Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

for

Solvent Dependent Hindered Rotation versus Epimerization in Axially Chiral

Thiohydantoin Derivatives: An Experimental and a Computational Study

Sule Erol Gunal^a, Ipek Azizoglu^a, Oya Arica^a, Zeynep Pinar Haslak^a, Viktorya Aviyente^{a*},

Ilknur Dogan^a*

^a Department of Chemistry, Bogaziçi University, Bebek, Istanbul, Turkey

Table of Contents

Potential energy surfaces for the SM to SP transformations of compound 1 around $C_{aryl}-N_{sp2}$ bond through exo-cyclic oxygen site ($TS_{ror}-I$) and exo-cyclic sulfur site ($TS_{ror}-2$)S2
Free energy profile for the epimerization process of 5-benzyl-3-(<i>o</i> -tolyl)-2-thiohydantoin in the presence of CD ₃ OD molecules
Experimental and calculated epimerization barriers for the forward ΔG^{\neq}_{f} , and the reverse ΔG^{\neq}_{r} (ΔG^{\neq} , <i>kJ/mol</i>) reactions (M06-2X/6-311+G**) and the corresponding experimentally determined rate constants (k, <i>s</i> ⁻¹) for compounds 1-4 , in ethanolS5
3D representations of the GS and TS structures of compounds 1-4 and corresponding α , β and θ values (calculated at M062X/6-311+G** level of theory)
HPLC chromatograms of compounds 1-4
Exchange of deuterium with hydrogen atom at C-5 of compound 1 in CD_3OD S26
¹ H NMR and ¹³ C NMR spectra of compounds

Reaction Coordinate

Fig. S1 Potential energy surfaces for the SM to SP transformations of compound 1 around Caryl- N_{sp2} bond through exo-cyclic oxygen site (TS_{rot} -1) and exo-cyclic sulfur site (TS_{rot} -2).

Geometrical features and energetics of the compounds in Figure S1:

For SM enantiomer of 5-benzyl-3-(o-tolyl)-2-thiohydantoin (compound 1) the minima was located on the potential energy surface at a dihedral angle of $\theta_{a-b-c-d} = 96.27^{\circ}$. The rotational transition state structure TS_{rot} , where the *o*-aryl substituent methyl rotates via the exo-cyclic oxygen has $\theta_{a-b-c-d} = -0.24^{\circ}$ and the two rings are flat and coplanar because of the electron delocalization. Caryl-Nsp2 bond elongates from 1.433 Å to 1.458 Å in going from ground state structure **SM** to transition state structure **TS**_{rot}-1. $\theta_{a-b-c-d}$ was calculated to be -174.24° in **TS**_{rot}-2 structure, where the o-aryl substituent methyl rotates via the exo-cyclic sulfur atom and the two rings slightly deviate from planarity since larger S atom induces steric repulsion with the o-aryl methyl group. C_{aryl} - N_{sp2} bond elongates from 1.433 Å to 1.468 Å in going from ground state structure *SM* to transition state structure TS_{rot} -2. As a consequence, TS_{rot} -2 has a higher rotational energy barrier than TSrot-1. In the ground state of SP, the thermodynamically favored product, $\theta_{a-b-c-d} = -78.61^{\circ}$. Compared to *SM*, in *SP*, *o*-aryl methyl and benzyl group at *R* position do not face each other which is sterically a more favorable orientation.

Fig. S2 Free energy profile for the epimerization process of 5-benzyl-3-(*o*-tolyl)-2-thiohydantoin (compound 1) in the presence of CD₃OD molecules.

Geometrical features and energetics of the compounds in Figure S2:

