7.1 Hz, 3H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.8, 157.4, 153.8, 134.9, 125.2, 118.4, 113.9, 21.6, 14.0; **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. For C₁₄H₁₃NO₂Na, 250.0838; Found: 250.0846.

2-oxo-4-(pentan-3-yl)-2H-chromene-3-carbonitrile (3h): Physical state: light yellow solid; Yield: 35 mg (73 %). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, *J* = 24.6, 8.3 Hz, 1H), 7.69 (dt, *J* = 22.1, 7.8 Hz, 1H), 7.39 (dd, *J* = 31.1, 8.1 Hz, 2H), 3.32 (dt, *J* = 35.9, 7.2 Hz, 1H), 2.22 – 1.97 (m, 4H), 0.93 (dt, *J* = 22.4, 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 168.9, 156.9, 153.7, 135.3, 134.8, 126.9, 125.5, 124.9, 119.4, 118.5, 118.2, 116.7, 113.9, 104.1, 51.4, 43.4, 28.2, 26.4, 12.9. HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. For C₁₅H₁₅NO₂Na 264.0095; Found: 264.0094.

4-(heptan-2-yl)-2-oxo-2*H***-chromene-3-carbonitrile (3i):** Physical state: orange sticky solid; Yield: 33 mg (61 %). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.69 (t, *J* = 7.1 Hz, 1H), 7.41 (t, *J* = 8.4 Hz, 2H), 3.57 (s, 1H), 2.08 – 1.90 (m, 2H), 1.57 (d, *J* = 7.1 Hz, 3H), 1.28-1.25 (m, 6H), 0.85 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 157.8, 153.7, 134.9, 127.2, 125.3, 118.41, 113.9, 31.7, 29.8, 28.0, 22.5, 14.1; HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. For C₁₇H₁₉NO₂Na, 292.1308; Found: 292.1328.

2-oxo-4-(4-phenylbutan-2-yl)-2H-chromene-3-carbonitrile (3j) Physical state: yellow oil; **Yield**: 27 mg (45 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (ddd, *J* = 8.6, 7.2, 1.5 Hz, 1H), 7.39 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.28 – 7.14 (m, 4H), 7.10 (dd, *J* = 6.8, 1.9 Hz, 2H), 3.72-3.56 (m, 1H), 2.76 (s, 1H), 2.61 (s, 1H), 2.44 (s, 1H), 2.30 (dt, *J* = 14.9, 7.3 Hz, 1H), 1.60 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 153.8, 140.4, 135.0, 128.7, 128.5, 126.6, 125.2, 118.4, 29.8. **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. For C₂₀H₁₇NO₂Na 326.1151; Found 326.1152.

4-benzyl-2-oxo-2*H***-chromene-3-carbonitrile (3k):** Physical state: white solid Yield: 18 mg (34 %).¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.68 (t, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.38 – 7.28 (m, 6H), 4.51 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 163.6, 156.9, 154.1, 135.2, 135.1, 129.5, 128.4, 127.9, 127.0, 125.6, 118.0, 117.7 113.8, 103.4, 37.7; HRMS (ESI/QTOF), m/z: [M+H]⁺ Calcd. For For C₁₇H₁₂NO₂, 262.0863; Found: 262.0880

4-cyclohexyl-6-methyl-2-oxo-2*H***-chromene-3-carbonitrile (3l): Physical state**: white solid; **Yield**: 33 mg (62 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.50 (d, *J* = 8.2 Hz, 1H), 7.38 – 7.20 (m, 1H), 3.31 (s, 1H), 2.49 (s, 3H), 2.25-2.18 (m, 2H), 2.05 – 1.95 (m, 2H), 1.86 (s, 3H), 1.57 – 1.41 (m, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 169.9, 158.0, 151.9, 136.2, 135.1, 124.8, 118.0, 117.1, 114.5, 100.4, 29.8, 26.6, 25.4, 21.3; **HRMS** (**ESI/QTOF**), m/z: **HRMS** (**ESI/QTOF**), m/z: **[**M+Na]⁺ Calcd. For C₁₇H₁₇NO₂Na, 290.1151; Found: 290.1168

4-cyclohexyl-7-methoxy-2-oxo-2*H***-chromene-3-carbonitrile (3m): Physical state**: white solid; **Yield**: 40 mg (72 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (s, 1H), 6.93 (dd, *J* = 9.1, 2.2 Hz, 1H), 6.82 (d, *J* = 2.5 Hz, 1H), 3.91 (s, 3H), 3.24 (bs, 1H), 2.21-2.16 (m, 2H), 1.95 (d, *J* = 7.4 Hz, 1H), 3.91 (s, 3H), 3.24 (bs, 1H), 2.21-2.16 (m, 2H), 1.95 (d, *J* = 7.4 Hz, 1H), 3.91 (s, 3H), 3.24 (bs, 1H), 3.91 (s, 3H), 3.91 (s, 3H)

