Visible Light-Promoted Selenylative Spirocyclization of Biaryl Ynones toward the Formation of Selenated Spiro[5.5]trienones

Zhichao Chen,^a Xinran Zheng,^b Shu-Feng Zhou,^{*,a} and Xiuling Cui^{*,b}

^aCollege of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China. ^bEngineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China.

Corresponding Author: Xiuling Cui and Shu-Feng Zhou Email: cuixl@hqu.edu.cn Email: szhou@hqu.edu.cn Tel & Fax: +86-592-6162996

1. General information	S1
2. General procedure for the synthesis of 3	S1
3. Mechanism experiments and large-scale synthesis of 3aa	S2
4. X-ray crystallographic data of 3ac and 3af	S3
5. Characterization of compounds 3	S5
6. References	S14
7. Copies of the ¹ H, ¹³ C, ¹⁹ F and ⁷⁷ Se NMR spectra	S15

1. General information

Unless otherwise stated, all commercial materials and solvents were used directly without further purification. ¹H and ¹³C NMR spectra were measured on a 400 MHz Bruker spectrometer (¹H 400MHz, ¹³C 100MHz, ¹⁹F NMR 376 MHz), using CDCl₃ (spectra were referenced to the solvent peaks ¹H: residual CDCl₃ = 7.26 ppm, ¹³C: CDCl₃ = 77.0 ppm)) as the solvent. High-resolution mass spectra (HRMS) were measured on ESI-TOF. Column chromatography was performed on silica gel (70-230 mesh ASTM) using the reported eluent. Thin-layer chromatography (TLC) was carried out on 4×5 cm plates with a layer thickness of 0.2 mm (silica gel 60 F254). Photochemical reactions were performed with a LED reactor WP-TEC-1020HSL (WATTCAS, China). Starting materials diselenides **2**, biaryl ynones **1** were prepared according to the literatures.^{S1,S2}

2. General catalytic procedure for the synthesis of 3

Biaryl ynones 1 (0.2 mmol), diselenides 2 (0.4 mmol), and 1.5 mL MeCN were added in a quartz tube. Then the mixture was stirred at room temperature (rt) for 12 h in the photochemical reactor with 8 W blue LED as light source under O_2 atmosphere. After completion of the biaryl ynones, the solvent was removed under reduced pressure by rotary evaporator. Then, the residue was purified by silica gel column chromatography to give the desired products **3**.

Figure. S1 The WP-TEC-1020HSL photochemical reaction system with the blue light LED

3. Mechanism experiments and large-scale synthesis of 3aa

(1) Trapping experiment with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)

Biaryl ynone **1a** (0.2 mmol), diphenyl diselenide **2a** (0.4 mmol), TEMPO (1 mmol, 5.0 equiv) and 1.5 mL MeCN were added in a quartz tube. Then the mixture was stirred at rt for 12 h in the photochemical reactor with 8 W blue LED as light source under O_2 atmosphere. The resulting mixture was monitored by TLC.

(2) Trapping experiment with ethene-1,1-diyldibenzene

Biaryl ynone **1a** (0.2 mmol), diphenyl diselenide **2a** (0.4 mmol), ethene-1,1-diyldibenzene (0.2 mmol, 1.0 equiv) and 1.5 mL MeCN were added in a quartz tube. Then the mixture was stirred at rt for 12 h in the photochemical reactor with 8 W blue LED as light source under O₂ atmosphere. The solvent was removed under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to give the corresponding compound **3aa**, and **4** was detected by HRMS (Figure S2). HRMS (ESI) m/z calcd for C₂₀H₁₇Se [M+H]⁺ 337.0490, found 337.0489.

Figure. S2

(3) Large-scale synthesis of 3aa

Biaryl ynone **1a** (2 mmol), diphenyl diselenide **2a** (4 mmol), and 4 mL MeCN were added in a quartz tube. Then the mixture was stirred at rt for 24 h in the photochemical reactor with 8 W blue LED as light source under O_2 atmosphere. After completion of the biaryl ynones, the solvent was removed under reduced pressure by rotary evaporator. Then, the residue was purified by silica gel column chromatography to give the desired products **3aa**.

4. X-ray data of compound 3ga and 3af

Single crystal suitable for X-ray diffraction experiment was obtained by slow evaporation of DCM/n-hexane (1:10, V/V) solution containing the compound **3ac** and **3af**.