For the starting ground state conformation of *RM* enantiomer of 5-benzyl-3-(*o*-tolyl)-2thiohydantoin (compound 1) in the presence of two CD₃OD molecules, the minima was located on the potential energy surface at a dihedral angle of $\theta_{a-b-c-d} = 74.36^{\circ}$. The transition state structure (**TS-1**) for deprotonation of *RM* embodies an eight-membered cyclic structure involving triple proton transfer. CD₃OD₁ abstracts the proton at the stereocenter C5 with a bond length of 1.64 Å and transfers its deuterium which is attached to oxygen atom to CD₃OD₂ while another deuterium transfer occurs from CD₃OD₂ to carbonyl oxygen on 5-membered ring of compound **1** with a bond length of 1.63 Å, yielding the enolate intermediate. In *TS-1* structure $\theta_{a-b-c-d} = 76.66^{\circ}$. C_{aryl}-N_{sp2} bond shortens from 1.432 Å to 1.429 Å, C=O bond elongates from 1.210 Å to 1.253 Å and C5-C_{benzene} bond shortens from 1.546 Å to 1.516 Å in going from ground state structure *RM* to transition state structure *TS-1*. In the *Enol-intermediate*, $\theta_{a-b-c-d} = 79.43^{\circ}$, d(C_{aryl}-N_{sp2}) = 1.431 Å, d(C=O) = 1.335 Å and d(C5-C_{benzene}) = 1.492 Å. In the deuteration step of C5 to yield the deuterated *SM* stereoisomer (*TS-2*, $\theta_{a-b-c-d} = 84.32^{\circ}$, upper path in Fig. S2), C5 abstracts the deuterium from CD₃OD₁, which approaches from *re*-face of the compound, with a bond length of 1.65 Å while CD₃OD₁ picks a deuterium from CD₃OD₂ and CD₃OD₂ abstracts the deuterium from carbonyl oxygen on 5-membered ring of compound **1** with a bond length of 1.78 Å. In going from ground state structure *Enol-intermediate* to transition state structure *TS-2* to yield *SM* stereoisomer, C_{aryl}-N_{sp2} bond shortens from 1.431 Å to 1.429 Å, C=O bond shortens from 1.335 Å to 1.248 Å and C5-C_{benzene} bond elongates from 1.492 Å to 1.505 Å. For the ground state conformation of deuterated *SM* enantiomer in the presence of two CD₃OD molecules, the minima was located on the potential energy surface at a dihedral angle of $\theta_{a-b-c-d} = 85.33^{\circ}$. On the other hand, to yield the deuteurated *RM* stereoisomer, deuteriation (*TS-2*, $\theta_{a-b-c-d} = 76.09^{\circ}$, lower path in Fig. S2) occurs from the *si*-face of the compound, with shorter C5…₁D—OCD₃ (1.64 Å) and O…₂D—OCD₃ (1.62 Å) bonds. In going from ground state structure of *Enol-intermediate* to transition state structure *TS-2* to yield *RM* stereoisomer, C_{aryl}-N_{sp2} bond shortens from 1.335 Å to 1.253 Å and C5-C_{benzene} bond elongates from 1.492 Å to 1.511 Å. For the ground state conformation of deuterated *RM* enantiomer in the presence of two transition state structure *TS-2* to yield *RM* stereoisomer, C_{aryl}-N_{sp2} bond shortens from 1.431 Å to 1.429 Å, C=O bond shortens from 1.335 Å to 1.253 Å and C5-C_{benzene} bond elongates from 1.492 Å to 1.511 Å. For the ground state conformation of deuterated *RM* enantiomer in the presence of two CD₃OD molecules, the minima was located on the potential energy surface at a dihedral angle of $\theta_{a-b-c-d} = 75.32^{\circ}$.

Table S1. Experimental and calculated (*) epimerization barriers for the forward ΔG^{\neq}_{f} , and the reverse ΔG^{\neq}_{r} (ΔG^{\neq} , *kJ/mol*) reactions (M06-2X/6-311+G**) and the corresponding experimentally determined rate constants (k, *s*⁻¹) for compounds **1-4**, in ethanol.

Compound	T (°C)	Stereoisomer conversion	$\Delta G^{\neq}{}_{\mathbf{f}}$	ΔG [≠] r	k _f	k _r
1	25	SM to RM	100.4±1.2 106.1*	99.3±1.2	1.59 x 10 ⁻⁵	2.41 x 10 ⁻⁵
	25	RM to SM	100.5±1.2 107.4*	100.5±1.2	1.51 x 10 ⁻⁵	1.49 x 10 ⁻⁵
2	40	RP to SP	100.0±3.2	101.9±3.2	1.36 x 10 ⁻⁴	6.43 x 10 ⁻⁵
	40	SP to RP	104.6±3.2	102.7±3.2	2.26 x 10 ⁻⁵	4.74 x 10 ⁻⁵
	40	RM to SM	105.7±3.2	104.3±3.2 105.4*	1.48 x 10 ⁻⁵	2.52 x 10 ⁻⁵
3	25	RP to SP	99.4±1.8	100.2±1.8	2.30 x 10 ⁻⁵	1.70 x 10 ⁻⁵
	25	SP to RP	102.0±1.8	101.1±1.8	8.25 x 10 ⁻⁶	1.18 x 10 ⁻⁶
	25	RM to SM	102.0±1.8	101.1±1.8	8.28 x 10 ⁻⁶	1.17 x 10 ⁻⁶
	25	SM to RM	100.5±1.8 99.3*	100.6±1.8	1.53 x 10 ⁻⁵	1.47 x 10 ⁻⁵
4	40	RP to SP	102.1±0.1	103.1±0.1	5.97 x 10 ⁻⁵	4.04 x 10 ⁻⁵
	40	SP to RP	103.2±0.1	102.1±0.1	3.98 x 10 ⁻⁵	6.02 x 10 ⁻⁵
	40	RM to SM	103.0±0.1	102.2±0.1 101.6*	4.27 x 10 ⁻⁵	5.73 x 10 ⁻⁵

