Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Practical Chemoselective Aromatic Substitution: Synthesis of N-

(4-halo-2-nitrophenyl)benzenesulfonamide through Efficient

Nitration and Halogenation of N-phenylbenzenesulfonamide

Xiao Yu^{*a*}, Wenjing Zhu^{*a*}, Hongyan Liu^{*a*}, Yi Liu^{*a*}, Hongshuang Li^{*a*}, Junfen Han^{*a*}*, Guiyun Duan^{*a*}, Zhushuang Bai^{*a*}, Pengfei Zhang^{*b*}, Chengcai Xia^{*a*}*

^{*a*} Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.

^b College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.

E-mail: xiachc@163.com

Table of contents:

1. Optimization of Reaction Conditions		
2. Experimental Section & Characterization Data of the Products	5	
3. Crystal Data of 3a	25	
4. Copies of NMR Spectra and LC-MS Spectra	26	

1. Optimization of Reaction Conditions

	୍ଦ୍ର		Conditions	0,0	Br
	U U N H	H			D ₂
Entry	Solvent	Base	Nitro source	Halogen	Yield(%) ^b
1	DCE	C_5H_5N	$Co(NO_3)_2 \bullet 6H_2O$	TBAB	62 ^c
2	DCE	-	$Co(NO_3)_2 \bullet 6H_2O$	TBAB	nr^{c}
3	DCE	C_5H_5N	$Co(NO_3)_2 \bullet 6H_2O$	TBAB	76
4	DCE	C_5H_5N	$Fe(NO_3)_3 \bullet 9H_2O$	TBAB	$74, 80^d$
5	DCE	C_5H_5N	$Bi(NO_3)_3 \bullet 5H_2O$	TBAB	66, 78^d
6	DCE	C ₅ H ₅ N	Cu(NO ₃) ₂ •3H ₂ O	TBAB	86
7	DCE	C ₅ H ₅ N	NH ₄ NO ₃	TBAB	nr, 13 ^e , 84 ^{e, f}
8	CH ₃ CN	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	trace
9	EtOH	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	nr
10	THF	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	nr
11	1,4-dioxane	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	26
12	DCE	Cs_2CO_3	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	nr
13	DCE	t-BuOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	80
14	DCE	DBU	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	nr
15	DCE	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	76
16	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	$\rm NH_4Br$	62
17	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	CuBr	32
18	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	CuBr ₂	40, 43 ^{<i>f</i>}
19	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	NaBr	29
20	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	KBr	31
21	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	$79^{g}, 81^{h}$
22	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	$13^{i}, 75^{j}, nr^{k}$
23	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	$74^l, 79^m, 69^n$
24	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	83°, 78 ^p
25	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	$79^{q}, 78^{r}$
26	DCE	C ₅ H ₅ N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAB	$82^{s}, 69^{t}$

1.1 Optimization of reaction conditions to synthetize 3a.^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), base (0.3 mmol), nitrate (0.3 mmol), halogen (0.4 mmol) and solvent (2.0 mL) in a sealed tube with an air atmosphere at 110 °C stirred for 12 h. ^{*b*} Isolated yield. ^{*c*} Pd(OAc)₂ (0.1 equiv.) was additionally added. ^{*d*} Nitrate (0.2 mmol). ^{*e*} NH₄NO₃ (0.6 mmol) and CuBr₂ (0.2 equiv.) were additionally added. ^{*f*} Halogen (0.2 mmol). ^{*g*} C₅H₅N (1.0 equiv.). ^{*h*} C₅H₅N (2.0 equiv.). ^{*i*} Cu(NO₃)₂•3H₂O (0.5 equiv.). ^{*j*} Cu(NO₃)₂•3H₂O (1.0 equiv.). ^{*k*} Cu(NO₃)₂•3H₂O (2.0 equiv.). ^{*l*} TBAB (1.0 equiv.). ^{*m*} TBAB (1.5 equiv.). ^{*n*} TBAB (2.5 equiv.). ^{*o*} 100 °C. ^{*p*} 120 °C. ^{*q*} 8h. ^{*r*} 16h. ^{*s*}N₂. ^{*t*} O₂.