Figure S1. X-ray molecular structure of 3ac with the probability at 50% level.

Table 1 Crystal data and structure refin	nement for 3ac.
Empirical formula	$C_{29}H_{22}O_2Se$
Formula weight	481.42
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.6751(8)
b/Å	10.1384(10)
c/Å	13.4857(12)
α /°	107.731(8)
β /°	109.770(8)
γ /°	93.109(7)
Volume/Å3	1167.3(2)
Z	2
ρ calcg/cm3	1.370
μ /mm-1	2.352
F(000)	492.0
Crystal size/mm3	0.16 imes 0.12 imes 0.1
Radiation	CuK α ($\lambda = 1.54184$)
2Θ range for data collection/°	7.418 to 134.15
Index ranges	$\textbf{-11} \leqslant h \leqslant \textbf{7}, \textbf{-12} \leqslant k \leqslant \textbf{12}, \textbf{-14} \leqslant \textbf{l} \leqslant \textbf{16}$
Reflections collected	8277
Independent reflections	4167 [Rint = 0.0409, Rsigma = 0.0542]
Data/restraints/parameters	4167/4/298
Goodness-of-fit on F2	1.064
Final R indexes [I>=2 σ (I)]	R1 = 0.0455, wR2 = 0.1041
Final R indexes [all data]	R1 = 0.0626, $wR2 = 0.1160$
Largest diff. peak/hole / e Å-3	0.26/-0.40

Figure S2. X-ray molecular structure of 3af with the probability at 50% level.

5. Characterization of compounds 3

2'-Phenyl-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3aa)^{\$3,\$4}

Yellow solid. 76.5 mg, Yield: 82%. mp 205-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 7.6 Hz, 1H), 7.56 (dt, J = 23.7, 7.3 Hz, 2H), 7.33 – 7.10 (m, 9H), 6.94 (d, J = 7.1 Hz, 2H), 6.76 (d, J = 9.1 Hz, 2H), 6.32 (d, J = 9.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 180.6, 158.6, 148.5, 138.0, 137.9, 137.2, 133.4, 133.0, 130.7, 130.1, 130.0, 129.2, 129.0, 128.5, 128.1, 127.8, 127.4, 127.2, 52.6. HRMS (ESI) *m/z* calcd for C₂₇H₁₈NaO₂Se [M+Na]⁺ 477.0364, found 477.0366. **2'-Phenyl-3'-(***p***-tolylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione** (3ab)

Yellow solid. 71.1 mg, Yield: 76%. mp 191-193 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 7.7 Hz, 1H), 7.56 (dt, J = 22.0, 7.4 Hz, 2H), 7.31 – 7.16 (m, 6H), 6.95 (t, J = 7.1 Hz, 4H), 6.75 (d, J = 9.3 Hz, 2H), 6.32 (d, J = 9.3 Hz, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 180.7, 158.0, 148.5, 138.0, 137.9, 137.4, 137.3, 133.4, 133.3, 130.1, 129.8, 129.1, 128.5, 128.5, 128.0, 127.7, 127.5, 126.8, 52.5, 21.1. HRMS (ESI) *m/z* calcd for C₂₈H₂₀NaO₂Se [M+Na]⁺ 491.0521, found 491.0523.

3'-((4-Ethylphenyl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ac)

Yellow solid. 78 mg, Yield: 81%. mp 188-189 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 7.7 Hz, 1H), 7.55 (dt, J = 14.9, 7.2 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.22 (d, J = 7.3 Hz, 4H), 6.96 (dd, J = 13.8, 7.5 Hz, 4H), 6.75 (d, J = 9.4 Hz, 2H), 6.31 (d, J = 9.3 Hz, 2H), 2.58 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 180.7, 157.9, 148.6, 143.6, 138.0, 138.0,

137.5, 133.5, 133.3, 130.1, 130.1, 129.1, 128.6, 128.5, 128.4, 128.1, 127.7, 127.5, 127.0, 52.6, 28.5, 15.5. HRMS (ESI) *m/z* calcd for C₂₉H₂₂NaO₂Se [M+Na]⁺ 505.0677, found 505.0681. **3'-((4-(Tert-butyl)phenyl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5diene-4,4'-dione (3ad)**