COMPOUND 1 **R**₁: -benzyl **X:** -CH₃ SM TS-S SP -0.2° 96.3° -78.6° $\theta_{c\text{-}d\text{-}e\text{-}f}$ 126.5° 128.5° 126.5° α 120.7° 129.9° β 120.7° COMPOUND 1 **R**₁: -benzyl **X:** -CH₃ <u>TS_{rot}-1</u> 0.2° RP RM -96.3° 78.6° $\theta_{c\text{-}d\text{-}e\text{-}f}$ 126.5° 128.5° 126.5° α 120.7° 129.9° 120.7° β COMPOUND 2 R₁: -benzyl **X:** -Br

Table S2. 3D representations of the GS and TS structures of compounds 1-4 and corresponding α , β and θ values (calculated at M062X/6-311+G** level of theory).

	RP	TS _{rot} -1	RM
$\theta_{c-d-e-f}$	-82.1°	-4.5°	80.1°
α	126.3°	128.0°	126.3°
β	119.80	128.80	119.90
COMPOUND 3 R ₁ : -isobutyl X: -CH ₃	RM	TSrot-1	RP
$\theta_{c-d-e-f}$	75.7°	-0.7°	-78.8°
α	126.2°	128.1°	126.2°
β	120.9°	129.5°	120.6°
COMPOUND 4 R ₁ : -isobutyl X: -Br	SP	TSee-1	SM
$\theta_{c-d-e-f}$	-82.1°	3.4°	82.9°
α	126.1°	127.8°	126.1°
ß	119.9°	128.7°	119.8°
r.			

Fig. S3 HPLC chromatograms of 5-benzyl-3-(*o*-bromophenyl)-2-thiohydantoin (2) (ChiralPak IC as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7°C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RP**, (c-d) conversion of **RP** to **SP** with time in **ethanol** at 313 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S4 HPLC chromatograms of 5-benzyl-3-(*o*-bromophenyl)-2-thiohydantoin (2) (ChiralPak IC as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7°C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RM**, (c-d) conversion of **RM** to **SM** with time in **ethanol** at 313 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S5 The plot of $\ln(([RM]o-[RM]eq)/[RM]-[RM]eq))$, $\ln(([SP]o-[SP]eq)/[SP]-[SP]eq))$, $\ln(([RP]o-[RP]eq)/[RP]-[RP]eq))$, versus time at 313 K in ethanol for 5-benzyl-3-(o-bromophenyl)-2-thiohydantoin (2).

Fig. S6 HPLC chromatograms of 5-benzyl-3-(*o*-bromophenyl)-2-thiohydantoin (2) (ChiralPak IC as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7°C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RP**, (c-d) conversion of **RP** to **RM** with time in **toluene** at 383 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S7 The plot of ln(([RP]o-[RP]eq)/[RP]-[RP]eq)) versus time at 383 K in toluene for 5benzyl-3-(o-bromophenyl)-2-thiohydantoin (2) .

Fig. S8 HPLC chromatograms of 5-isobutyl-3-(*o*-tolyl)-2-thiohydantoin (3) (ChiralPak IB as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7°C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **SM**, (c-d) conversion of **SM** to **RM** with time in **ethanol** at 298 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S9 HPLC chromatograms of 5-isobutyl-3-(o-tolyl)-2-thiohydantoin (3) (ChiralPak IB as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate: 0.8 ml/min, column temperature : 7°C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RM**, (c-d) conversion of **RM** to **SM** with time in **ethanol** at 298 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S10 HPLC chromatograms of 5-isobutyl-3-(*o*-tolyl)-2-thiohydantoin (3) (ChiralPak IB as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7° C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved SP, (c-d) conversion of SP to RP with time in ethanol at 298 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S11 HPLC chromatograms of 5-isobutyl-3-(*o*-tolyl)-2-thiohydantoin (3) (ChiralPak IB as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7° C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RP**, (c-d) conversion of **RP** to **SP** with time in **ethanol** at 298 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S12 The plot of $\ln(([SM]o-[SM]eq)/[SM]-[SM]eq))$, $\ln(([SP]o-[SP]eq)/[SP]-[SP]eq))$, $\ln(([RM]o-[RM]eq)/[RM]-[RM]eq))$, $\ln(([RP]o-[RP]eq)/[RP]-[RP]eq))$, versus time in ethanol at 298 K for 5-isobutyl-3-(o-tolyl)-2-thiohydantoin (3).