1.2 Optimization of reaction conditions to synthetize 4a.^a

		Q_O ∕S_ _{NH}	Conditions	O O S NH	
		H—		NO	2
	1	a <mark>H</mark>		4a <mark>C</mark> I	
Entry	Solvent	Base	Nitro source	Halogen	$Yield(\%)^b$
1	DCE	C_5H_5N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	trace
2	DCE	Et ₃ N	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	nr
3	DCE	DBU	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	nr
4	DCE	Cs_2CO_3	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	nr
5	DCE	t-BuOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	67
6	DCE	CH ₃ COONa	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	62
7	DCE	CH ₃ COOK	Cu(NO ₃) ₂ •3H ₂ O	TBAC	71
8	DCE	-	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	nr
9	CH ₃ CN	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	nr
10	THF	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	nr
11	1,4-dioxane	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	nr
12	DCE	CH ₃ COOK	Bi(NO ₃) ₃ •5H ₂ O	TBAC	nr, nr ^c
13	DCE	CH ₃ COOK	$Fe(NO_3)_3 \bullet 9H_2O$	TBAC	nr, nr ^c
14	DCE	CH ₃ COOK	$Co(NO_3)_2 \bullet 6H_2O$	TBAC	nr
15	DCE	CH ₃ COOK	NH ₄ NO ₃	TBAC	nr, 70 ^d , 35 ^{d, e}
16	DCE	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	KCl	nr
17	DCE	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	NH ₄ Cl	trace
18	DCE	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	CuCl	nr
19	DCE	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	CuCl ₂	nr, nr ^e
20	DCE	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAC	66 ^{<i>f</i>} , nr ^{<i>g</i>}

^{*a*} Reaction conditions: **1a** (0.2 mmol) base (0.3 mmol), nitrate (0.3 mmol), halogen (0.4 mmol) and solvent (2.0 mL) in a sealed tube with an air atmosphere at 100 °C stirred for 12 h.

^b Isolated yield.

^c Nitrate (0.2 mmol).

^dNH₄NO₃ (0.6 mmol) and CuCl₂ (0.2 equiv.) were additionally added.

^e Halogen (0.2 mmol).

^{*f*} 110 °C.

^g 120 °C.

1.3 Optimization of reaction conditions to synthetize 5a.^a

	C	⁰	Q	0	
		NH (Conditions		
			\longrightarrow	NU ₂	
	1a		53	\mathbf{Y}	
Entry	Solvent	Base	Nitro source	Halogen	Vield(%) ^b
1	DCE	C ₅ H ₅ N	$Fe(NO_2)_2 \bullet 9H_2O$	TBAI	36
2	DCE	Et ₂ N	$Fe(NO_2)_2 \bullet 9H_2O$	TBAI	nr
3	DCE	DBU	$Fe(NO_3)_3 \bullet 9H_2O$	TBAI	trace
4	DCE	Cs ₂ CO ₂	$Fe(NO_3)_3 \bullet 9H_2O$	TBAI	nr
5	DCE	t-BuOK	$Fe(NO_3)_2 \bullet 9H_2O$	TBAI	67
6	DCE	CH ₂ COONa	$Fe(NO_3)_2 \bullet 9H_2O$	TBAI	60
7	DCE	CH ₃ COOK	Fe(NO ₃) ₃ •9H ₂ O	TBAI	73
8	CH ₃ CN	CH ₃ COOK	$Fe(NO_3)_3 \cdot 9H_2O$	TBAI	nr
9	1,4-dioxane	CH ₃ COOK	$Fe(NO_3)_3 \cdot 9H_2O$	TBAI	nr
10	THF	CH ₃ COOK	$Fe(NO_3)_3 \cdot 9H_2O$	TBAI	nr
11	DCE	CH ₃ COOK	$Fe(NO_3)_3 \bullet 9H_2O$	TBAI	31 ^c
12	DCE	CH ₃ COOK	$Bi(NO_3)_3 \bullet 5H_2O$	TBAI	58, 23 ^c
13	DCE	CH ₃ COOK	$Cu(NO_3)_2 \bullet 3H_2O$	TBAI	67
14	DCE	CH ₃ COOK	Co(NO ₃) ₂ •6H ₂ O	TBAI	26
15	DCE	CH ₃ COOK	NH ₄ NO ₃	TBAI	nr, 50 ^e , 44 ^{d, e}
16	DCE	CH ₃ COOK	NH ₄ NO ₃	TBAI	62 ^f , 53 ^{d, f}
17	DCE	CH ₃ COOK	Fe(NO ₃) ₃ •9H ₂ O	NH ₄ I	nr
18	DCE	CH ₃ COOK	$Fe(NO_3)_3 \bullet 9H_2O$	CuI	nr
19	DCE	CH ₃ COOK	$Fe(NO_3)_3 \bullet 9H_2O$	KI	nr
20	DCE	CH ₃ COOK	Fe(NO ₃) ₃ •9H ₂ O	TBAI	$66^{g}, 70^{h}$