2H), 1.82 (s, 3H), 1.42 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 157.4, 148.2, 143.6, 124.9, 118.1, 116.4, 114.4, 100.9, 56.6, 29.8, 26.6, 25.4; HRMS (ESI/QTOF), m/z: [M+H]⁺ Calcd. For For C₁₇H₁₈NO₃, 284.1281; Found: 284.1275

4-cyclohexyl-8-methoxy-2-oxo-2*H***-chromene-3-carbonitrile (3n): Physical state**: white solid; **Yield**: 37 mg (65 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.33 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 10.1 Hz, 1H), 3.98 (s, 3H), 3.30 (s, 1H), 2.23-2.18 (m, 2H), 1.98 (d, *J* = 7.3 Hz, 2H), 1.85 (s, 3H), 1.44 (d, *J* = 8.2 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.3, 157.4, 148.2, 143.6, 124.9, 118.1, 116.4, 114.4, 100.8, 56.6, 29.8, 26.6, 25.4; **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. For C₁₇H₁₇NO₃Na, 306.1100; Found: 306.1095.

6-chloro-4-cyclohexyl-2-oxo-2*H***-chromene-3-carbonitrile (30): Physical state**: white solid **Yield**: 20 mg (35 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.63 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 3.19 (s, 1H), 2.22 (s, 2H), 2.03 – 1.97 (m, 2H), 1.87 (s, 3H), 1.44 (dd, *J* = 17.8, 6.2 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 168.7, 157.1, 152.1, 134.8, 131.0, 124.9, 119.7, 118.6, 113.9, 102.3, 29.8, 26.5, 25.4; **HRMS** (ESI/QTOF), m/z: [M+Na]⁺ Calcd. For C₁₆H₁₄ClNO₂Na, 310.0605; Found: 310.0615

Methyl 4-cyclohexyl-2-oxochromane-3-carboxylate (3p): Physical state: sticky solid; **Yield**: 43 mg (75 %). ¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.26 (m, 1H), 7.16 – 7.06 (m, 3H), 3.97 (d, *J* = 1.3 Hz, 1H), 3.59 (s, 3H), 3.16 (d, *J* = 7.8 Hz, 1H), 1.84 (d, *J* = 12.5 Hz, 1H), 1.80 – 1.75 (m, 1H), 1.74 – 1.68 (m, 1H), 1.62 (dd, *J* = 23.1, 10.9 Hz, 2H), 1.48 – 1.39 (m, 1H), 1.23 – 0.98 (m, 5H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.0, 164.8, 150.8, 129.8, 128.6, 124.3, 122.9, 116.9, 52.9, 49.5, 45.7, 41.3, 30.4, 29.8, 25.9, 25.8. **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. C₁₇H₂₀NaO₄ 311.1254: Found 311.1251.

Ethyl 4-cyclohexyl-2-oxochromane-3-carboxylate (3q): Physical state: liquid; Yield: 54 mg (90 %). ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.26 (m, 1H), 7.17 – 7.07 (m, 3H), 4.08 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.02 – 3.97 (m, 1H), 3.95 (d, *J* = 1.6 Hz, 1H), 3.13 (dd, *J* = 8.1, 1.3 Hz, 1H), 1.87 (d, *J* = 12.5 Hz, 1H), 1.78 (dd, *J* = 9.6, 6.4 Hz, 1H), 1.75 – 1.69 (m, 1H), 1.67 – 1.58 (m, 2H), 1.47 – 1.39 (m, 1H), 1.26 – 1.03 (m, 5H), 1.00 (t, *J* = 7.1 Hz, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 167.8, 165.3, 151.2, 129.9, 128.8, 124.4, 123.3, 117.1, 62.2, 49.9, 46.2, 41.3, 30.7, 30.1, 26.1, 13.9. HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. For C₁₈H₂₂NO₄Na, 325.1410; Found: 325.1415.