Fig. S13 HPLC chromatograms of 5-isobutyl-3-(*o*-tolyl)-2-thiohydantoin (3) (ChiralPak IB as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7° C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RM**, (c-d) conversion of **RM** to **RP** with time in **toluene** at 313 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S14 The plot of ln(([**RM**]o-[**RM**]eq)/[**RM**]-[**RM**]eq)) versus time in **toluene** at 313 K for 5-isobutyl-3-(o-tolyl)-2-thiohydantoin(**3**).

Fig. S15 HPLC chromatograms of 5-isobutyl-3-(*o*-bromophenyl)-2-thiohydantoin (4) (ChiralPak IA as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7° C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RP**, (c-d) conversion of **RP** to **SP** with time in **ethanol** at 313 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S16 HPLC chromatograms of 5-isobutyl-3-(*o*-bromophenyl)-2-thiohydantoin (4) (ChiralPak IA as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7° C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved SP, (c-d) conversion of SP to RP with time in ethanol at 313 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S17 HPLC chromatograms of 5-isobutyl-3-(*o*-bromophenyl)-2-thiohydantoin (4) (ChiralPak IA as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7° C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **RM**, (c-d) conversion of **RM** to **SM** with time in **ethanol** at 313 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S18 The plot of ln(([**RP**]o-[**RP**]eq)/[**RP**]-[**RP**]eq)), ln(([**SP**]o-[**SP**]eq)/[**SP**]-[**SP**]eq)), ln(([**RM**]o-[**RM**]eq)/[**RM**]-[**RM**]eq)), versus time in **ethanol** at 313 K for 5-isobutyl-3-(*o*-bromophenyl)-2-thiohydantoin **(4)**.

Fig. S19 HPLC chromatograms of 5-isobutyl-3-(*o*-bromophenyl)-2-thiohydantoin (4) (ChiralPak IA as the stationary phase, 95:5 Hex:EtOH as the eluent, flow rate : 0.8 ml/min, column temperature: 7° C) (a) the recrystallized product which shows the presence of four isomers, (b) the micropreparatively resolved **SP**, (c-d) conversion of **SP** to **SM** with time in **toluene** at 383 K. (*) The assignments have been done with comparison by the ¹H-NMR spectrum.

Fig. S20 The plot of ln (([**SP**]o-[**SP**]eq)/[**SP**]-[**SP**]eq)) versus time in **toluene** at 383 K for 5-isobutyl-3-(*o*-bromophenyl)-2-thiohydantoin (**4**).

Fig. S21 5-benzyl-3-(*o*-tolyl)-2-thiohydantoin (1) C-5 hydrogen signal change with time in CD₃OD.

Fig. S22 ¹H NMR spectrum of 5-benzyl-3-(o-tolyl)-2-thiohydantoin (1) in CDCl₃

Fig. S23 ¹³C NMR spectrum of 5-benzyl-3-(o-tolyl)-2-thiohydantoin (1) in CDCl₃

Fig. S24 ¹H NMR spectrum of 5-benzyl-3-(o-bromophenyl)-2-thiohydantoin (2) in CDCl₃

Fig. S25 ¹³C NMR spectrum of 5-benzyl-3-(o-bromophenyl)-2-thiohydantoin (2) in CDCl₃

Fig. S26 ¹H NMR spectrum of 5-isobutyl-3-(*o*-tolyl)-2-thiohydantoin (3) in CDCl₃.

Fig. S27 ¹³C NMR spectrum of 5-isobutyl-3-(*o*-tolyl)-2-thiohydantoin (3) in CDCl₃.

Fig. S28 ¹H NMR spectrum of 5-isobutyl-3-(o-bromophenyl)-2-thiohydantoin (4) in CDCl₃.

Fig. S29 ¹³C NMR spectrum of 5-isobutyl-3-(o-bromophenyl)-2-thiohydantoin (4) in CDCl₃.

Fig. S30 ¹H NMR spectrum of 5-benzyl-3-(o-tolyl)-2-thiohydantoin (1) (crude) in methanol-d₄.

Fig. S31 ¹H NMR spectrum of 5-benzyl-3-(o-bromophenyl)-2-thiohydantoin (2) (crude) in methanol-d₄.

Fig. S32 ¹H NMR spectrum of 5-isobutyl-3-(o-tolyl)-2-thiohydantoin (3) (crude) in methanol-d₄.

Fig. S33 ¹H NMR spectrum of 5-isobutyl-3-(o-bromophenyl)-2-thiohydantoin (4) (crude) in methanol-d₄.