^{*a*} Reaction conditions: **1a** (0.2 mmol) base (0.3 mmol), nitrate (0.3 mmol), halogen (0.4 mmol) and solvent (2.0 mL) in a sealed tube with an air atmosphere at $120 \,^{\circ}$ C stirred for 12 h.

^b Isolated yield.

^c Nitrate (0.2 mmol).

^d Halogen (0.2 mmol).

^e NH₄NO₃ (0.6 mmol) and Fe(NO₃)₃•9H₂O (0.2 equiv.) were additionally added.

 f NH₄NO₃ (0.6 mmol) and Cu(NO₃)₂•3H₂O (0.2 equiv.) were additionally added. g 110 °C.

^h 130 °C.

2. Experimental Section & Characterization data of the products

General Experiment Information: ¹H NMR (400 MHz) and ¹³C NMR spectra (101 MHz) were recorded on the Bruker AscendTM 400 spectrometer using CDCl₃ and DMSO-*d*₆ as the solvent. Chemical shifts are given in ppm and coupling constants in Hz. ¹H spectra were calibrated in relation to the reference measurement of TMS (0.000 ppm). The following abbreviations were used for ¹H NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiple) as well as combinations of them. Flash chromatography was performed on silica gel 200-300 mesh (purchased from Qingdao Haiyang Chemical, China). MS spectra were recorded on Agilent 6546 LC/Q-TOF and AB SCIEX Triple QuadTM 4500MD.

General procedure for synthesis of *N*-phenylbenzenesulfonamide: Benzenesulfonyl chloride (0.55 mmol, 1.1 eq.) was added to a solution of appropriate aniline (0.5 mmol, 1 eq.) in pyridine (30 ml) at 0 °C. After stirring at room temperature for 24 hours, pyridine was removed by a rotary evaporator and the reaction mixture was poured into water. The product was extracted with DCM, dried over MgSO₄ and concentrated in vacuum. The residue was purified by silica gel column chromatography to obtain the corresponding product.

General procedure for synthesis of 3a-3aj: A mixture of the 1a (0.2 mmol), C_5H_5N (0.3 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (0.3 mmol), TBAB (0.4 mmol) and DCE (2.0 mL) was in a sealed tube with an air atmosphere at 110 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a short silica gel to afford the product 3a-3aj.

N-(4-bromo-2-nitrophenyl)benzenesulfonamide (3a). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product **3a**. Yellow solid, 61 mg, 86 % yield, m. p. = 98-99 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.45 (s, 1H), 8.12 (d, J = 2.4 Hz, 1H), 7.81 (dd, J = 8.8, 2.4 Hz, 1H), 7.80 – 7.71 (m, 2H), 7.70 – 7.63 (m, 1H), 7.62 – 7.52 (m, 2H), 7.22 (d, J = 8.7 Hz, 1H).¹³C NMR (101 MHz, DMSO- d_6) δ 144.61, 139.40, 137.22, 133.95, 129.94, 129.76, 128.45, 128.06, 127.21, 118.43. HRMS (ESI+):

Calculated for C₁₂H₉BrN₂O₄S, [M-H]⁻ 354.9388. Found 354.9334.

N-(4-bromo-2-nitrophenyl)-4-methylbenzenesulfonamide (3b). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product 3b. Yellow solid, 65 mg, 88 % yield, m. p. = 109-110 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.36 (s, 1H), 8.12 (d, *J* = 2.3 Hz, 1H), 7.81 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.42, 144.13, 137.26, 136.54, 130.32, 130.10, 128.41, 127.57, 127.32, 118.07, 21.47. HRMS (ESI+): Calculated for C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9509.