Butyl 4-cyclohexyl-2-oxochromane-3-carboxylate (3r): Physical state: white solid; Yield: 55 mg (83 %). ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.24 (m, 1H), 7.14 – 7.04 (m, 3H), 4.02 (dt, *J* = 10.7, 6.5 Hz, 1H), 3.95 – 3.87 (m, 2H), 3.11 (dd, *J* = 8.1, 1.7 Hz, 1H), 1.84 (dd, *J* = 12.6, 3.3 Hz, 1H), 1.76 (dd, *J* = 13.7, 2.9 Hz, 1H), 1.73 – 1.67 (m, 1H), 1.65 – 1.55 (m, 2H), 1.45 – 1.37 (m, 1H), 1.37 – 1.27 (m, 2H), 1.20 – 0.97 (m, 7H), 0.76 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 164.9, 150.9, 129.7, 128.5, 124.1, 122.9, 116.8, 65.7, 49.7, 45.9, 41.1, 30.4, 30.1, 29.8, 25.9, 25.8, 18.5, 13.3. HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. C₂₀H₂₆O₄Na 353.1723; Found 353.1727.

Isobutyl 4-cyclohexyl-2-oxochromane-3-carboxylate (3s): Physical state: white solid; **Yield**: 52 mg (79 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 1H), 7.15 – 7.04 (m, 3H), 3.95 (d, *J* = 1.7 Hz, 1H), 3.80 (dd, *J* = 10.6, 6.6 Hz, 1H), 3.70 (dd, *J* = 10.6, 6.3 Hz, 1H), 3.12 (dd, *J* = 8.0, 1.7 Hz, 1H), 1.88 – 1.81 (m, 1H), 1.77 – 1.56 (m, 5H), 1.48 – 1.38 (m, 1H), 1.21 – 0.96 (m, 5H), 0.71 (d, *J* = 6.8 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.9, 165.2, 151.1, 130.0, 128.8, 124.4, 123.2, 117.1, 72.1, 49.9, 46.2, 41.4, 30.6, 30.1, 27.6, 26.1, 18.7. **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. C₂₀H₂₆O₄Na 353.1723: Found 353.1722.

Isopropyl 4-cyclohexyl-2-oxochromane-3-carboxylate (3t): **Physical state**: white solid; **Yield**: 49 mg (78 %). ¹**H NMR** (500 MHz, CDCl₃) δ 7.27 (ddd, *J* = 9.9, 6.9, 1.9 Hz, 1H), 7.17 – 6.99 (m, 3H), 4.83 (hept, *J* = 6.3 Hz, 1H), 3.91 (d, *J* = 1.7 Hz, 1H), 3.07 (dd, *J* = 8.4, 1.6 Hz, 1H), 1.87 (d, *J* = 12.5 Hz, 1H), 1.80 – 1.73 (m, 1H), 1.70 (dd, *J* = 6.9, 2.6 Hz, 1H), 1.66 – 1.54 (m, 2H), 1.45 – 1.36 (m, 1H), 1.24 – 1.10 (m, 3H), 1.09 (d, *J* = 6.3 Hz, 3H), 1.02 (ddd, *J* = 23.2, 11.7, 3.4 Hz, 2H), 0.84 (d, *J* = 6.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 167.1, 165.2, 151.1. 129.7, 128.5, 124.1, 123.2, 116.7, 69.8, 49.9, 46.2, 40.9, 30.5, 29.9, 25.9, 21.2, 20.9. **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. C₁₉H₂₄O₄Na 339.1567; Found 339.1566.

tert-butyl 4-cyclohexyl-2-oxochromane-3-carboxylate (3u): Physical state: white stick solid; Yield: 52 mg (79 %). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 7.13 – 7.05 (m, 3H), 3.85 (d, *J* = 1.8 Hz, 1H), 3.02 (dd, *J* = 8.6, 1.9 Hz, 1H), 1.86 (ddd, *J* = 12.4, 4.6, 2.3 Hz, 1H), 1.78 – 1.73 (m, 1H), 1.71 – 1.65 (m, 1H), 1.65 – 1.60 (m, 1H), 1.58 (ddd, *J* = 10.7, 5.3, 2.2 Hz, 1H), 1.42 – 1.34 (m, 1H), 1.19 (dd, *J* = 12.8, 3.3 Hz, 1H), 1.14 (s, 9H), 1.12 – 1.05 (m, 2H), 1.00 (ddd, *J* = 19.4, 11.7, 3.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 165.7, 151.5, 130.1, 128.7, 124.2 123.8, 116.9, 83.5, 50.9, 46.8, 40.9, 30.8, 30.2, 27.5, 26.1. HRMS (ESI/QTOF), m/z: [M+Na] ⁺ Calcd.C₂₀H₂₆O₄Na 353.1723; Found 353.1725.