Yellow solid. 61.2 mg, Yield: 60%. mp 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.6 Hz, 1H), 7.57 (dt, J = 19.4, 7.3 Hz, 2H), 7.31 – 7.11 (m, 9H), 6.91 (d, J = 7.6 Hz, 2H), 6.74 (d, J = 9.3 Hz, 2H), 6.31 (d, J = 9.3 Hz, 2H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 180.8, 157.8, 150.4, 148.6, 137.9, 137.5, 133.3, 133.2, 130.1, 130.0, 129.1, 128.5, 128.4, 128.1, 127.7, 127.5, 126.7, 126.1, 52.6, 34.5, 31.3. HRMS (ESI) *m/z* calcd for C₃₁H₂₆NaO₂Se [M+Na]⁺ 533.0990, found 533.0992.

3'-((4-Methoxyphenyl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ae)⁸⁴

Yellow solid. 61 mg, Yield: 63%. mp 163-165 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.5 Hz, 1H), 7.54 (dt, J = 21.9, 7.1 Hz, 2H), 7.27 – 7.21 (m, 6H), 6.94 (d, J = 7.1 Hz, 2H), 6.73 (d, J = 9.3 Hz, 2H), 6.68 (d, J = 7.7 Hz, 2H), 6.29 (d, J = 9.3 Hz, 2H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 180.9, 159.3, 157.3, 148.6, 137.9, 137.9, 137.8, 135.9, 133.3, 130.0, 129.1, 128.5, 128.0, 127.7, 127.6, 120.3, 114.6, 55.3, 52.5. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 349.44. HRMS (ESI) m/z calcd for C₂₈H₂₀NaO₃Se [M+Na]⁺ 507.0470, found 507.0472.

3'-((4-Fluorophenyl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3af)^{S4}

Yellow solid. 68.9 mg, Yield: 73%. mp 169-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 7.5 Hz, 1H), 7.57 (dt, J = 14.3, 6.8 Hz, 2H), 7.29 – 7.24 (m, 6H), 6.94 (d, J = 6.9 Hz, 2H), 6.84 (t, J = 7.9 Hz, 2H), 6.74 (d, J = 9.5 Hz, 2H), 6.32 (d, J = 9.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ

184.7, 180.7, 162.4 (d, J = 247.6 Hz), 157.9, 148.4, 138.0, 137.8, 137.5, 135.9 (d, J = 8.0 Hz), 133.5, 130.2, 129.9, 129.2, 128.6, 128.5, 128.1, 127.8, 127.5, 124.8 (d, J = 3.4 Hz), 116.1 (d, J = 21.6 Hz), 52.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.89. HRMS (ESI) *m/z* calcd for C₂₇H₁₇FNaO₂Se [M+Na]⁺ 495.0270, found 4795.0272.

2'-Phenyl-3'-(*m*-tolylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ag)

Yellow solid. 73 mg, Yield: 78%. mp 148-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 7.7 Hz, 1H), 7.56 (dt, J = 22.6, 7.4 Hz, 2H), 7.32 – 7.24 (m, 2H), 7.20 (t, J = 7.5 Hz, 2H), 7.10 (d, J = 7.4 Hz, 1H), 7.06 – 6.97 (m, 3H), 6.93 (d, J = 7.7 Hz, 2H), 6.76 (d, J = 9.6 Hz, 2H), 6.31 (d, J = 9.7 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 180.7, 158.1, 148.5, 138.6, 138.0, 137.9, 137.4, 133.8, 133.4, 130.4, 130.1, 130.0, 129.1, 128.8, 128.5, 128.4, 128.1, 128.1, 127.7, 127.5, 52.6, 21.3. HRMS (ESI) *m/z* calcd for C₂₈H₂₀NaO₂Se [M+Na]⁺ 491.0521, found 491.0523. **3'-((3-Chlorophenyl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ah)**

Yellow solid. 68.3 mg, Yield: 70%. mp 160-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.9 Hz, 1H), 7.58 (dt, J = 14.1, 7.3 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.27 – 7.12 (m, 5H), 7.07 (t, J = 8.0 Hz, 1H), 6.93 (d, J = 7.3 Hz, 2H), 6.75 (d, J = 10.0 Hz, 2H), 6.33 (d, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.6, 180.5, 158.7, 148.3, 138.0, 137.6, 137.0, 134.4, 133.6, 132.8, 132.1, 131.2, 130.2, 129.9, 129.9, 129.2, 128.7, 128.5, 128.1, 127.8, 127.5, 127.4, 52.7. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 372.05. HRMS (ESI) *m/z* calcd for C₂₇H₁₇ClNaO₂Se [M+Na]⁺ 510.9975, found 510.9977.