N-(4-bromo-2-nitrophenyl)-4-methoxybenzenesulfonamide (3c). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:60) to afford the product **3c**. Yellow liquid, 65 mg, 84 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.26 (s, 1H), 8.13 (d, *J* = 2.3 Hz, 1H), 7.82 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.72 – 7.65 (m, 2H), 7.23 (d, *J* = 8.7 Hz, 1H), 7.11 – 7.05 (m, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.36, 144.08, 137.27, 130.83, 130.22, 129.61, 128.40, 127.49, 117.95, 115.03, 56.19. HRMS (ESI+): Calculated for C₁₃H₁₁BrN₂O₅S, [M+Na]⁺408.9470. Found 408.9464.

N-(4-bromo-2-nitrophenyl)-4-fluorobenzenesulfonamide (3d). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product 3d. Yellow liquid, 63 mg, 85 % yield; ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 8.25 (d, J = 2.1 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.72 (dt, J = 9.0, 5.5 Hz, 2H), 7.17 (t, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.75 (d, J = 257.4 Hz), 138.84, 137.49, 134.42 (d, J = 3.2 Hz), 132.63, 130.11 (d, J = 9.8 Hz), 128.85, 122.58, 116.96 (d, J = 23.0 Hz), 116.63. ¹⁹F NMR (377 MHz, CDCl₃) δ -102.28. HRMS (ESI+): Calculated for C₁₂H₈BrFN₂O₄S, [M-H]⁻ 372.9294. Found 372.9295.

N-(4-bromo-2-nitrophenyl)-4-chlorobenzenesulfonamide (3e). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product **3e**. Yellow liquid, 62 mg, 80 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.56 (s, 1H), 8.14 (d, *J* = 2.3 Hz, 1H), 7.84 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.74 – 7.70 (m, 2H), 7.67 – 7.64 (m, 2H), 7.21 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.92, 138.81, 138.34, 137.27, 130.07, 129.39, 129.18, 128.61, 128.45, 118.82. HRMS (ESI+): Calculated for C₁₂H₈BrClN₂O₄S, [M+Na]⁺412.8974. Found 412.8967.

4-bromo-*N***-(4-bromo-2-nitrophenyl)benzenesulfonamide (3f).** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **3f**. Yellow liquid, 71 mg, 82 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.57 (s, 1H), 8.15 (d, *J* = 2.4 Hz, 1H), 7.85 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.83 – 7.79 (m, 2H), 7.66 – 7.61 (m, 2H), 7.20 (d, *J* = 8.7 Hz, 1H). ¹³C **NMR** (101 MHz, DMSO-*d*₆) δ 144.97, 138.75, 137.27, 133.03, 129.34, 129.22, 128.62, 128.48, 127.85, 118.85. **HRMS** (ESI+): Calculated for C₁₂H₈Br₂N₂O₄S, [M+Na]⁺458.8449. Found 458.8443.

N-(4-bromo-2-nitrophenyl)-3-methylbenzenesulfonamide (3i). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 3i. Yellow liquid, 58.4mg, 79 % yield; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 8.24 (d, *J* = 2.3 Hz, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.66 (ddd, *J* = 12.6, 8.1, 2.1 Hz, 3H), 7.43 – 7.34 (m, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.03, 138.75, 138.26, 137.24, 134.83, 133.05, 129.36, 128.73, 127.46, 124.39, 122.31, 116.11, 21.36. HRMS (ESI+): Calculated for C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9515.

N-(4-bromo-2-nitrophenyl)-3-fluorobenzenesulfonamide (3j). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 3j. Yellow liquid, 62 mg, 83 % yield; ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.27 (d, J = 2.2 Hz, 1H), 7.79 – 7.69 (m, 2H), 7.65 (ddd, J = 7.9, 1.8, 1.0 Hz, 1H), 7.56 (ddd, J = 7.9, 2.6, 1.8 Hz, 1H), 7.51 (td, J = 8.1, 5.2 Hz, 1H), 7.31 (tdd, J = 8.3, 2.5, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.41 (d, J = 253.4 Hz), 140.36 (d, J = 6.8 Hz), 138.90, 137.48, 136.05, 131.52 (d, J = 7.9 Hz), 128.88, 122.97 (d, J = 3.4 Hz), 122.53, 121.33 (d, J = 21.1 Hz), 116.77, 114.73 (d, J = 24.7 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -108.08. HRMS (ESI+): Calculated for C₁₂H₈BrFN₂O₄S, [M+Na]⁺ 396.9270. Found 396.9259.