4-cyclohexyl-3-phenylchroman-2-one (3v): Physical state: white liquid; Yield: 25 mg (41 %). ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 3H), 7.39 – 7.28 (m, 2H), 7.20 – 7.11 (m, 3H), 7.07 (t, *J* = 6.3 Hz, 1H), 4.13 (d, *J* = 6.5 Hz, 1H), 2.97 (dd, *J* = 6.4, 3.0 Hz, 1H), 1.89 (d, *J* = 12.7 Hz, 1H), 1.63 (m, 3H), 1.54 (d, *J* = 13.1 Hz, 1H), 1.37 (t, *J* = 12.8 Hz, 1H), 1.20 – 1.07 (m, 3H), 0.95 – 0.85 (m, 1H), 0.70 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 169.9, 151.9, 134.8, 130.1, 129.7, 128.6, 127.7, 127.2, 125.2, 123.8, 116.9, 49.1, 37.7, 32.2, 26.9, 26.5, 25.9. HRMS (ESI/QTOF), m/z: [M+K]⁺ Calcd. C₂₁H₂₂O₂K, 345.1251; Found: 345.1242.

4-cyclohexyl-3-(pyridin-3-yl) chroman-2-one (3w): Physical state: white liquid; **Yield**: 16 mg (26 %). ¹H NMR (500 MHz, CDCl₃) δ 8.42 (dd, *J* = 13.0, 3.7 Hz, 2H), 7.34 (dt, *J* = 8.2, 2.0 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.14 – 7.06 (m, 4H), 4.31 (s, 1H), 2.92 (d, *J* = 6.4 Hz, 1H), 1.91 (dt, *J* = 12.5, 3.3 Hz, 1H), 1.82 – 1.72 (m, 2H), 1.63 (ddt, *J* = 14.4, 10.9, 3.7 Hz, 3H), 1.24 – 1.07 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 151.3, 149.1, 148.9, 134.9, 133.2, 130.6, 129.2, 125.1, 123.9, 122.9, 117.2, 49.6, 46.5, 43.5, 30.7, 30.4, 26.6, 26.5, 26.4; HRMS (ESI/QTOF), m/z: [M+H]⁺ Calcd. C₂₀H₂₂NO₂, 308.1645; Found: 308.1639.

4-cyclohexyl-*N*, *N*-diethyl-2-oxochromane-3-carboxamide (3x): Physical state: white solid; Yield: 45 mg (68 %). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (dt, *J* = 6.1, 2.8 Hz, 1H), 7.07 (dt, *J* = 7.1, 6.3 Hz, 3H), 4.14 (s, 1H), 3.96 (dt, *J* = 13.2, 6.6 Hz, 1H), 3.30 (dt, *J* = 13.4, 6.7 Hz, 1H), 2.77 (d, *J* = 6.9 Hz, 1H), 1.85 (d, *J* = 12.4 Hz, 1H), 1.79 – 1.42 (m, 6H), 1.32 – 1.25 (m, 9H), 1.22 – 1.07 (m, 3H), 1.03 (t, *J* = 6.0 Hz, 3H), 0.99 (dt, *J* = 12.5, 4.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 166.2, 151.7, 129.2, 128.7, 124.1, 122.7, 116.9, 49.6, 46.5, 42.9, 30.7, 30.1, 26.3, 21.2, 20.9, 20.5, 20.0. HRMS (ESI/QTOF), m/z: [M+Na]⁺ Calcd. C₂₀H₃₁NO₃Na 380.2202; Found 380.2254.

4-(but-3-en-1-yl)-2-oxo-2*H***-chromene-3-carbonitrile (3y): Physical state**: white solid; **Yield**: 26 mg (58 %). ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.68 (m, 2H), 7.46 – 7.38 (m, 2H), 5.90 (ddt, *J* = 17.1, 10.5, 6.8 Hz, 1H), 5.16 – 5.00 (m, 2H), 3.29 – 3.13 (m, 2H), 2.52 (dt, *J* = 14.4, 7.1 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 165.7, 156.9, 153.9, 135.3, 135.1 125.9, 125.6, 118.2, 117.6, 117.4, 113.5, 102.3, 33.6, 31.4; **HRMS (ESI/QTOF), m/z:** [M+Na]⁺ Calcd. For C₁₄H₁₁NO₂Na, 248.0681; Found: 248.0687.

6. Crystallographic data

Sample preparation: Single crystal of compound **3d** suitable for the X-ray diffraction studies were grown from its EtOH/Heptane solution at room temperature.