3'-((3-Bromophenyl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ai)

Yellow solid. 72.3 mg, Yield: 68%. mp 163-164 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.6 Hz, 1H), 7.59 (dt, J = 21.8, 7.3 Hz, 2H), 7.34 – 7.29 (m, 4H), 7.22 (t, J = 7.8 Hz, 3H), 7.01 (t, J = 7.8 Hz, 1H), 6.92 (d, J = 7.6 Hz, 2H), 6.75 (d, J = 9.8 Hz, 2H), 6.33 (d, J = 9.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.6, 180.5, 158.5, 148.2, 138.0, 137.6, 137.2, 135.7, 133.6, 132.4, 131.7, 130.4, 130.2, 129.9, 129.2, 128.7, 128.6, 128.1, 127.8, 127.4, 122.6, 52.7. HRMS (ESI) *m/z* calcd for C₂₇H₁₇BrNaO₂Se [M+Na]⁺ 554.9469, found 554.9471.

2'-Phenyl-3'-((3-(trifluoromethyl)phenyl)selanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3aj)

Yellow solid. 52.2 mg, Yield: 50%. mp 170-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 7.7 Hz, 1H), 7.59 (dt, J = 22.9, 7.4 Hz, 2H), 7.50 – 7.39 (m, 3H), 7.31 – 7.17 (m, 5H), 6.90 (d, J = 7.5 Hz, 2H), 6.74 (d, J = 9.1 Hz, 2H), 6.32 (d, J = 9.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.6, 180.6, 158.6, 148.2, 138.0, 137.6, 137.1, 136.5, 133.6, 131.6, 131.1(q, J = 32.8 Hz) , 130.3, 129.8 (q, J = 3.9 Hz), 129.8, 129.2, 129.2, 128.8, 128.5, 128.1, 127.8, 127.3, 124.07 (q, J = 3.7 Hz), 123.6 (q, J = 273.3 Hz), 52.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.73. HRMS (ESI) *m/z* calcd for C₂₈H₁₇F₃NaO₂Se [M+Na]⁺ 545.0238, found 545.0239.

2'-Phenyl-3'-(*o*-tolylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ak)

Yellow solid. 49.6 mg, Yield: 53%. mp 159-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 7.7 Hz, 1H), 7.57 (dt, J = 23.2, 7.4 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 7.2 Hz, 1H), 7.18 (dd, J = 13.1, 7.2 Hz, 3H), 7.12 – 7.06 (m, 2H), 6.95 – 6.90 (m, 3H), 6.76 (d, J = 9.5 Hz, 2H), 6.32 (d, J = 9.5 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 180.6, 158.0, 148.5, 139.6, 138.0, 137.8, 137.2, 133.4, 133.2, 131.9, 130.1, 130.0, 129.9, 129.1, 128.5, 128.5, 128.1, 127.7, 127.4, 127.2, 126.4, 52.7, 22.5. HRMS (ESI) *m*/*z* calcd for C₂₈H₂₀NaO₂Se [M+Na]⁺ 491.0521, found 491.0524.

3'-((2-Methoxyphenyl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3al)

Yellow solid. 43.6 mg, Yield: 45%, mp 147-148 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 7.4 Hz, 1H), 7.57 (dd, J = 15.5, 7.3 Hz, 2H), 7.35 – 7.12 (m, 5H), 7.06 (d, J = 7.2 Hz, 1H), 6.97 (d, J = 6.9 Hz, 2H), 6.76 (t, J = 11.0 Hz, 4H), 6.33 (d, J = 9.4 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 180.4, 158.2, 157.3, 148.7, 137.9, 137.9, 136.0, 133.3, 131.9, 130.1, 129.1, 128.6, 128.5, 128.2, 128.0, 127.7, 127.2, 121.3, 120.3, 110.6, 55.6, 52.61. HRMS (ESI) *m/z* calcd for C₂₈H₂₀NaO₃Se [M+Na]⁺ 507.0470, found 507.0467.