N-(4-bromo-2-nitrophenyl)-3-chlorobenzenesulfonamide (3k). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 3k. Yellow liquid, 64 mg, 82 % yield; ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.27 (d, *J* = 1.9 Hz, 1H), 7.84 (t, *J* = 1.8 Hz, 1H), 7.76 – 7.70 (m, 3H), 7.60 – 7.55 (m, 1H), 7.45 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.13, 138.93, 137.40, 135.82, 134.16, 132.47, 130.90, 128.91, 127.32, 125.24, 122.34, 116.70. HRMS (ESI+): Calculated for C₁₂H₈BrClN₂O₄S, [M-H]⁻ 388.8998. Found 388.8996.

3-bromo-*N***-(4-bromo-2-nitrophenyl)benzenesulfonamide (31).** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **31**. Yellow liquid, 71 mg, 82 % yield; ¹**H NMR** (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.29 – 8.26 (m, 1H), 7.99 (t, *J* = 1.8 Hz, 1H), 7.78 (ddd, *J* = 7.9, 1.8, 1.0 Hz, 1H), 7.73 (tdd, *J* = 3.2, 1.9, 1.0 Hz, 3H), 7.39 (t, *J* = 8.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.26, 138.93, 137.40, 137.07, 132.46, 131.08, 130.13, 128.92, 125.66, 123.53, 122.34, 116.71. **HRMS** (ESI+): Calculated for C₁₂H₈Br₂N₂O₄S, [M+Na]⁺458.8449. Found 458.8418.

N-(4-bromo-2-nitrophenyl)-2-methylbenzenesulfonamide (30). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **30**. Yellow liquid, 62 mg, 84 % yield (eluent: ethyl acetate / petroleum ether = 1:100); ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.29 – 8.25 (m, 1H), 8.04 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.60 (s, 2H), 7.49 (td, *J* = 7.5, 1.2 Hz, 1H), 7.37 – 7.29 (m, 2H), 2.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.83, 137.62, 136.46, 136.35, 134.13, 133.25, 130.02, 128.83, 126.54, 120.83, 115.37, 20.17. HRMS (ESI+): Calculated for C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9515.

N-(4-bromo-2-nitrophenyl)-2-fluorobenzenesulfonamide (3p). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product **3p**. Yellow liquid, 64 mg, 86 % yield; ¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 8.29 (d, J = 2.3 Hz, 1H), 7.96 (td, J = 7.8, 1.7 Hz, 1H), 7.72 (d, J = 9.0 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.31 (td, J = 7.8, 0.9 Hz, 1H), 7.22 – 7.16 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.80 (d, J = 257.3 Hz), 138.74, 137.04, 136.57 (d, J = 8.7 Hz), 132.50, 130.73, 128.88, 126.38 (d, J = 13.1Hz), 124.81 (d, J = 3.8 Hz), 121.43, 117.60 (d, J = 20.7 Hz), 116.17. ¹⁹F NMR (377 MHz, CDCl₃) δ -108.94. HRMS (ESI+): Calculated for C₁₂H₈BrFN₂O₄S, [M+Na]⁺ 396.9270. Found 396.9270. *N*-(4-bromo-2-nitrophenyl)-2-chlorobenzenesulfonamide (3q). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford

the product **3q**. Yellow liquid, 66 mg, 85 % yield; ¹**H NMR** (400 MHz, CDCl₃) δ 10.34 (s, 1H), 8.27 (d, J = 2.2 Hz, 1H), 8.18 (dd, J = 7.9, 1.6 Hz, 1H), 7.64 (d, J = 9.0 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.55 – 7.52 (m, 1H), 7.49 (dd, J = 8.0, 1.4 Hz, 1H), 7.45 (td, J = 7.8, 1.4 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.76, 136.63, 135.56, 135.13, 132.56, 132.36, 132.13, 132.04, 128.99, 127.37, 120.42, 115.70. **HRMS** (ESI+): Calculated for C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8992.