Molecular structure determination of compounds **3d**: Single crystal X-ray diffraction data for compound **3c** was collected using a Bruker SMART APEX diffractometer equipped with a 3-axis goniometer. The crystals were covered with Paratone–N and mounted a glass capillary. The data were collected at room temperature using Mo K α radiation ($\lambda = 0.71073$). Integration of data was performed using SAINT. Empirical absorption correction was applied using SADABS. Structure solutions were accomplished by directs methods and refine by full matrix least-square on F2 using OLEX2. All non-hydrogen atoms were refined anisotropically. The position of hydrogen atoms was fixed according to a riding model and were refined isotropically.

Fig. 1 Single Crystal X-ray Structure of Compound 3d.

Table S1. Crystal data and structure refinement for 3d

Bond precision	n: C-C =	= 0.0039 A	Wavelength=0.71073
Cell:	a=8.805(3)	b=6.864(2)	c=10.545(4)
8	alpha=90	beta=110.673(10)	gamma=90
Temperature:	298 K		
	Calculat	ted	Reported
Volume	596.3(4))	596.3(4)
Space group	P 21/m		P 21/m
Hall group	-P 2yb		-P 2yb
Moiety formul	a C ₁₅ H ₁₃	NO ₂	C ₁₅ H ₁₃ N O ₂
Sum formula	C15 H13	N O ₂	C ₁₅ H ₁₃ N O ₂
Mr	239.26		239.26
Dx,g cm-3	1.333		1.333
Ζ	2		2
Mu (mm-1)	0.089		0.089
F000	252.0		252.0
F000'	252.12		
h,k,lmax	11,9,14		11,9,14

Nref	1611	1611				
Tmin,Tmax	0.981,0.986	0.981,0.986				
Tmin'	0.978					
Correction method= # Reported T Limits: Tmin=0.981 Tmax=0.986						
AbsCorr = NO	NE					
Data completeness= 1.	000	Theta(max)= 28.340				
R(reflections)= 0.0607	(1172) wR2(reflections)=		0.2048(1603)			
S = 1.093	Npar= 103					

Fig. 2 Single Crystal X-ray Structure of Compound 3t.

Table S2. Crystal data and structure refinement for 3t

Bond precision: C-C = 0.0021 A Wavelength=0.71073

Cell: a=9.2320(12) b=9.6032(13) c=10.3394(14)alpha=75.363(4) beta=80.372(4) gamma = 79.124(4)Temperature: 308 K Calculated Reported 864.1(2) 864.1(2) Volume Space group P -1 P -1 Hall group -P 1 -P 1 Moiety formula C19 H24 O4 C19 H24 O4 Sum formula C19 H24 O4 C19 H24 O4 Mr 316.38 316.38 Dx,g cm-3 1.216 1.216 Ζ 2 2 Mu (mm-1) 0.084 0.084 340.0 F000 340.0 F000′ 340.17 h,k,lmax 12,12,13 12,12,13 Nref 4347 4347 Tmin,Tmax Tmin' Correction method= Not given

Data completeness= 1.000 Theta(max)= 28.422

R(reflections) = 0.0454(3112) wR2(reflections) =

0.1762(4347)

S = 1.187 Npar= 210

7. References

1: W. Li, H. Liu, X. Jiang and J. Wang, ACS Catal., 2012, 2, 1535–1538.

2: C. Chen, L. Zhou, X. Huang and W. Liu, J. Mater. Chem. B., 2017, 5, 5892-5897.

3: (a) B. Zengin Kurt, F. Sonmez, S. Durdagi, B. Aksoydan, R. Ekhteiari Salmas, A. Angeli, M. Kucukislamoglu and C. T. Supuran, *J. Enzyme Inhib. Med. Chem.*, 2017, **32**, 1042–1052. (b) C. Murata, T. Masuda, Y. Kamochi, K. Todoroki, H. Yoshida, H. Nohta, M. Yamaguchi and A. Takadate, *Chem. Pharm. Bull.*, 2005, **53**, 750–758.

4: C. Li, H. Zhu, H. Zhang, Y. Yang and F. Wang, *Molecules.*, 2017, 22, 1197.

5: S. Plunkett, C. H. Basch, S. O. Santana and M. P. Watson, J. Am. Chem. Soc., 2019, 141, 2257–2262.

8. ¹H and ¹³C spectra of compounds

3d ¹H (300 MHz, CDCl₃)

5.0 4.5 f1 (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 6.0 0.0

3e ¹H (101 MHz, CDCl₃)