3'-(Naphthalen-1-ylselanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3am)

Yellow solid. 41.3 mg, Yield: 41%. mp 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 7.5 Hz, 1H), 8.06 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.4 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.63 – 7.51 (m, 2H), 7.51 – 7.41 (m, 2H), 7.39 (d, *J* = 7.1 Hz, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.15 – 7.03 (m, 2H), 6.97 (t, *J* = 7.4 Hz, 2H), 6.63 (t, *J* = 8.8 Hz, 4H), 6.22 (d, *J* = 9.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 181.1, 156.6, 148.6, 138.0, 137.4, 137.2, 133.8, 133.8, 133.6, 133.4, 129.9, 129.8, 129.4, 129.1, 128.7, 128.6, 128.5, 128.2, 128.1, 127.7, 127.5, 127.1, 126.4, 126.1, 125.7, 52.9. HRMS (ESI) *m/z* calcd for C₃₁H₂₀NaO₂Se [M+Na]⁺ 527.0521, found 527.0522.

3'-((2-Methoxypyridin-3-yl)selanyl)-2'-phenyl-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5diene-4,4'-dione (3an)

Yellow solid. 48.5 mg, Yield: 50%. mp 161-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 3.3 Hz, 1H), 7.59 (dd, J = 15.4, 7.5 Hz, 2H), 7.39 – 7.13 (m, 5H), 6.95 (d, J = 7.2 Hz, 2H), 6.75 (d, J = 9.4 Hz, 2H), 6.66 (t, J = 5.7 Hz, 1H), 6.33 (d, J = 9.4 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 180.3, 161.3, 157.9, 148.4, 145.2, 140.8, 138.0, 137.5, 135.3, 133.5, 130.2, 129.8, 129.2, 128.7, 128.5, 128.1, 127.8, 127.2, 117.5, 115.0, 53.8, 52.7. HRMS (ESI) m/z calcd for C₂₇H₁₉NNaO₃Se [M+Na]⁺ 508.0422, found 508.0423.

3'-(Phenylselanyl)-2'-(*p*-tolyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ba)^{S3}

Yellow solid. 66.5 mg, Yield: 71%. mp 159-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.7 Hz, 1H), 7.56 (dt, J = 24.2, 7.4 Hz, 2H), 7.30 (t, J = 7.8 Hz, 3H), 7.21 – 7.13 (m, 3H), 7.03 (d, J = 7.7 Hz, 2H), 6.85 (d, J = 7.7 Hz, 2H), 6.76 (d, J = 9.5 Hz, 2H), 6.33 (d, J = 9.5 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 180.5, 158.8, 148.6, 138.4, 138.0, 137.1, 135.3, 133.3, 132.9, 130.8, 130.1, 129.1, 128.9, 128.5, 128.5, 128.1, 127.3, 127.1, 52.7, 21.3. ⁷⁷Se NMR (114 MHz, CDCl₃) δ 359.52. HRMS (ESI) *m*/*z* calcd for C₂₈H₂₀NaO₂Se [M+Na]⁺ 491.0521, found 491.0523.

2'-(4-Methoxyphenyl)-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ca)^{S3}

Yellow solid. 64.9 mg, Yield: 67%. mp 163-164 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.8 Hz, 1H), 7.56 (dt, *J* = 14.2, 7.9 Hz, 2H), 7.30 – 7.28 (m, 3H), 7.16 (dt, *J* = 14.1, 4.7 Hz, 3H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.73 (dd, *J* = 9.2, 5.7 Hz, 4H), 6.33 (d, *J* = 9.9 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 180.7, 159.6, 158.2, 148.7, 138.0, 137.6, 133.3, 133.0, 130.9, 130.6, 130.1, 129.1, 128.9, 128.8, 128.5, 128.0, 127.2, 113.2, 55.2, 52.9. HRMS (ESI) *m/z* calcd for C₂₈H₂₀NaO₃Se [M+Na]⁺ 507.0470, found 507.0473.