2-bromo-*N***-(4-bromo-2-nitrophenyl)benzenesulfonamide (3r).** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product **3r**. Yellow liquid, 72 mg, 83 % yield; ¹**H NMR** (400 MHz, CDCl₃) δ 10.44 (s, 1H), 8.29 (d, *J* = 2.1 Hz, 1H), 8.25 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.71 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.60 (dt, *J* = 9.0, 5.6 Hz, 2H), 7.51 (td, *J* = 7.6, 1.4 Hz, 1H), 7.45 (td, *J* = 7.6, 1.8 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 138.74, 137.25, 136.53, 135.90, 135.04, 132.54, 132.37, 129.03, 127.92, 120.36, 120.22, 115.58. **HRMS** (ESI+): Calculated for C₁₂H₈Br₂N₂O₄S, [M+Na]⁺ 458.8449. Found 458.8471.

N-(4-bromo-5-methyl-2-nitrophenyl)benzenesulfonamide (3u). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 3u. Yellow liquid, 55 mg, 70 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.35 (s, 1H), 8.14 (s, 1H), 7.78 – 7.73 (m, 2H), 7.70 – 7.65 (m, 1H), 7.61 – 7.55 (m, 2H), 7.27 (s, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 145.08, 141.95, 139.52, 133.90, 129.89, 129.00, 127.96, 127.24, 120.73, 23.11. HRMS (ESI+): Calculated for C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9528.

N-(4-bromo-5-methoxy-2-nitrophenyl)benzenesulfonamide (3v). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:60) to afford the product **3v**.Yellow liquid, 59 mg, 76 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.40 (s, 1H), 8.23 (s, 1H), 7.85 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.60 (dd, *J* = 8.2, 7.0 Hz, 2H), 6.95 (s, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.96, 139.25, 135.12, 134.19, 133.32, 130.48, 130.02, 127.52, 107.17, 106.83, 57.69. HRMS (ESI+): Calculated for C₁₃H₁₁BrN₂O₅S, [M+Na]⁺ 408.9470. Found 408.9480.

N-(4-bromo-5-chloro-2-nitrophenyl)benzenesulfonamide (3w). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product 3w. Yellow liquid, 51 mg, 65 % yield; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.37 (s, 1H), 8.01 (s, 1H), 7.91 – 7.84 (m, 2H), 7.68 – 7.60 (m, 1H), 7.58 – 7.49 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.08, 138.20, 135.10, 134.23, 133.56, 130.65, 129.71, 127.26,

121.64, 116.69. **HRMS** (ESI+): Calculated for $C_{12}H_8BrClN_2O_4S$, $[M+Na]^+$ 412.8974. Found 412.8963.

N-(4-bromo-2-nitrophenyl)-2,5-dimethylbenzenesulfonamide (3ab). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 3ab. Yellow liquid, 66 mg, 86 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.42 (s, 1H), 8.15 (d, *J* = 2.3 Hz, 1H), 7.83 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.60 (s, 1H), 7.38 – 7.35 (m, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 2.51 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.06, 137.58, 137.30, 136.42, 134.55, 134.42, 133.24, 130.06, 129.50, 128.36, 127.72, 117.96, 20.77, 19.87. HRMS (ESI+): Calculated for C₁₄H₁₃BrN₂O₄S, [M+Na]⁺ 406.9677. Found 406.9686.

N-(4-bromo-2-nitrophenyl)naphthalene-2-sulfonamide (3ac). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **3ac**. Yellow liquid, 73 mg, 90 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.56 (s, 1H), 8.44 (d, *J* = 1.7 Hz, 1H), 8.15 (dd, *J* = 10.2, 4.8 Hz, 3H), 8.05 (d, *J* = 8.3 Hz, 1H), 7.80 (dd, *J* = 4.2, 2.2 Hz, 1H), 7.78 (dd, *J* = 4.2, 2.1 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.70 – 7.65 (m, 1H), 7.24 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.62, 137.23, 136.59, 134.94, 132.04, 130.12, 129.87, 129.84, 129.70, 128.53, 128.44, 128.34, 128.25, 128.05, 122.48, 118.39. HRMS (ESI+): Calculated for C₁₆H₁₁BrN₂O₄S, [M+Na]⁺ 428.9521. Found 428.9522.