2'-([1,1'-Biphenyl]-4-yl)-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5diene-4,4'-dione (3da)

Yellow solid. 54 mg, Yield: 51%. mp 184-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 7.7 Hz, 1H), 7.66 – 7.51 (m, 4H), 7.47 (t, J = 7.4 Hz, 2H), 7.40 (d, J = 7.4 Hz, 3H), 7.34 – 7.09 (m, 6H), 6.99 (d, J = 7.8 Hz, 2H), 6.78 (d, J = 9.4 Hz, 2H), 6.35 (d, J = 9.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 180.8, 157.7, 148.6, 141.1, 140.2, 138.0, 137.8, 136.9, 133.4, 133.3, 130.6, 130.2,

130.0, 129.2, 128.9, 128.8, 128.6, 128.1, 127.9, 127.7, 127.3, 127.1, 126.4, 52.7. HRMS (ESI) *m/z* calcd for C₃₃H₂₂NaO₂Se [M+Na]⁺ 553.0677, found 553.0681.

2'-(4-Fluorophenyl)-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ea)

Yellow solid. 65.1 mg, Yield: 69%. mp 178-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 7.7 Hz, 1H), 7.58 (dt, J = 21.7, 7.4 Hz, 2H), 7.29 – 7.24 (m, 3H), 7.20 – 7.12 (m, 3H), 6.88 (d, J = 6.7 Hz, 4H), 6.72 (d, J = 9.1 Hz, 2H), 6.33 (d, J = 9.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.5, 180.7, 162.4 (d, J = 249.1 Hz), 156.8, 148.4, 138.3, 137.9, 133.8 (d, J = 3.6 Hz), 133.5, 133.3, 130.5, 130.2, 129.8, 129.5(d, J = 8.3 Hz), 129.2, 129.0, 128.6, 128.1, 127.4, 114.9 (d, J = 21.8 Hz), 52.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.26. HRMS (ESI) *m*/*z* calcd for C₂₇H₁₇FNaO₂Se [M+Na]⁺ 495.0270, found 4795.0271.

2'-(4-Chlorophenyl)-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3fa)

Yellow solid. 60.5 mg, Yield: 62%. mp 174-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.7 Hz, 1H), 7.58 (dt, J = 21.0, 7.4 Hz, 2H), 7.33 – 7.17 (m, 4H), 7.15 (d, J = 8.0 Hz, 4H), 6.83 (d, J = 7.9 Hz, 2H), 6.71 (d, J = 9.4 Hz, 2H), 6.33 (d, J = 9.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.5, 180.7, 156.3, 148.2, 138.2, 137.8, 136.1, 134.5, 133.5, 133.4, 130.3, 130.3, 129.8, 129.2, 129.0, 128.9, 128.6, 128.1, 128.0, 127.4, 52.5. HRMS (ESI) *m/z* calcd for C₂₇H₁₇ClNaO₂Se [M+Na]⁺ 510.9975, found 510.9976.

2'-(4-Bromophenyl)-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ga)

Yellow solid. 68.1 mg, Yield: 64%. mp 169-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.6 Hz, 1H), 7.58 (dt, J = 20.6, 7.2 Hz, 2H), 7.31 – 7.12 (m, 8H), 6.77 (d, J = 7.8 Hz, 2H), 6.71 (d, J =

9.3 Hz, 2H), 6.33 (d, J = 9.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.47 (s), 180.7, 156.2, 148.2, 138.2, 137.8, 136.6, 133.5, 133.5, 131.0, 130.3, 129.8, 129.2, 129.2, 129.0, 128.6, 128.1, 127.5, 122.8, 52.4. HRMS (ESI) *m/z* calcd for C₂₇H₁₇BrNaO₂Se [M+Na]⁺ 554.9469, found 554.9472.

4-(4,4'-Dioxo-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-dien-2'yl)benzonitrile (3ha)^{S3}

Yellow solid. 54.6 mg, Yield: 57%. mp 180-182 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 7.6 Hz, 1H), 7.60 (dt, *J* = 21.0, 7.4 Hz, 2H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 5.9 Hz, 1H), 7.24 – 7.11 (m, 5H), 6.99 (d, *J* = 7.6 Hz, 2H), 6.71 (d, *J* = 9.1 Hz, 2H), 6.33 (d, *J* = 9.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.1, 180.5, 154.9, 147.8, 141.8, 138.6, 137.7, 133.8, 133.6, 131.5, 130.5, 130.1, 129.5, 129.4, 129.2, 128.6, 128.6, 128.1, 127.7, 118.1, 112.2, 52.2. HRMS (ESI) *m/z* calcd for C₂₈H₁₇NNaO₂Se [M+Na]⁺ 502.0317, found 502.0320.

3'-(Phenylselanyl)-2'-(*m*-tolyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ia)

Yellow solid. 73 mg, Yield: 78%. mp 167-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 7.6 Hz, 1H), 7.56 (dt, J = 23.1, 7.2 Hz, 2H), 7.29 (d, J = 6.3 Hz, 3H), 7.18 – 7.07 (m, 5H), 6.76 (t, J = 8.5 Hz, 3H), 6.67 (s, 1H), 6.32 (t, J = 10.3 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 180.7, 158.7, 148.6, 138.0, 137.9, 137.3, 137.1, 133.4, 133.1, 130.7, 130.0, 129.3, 129.1, 128.9, 128.5, 128.1, 128.0, 127.7, 127.2, 124.5, 52.6, 21.5. HRMS (ESI) *m/z* calcd for C₂₈H₂₀NaO₂Se [M+Na]⁺ 491.0521, found 491.0522.

2'-(3-Chlorophenyl)-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ja)

Yellow solid. 60.5 mg, Yield: 62%. mp 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.6

Hz, 1H), 7.58 (dt, J = 21.2, 7.0 Hz, 2H), 7.33 – 7.18 (m, 5H), 7.20 – 7.07 (m, 3H), 6.85 (s, 1H), 6.81 (d, J = 7.6 Hz, 1H), 6.72 (t, J = 7.7 Hz, 2H), 6.34 (dd, J = 17.6, 9.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.5, 180.7, 155.9, 148.3, 148.0, 139.2, 138.3, 137.8, 133.7, 133.6, 130.4, 130.2, 130.1, 129.8, 129.3, 129.1, 129.1, 128.6, 128.6, 128.1, 127.8, 127.6, 125.8, 52.4. HRMS (ESI) *m/z* calcd for C₂₇H₁₇ClNaO₂Se [M+Na]⁺ 510.9975, found 510.9974.

7'-Methyl-2'-phenyl-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ka)⁸³

Yellow solid. 65.5 mg, Yield: 70%. mp 158-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.31 – 7.10 (m, 8H), 7.05 (s, 1H), 6.93 (d, J = 5.9 Hz, 2H), 6.75 (d, J = 9.3 Hz, 2H), 6.32 (d, J = 9.3 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 180.4, 158.2, 148.7, 144.5, 138.1, 137.9, 137.3, 132.9, 130.8, 130.3, 130.1, 129.0, 128.6, 128.5, 128.2, 127.7, 127.5, 127.1, 52.6, 21.8. HRMS (ESI) *m*/*z* calcd for C₂₈H₂₀NaO₂Se [M+Na]⁺ 491.0521, found 491.0520.

7'-Chloro-2'-phenyl-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3la)

Yellow solid. 70.3 mg, Yield: 72%. mp 151-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 7.4 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.34 – 7.10 (m, 9H), 6.93 (d, J = 5.5 Hz, 2H), 6.74 (d, J = 9.0 Hz, 2H), 6.35 (d, J = 9.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.3, 179.8, 158.2, 147.6, 140.1, 139.8, 137.7, 137.2, 133.1, 130.6, 130.5, 130.2, 129.8, 129.0, 128.7, 128.4, 128.0, 127.8, 127.4, 127.4, 52.2. HRMS (ESI) *m/z* calcd for C₂₇H₁₇ClNaO₂Se [M+Na]⁺ 510.9975, found 510.9975. **6'-Fluoro-2'-phenyl-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3ma)**⁸³

Yellow solid. 64.2 mg, Yield: 68%. mp 161-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H),

7.35 – 7.10 (m, 9H), 6.97 – 6.92 (m, 3H), 6.75 (d, J = 9.0 Hz, 2H), 6.34 (d, J = 9.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.3, 179.5, 165.6 (d, J = 256.9 Hz), 158.3, 147.8, 141.1 (d, J = 8.3 Hz), 137.8, 137.2, 133.1, 131.7 (d, J = 9.5 Hz), 130.5, 130.4, 129.0, 128.6, 127.8, 127.4, 127.3, 126.6 (d, J = 2.4 Hz), 117.2 (d, J = 22.1 Hz), 114.7 (d, J = 23.3 Hz), 52.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.05. HRMS (ESI) m/z calcd for C₂₇H₁₇FNaO₂Se [M+Na]⁺ 495.0270, found 4795.0272.

6'-Chloro-2'-phenyl-3'-(phenylselanyl)-4'H-spiro[cyclohexane-1,1'-naphthalene]-2,5-diene-4,4'-dione (3na)

Yellow solid. 63.4 mg, Yield: 65%. mp 157-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.54 (d, *J* = 8.3 Hz, 1H), 7.33 – 7.12 (m, 9H), 6.94 (d, *J* = 6.9 Hz, 2H), 6.72 (d, *J* = 9.7 Hz, 2H), 6.33 (d, *J* = 9.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.4, 179.5, 158.7, 147.8, 137.7, 137.1, 136.3, 135.7, 133.5, 133.2, 131.3, 130.4, 129.8, 129.1, 128.7, 128.2, 127.9, 127.4, 127.4, 52.2. HRMS (ESI) *m/z* calcd for C₂₇H₁₇ClNaO₂Se [M+Na]⁺ 510.9975, found 510.9978.

6. References

- [S1] (a) Green Chem., 2019, 21, 3547. (b) Adv. Synth. Catal., 2020, 362, 3485.
- [S2] (a) Org. Lett., 2018, 20, 2988. (b) Org. Lett., 2021, 23, 2548.
- [S3] J. Org. Chem., 2021, 86, 17071.
- [S4] J. Org. Chem., 2022, 87, 4273.

7. Copies of the ¹H, ¹³C, ¹⁹F and ⁷⁷Se NMR Spectra

¹H NMR spectrum of **3aa**

¹H NMR spectrum of **3ab**

¹H NMR (400MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR spectrum of **3ac**

17

80 70

90

60 50

30 20 10

0 -10

40

180 170 160 150 140 130 120 110 100 fl (ppm)

210 200 190

¹H NMR spectrum of **3ad**

¹H NMR spectrum of **3ae**

CQ-3

¹H NMR (400MHz, CDCl₃)

Ö

⁷⁷Se NMR spectrum of **3ae**

3ae-77se.2.fid

--349.44

¹⁹F NMR spectrum of **3af**

cq-6

O Se Ph

¹⁹F NMR (376MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR spectrum of **3ag**

¹H NMR (400MHz, CDCl₃)

¹H NMR spectrum of **3ah**

cq-11

(2) (2) (3) (4) (5) (4) (5) (5) (4) (5) (5) (6) (7)

¹H NMR (400MHz, CDCl₃)

⁷⁷Se NMR spectrum of **3ah**

3ah-77se.1.fid

-372.05

26

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR spectrum of **3ak**

¹H NMR (400MHz, CDCl₃)

¹H NMR spectrum of **3al**

¹H NMR spectrum of **3am**

¹H NMR spectrum of **3an**

¹H NMR spectrum of **3ba**

¹H NMR (400MHz, CDCl₃)

ö

⁷⁷Se NMR spectrum of **3ba**

3ba-77se.1.fid

¹H NMR spectrum of **3ea**

170 160 150 140

CQ-19

110 100 fl (ppm) 60 50

¹H NMR (400MHz, CDCl₃)

¹³C NMR spectrum of **3ea**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR spectrum of **3fa**

¹³C NMR spectrum of **3fa**

¹H NMR spectrum of **3ga**

¹H NMR (400MHz, CDCl₃)

¹H NMR spectrum of **3ha**

¹H NMR (400MHz, CDCl₃)

¹H NMR spectrum of **3ia**

¹H NMR (400MHz, CDCl₃)

ö

¹H NMR spectrum of **3ja**

¹H NMR (400MHz, CDCl₃)

41

80 70

60 50

90

40 30 20 10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

¹H NMR spectrum of **3la**

¹H NMR (400MHz, CDCl₃)

¹H NMR spectrum of **3ma**

¹H NMR (400MHz, CDCl₃)

¹³C NMR spectrum of **3ma**

cq=28=5	0 0	400	0070000000000	
	04	50 m cv	10400000000000	2
	40	0400	N00000000000	4
	~1 00	0 Ú Ú	40000000	2
			~~~~~~	LO LO
		111		



#### ¹⁹F NMR spectrum of **3ma**

cq-28-5





¹⁹F NMR (376MHz, CDCl₃)



¹H NMR spectrum of **3na** 