N-(4-bromo-2-nitrophenyl)-2,4,6-trimethylbenzenesulfonamide (3ad). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 3ad. Yellow solid, 65 mg, 82 % yield, m. p. = 129-130 °C ; ¹H NMR (400 MHz, DMSO- d_6) δ 10.21 (s, 1H), 8.15 (d, *J* = 2.3 Hz, 1H), 7.86 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 7.03 (s, 2H), 2.42 (s, 6H), 2.25 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.75, 143.14, 139.20, 137.29, 133.95, 132.40, 129.84, 128.74, 128.38, 118.46, 22.96, 20.90. HRMS (ESI+): Calculated for C₁₅H₁₅BrN₂O₄S, [M-H]⁻ 396.9858. Found 396.9851.

N-(4-bromo-2-nitrophenyl)thiophene-2-sulfonamide (3ag). The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:70) to afford the product 3ag. Yellow liquid, 53 mg, 74 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.60 (s, 1H), 8.18 (d, J = 2.3 Hz, 1H), 7.99 (dd, J = 5.0, 1.3 Hz, 1H), 7.89 (dd, J = 8.7, 2.4 Hz, 1H), 7.55 (dd, J = 3.8, 1.3 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.17 (dd, J = 5.0, 3.8 Hz, 1H). ¹³C NMR (101 MHz,

DMSO-*d*₆) δ 145.17, 139.58, 137.22, 134.81, 133.56, 129.40, 128.72, 128.46, 128.44, 119.02. **HRMS** (ESI+): Calculated for C₁₀H₇BrN₂O₄S₂, [M+Na]⁺ 384.8928. Found 384.8926.

General procedure for synthesis of 4a-4aj: A mixture of the 1a (0.2 mmol), CH₃COOK (0.3 mmol), Cu(NO₃)₂•3H₂O (0.3 mmol), TBAC (0.4 mmol) and DCE (2.0 mL) was in a sealed tube with an air atmosphere at 100 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a short silica gel to afford the product 4a-4aj.

N-(4-chloro-2-nitrophenyl)benzenesulfonamide (4a) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product 4a. Yellow solid, 44.3 mg, 71 % yield, m. p. = 112-113 °C ; ¹H NMR (400 MHz, DMSO- d_6) δ 10.44 (s, 1H), 8.05 (d, *J* = 2.5 Hz, 1H), 7.71 (td, *J* = 7.1, 3.5 Hz, 3H), 7.67 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.60, 139.47, 134.31, 133.93, 130.75, 129.93, 129.40, 128.02, 127.20, 125.73. HRMS (ESI+): Calculated for C₁₂H₉ClN₂O₄S, [M-H]⁻ 310.9893. Found 310.9894.

N-(4-chloro-2-nitrophenyl)-4-methylbenzenesulfonamide (4b) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product 4b. Yellow solid, 45 mg, 69 % yield, m. p. = 101-102 °C ; ¹H NMR (400 MHz, DMSO- d_6) δ 10.35 (s, 1H), 8.05 (d, J = 2.5 Hz, 1H), 7.71 (dd, J = 8.8, 2.5 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.8 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.39, 144.31, 136.58, 134.34, 130.51, 130.34, 129.61, 127.65, 127.30, 125.72, 21.49. HRMS (ESI+): Calculated for C₁₃H₁₁ClN₂O₄S, [M-H]⁻ 325.0050 Found 325.0052.

N-(4-chloro-2-nitrophenyl)-4-methoxybenzenesulfonamide (4c) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:60) to afford the product 4c. Yellow solid, 51 mg, 75 % yield, m. p. = 113-114 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.25 (s, 1H), 8.04 (d, J = 2.4 Hz, 1H), 7.71 (dd, J = 8.8, 2.4 Hz, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz,

DMSO-*d*₆) δ 163.35, 144.16, 134.35, 130.92, 130.34, 129.82, 129.59, 127.50, 125.69, 115.04, 56.21. **HRMS** (ESI+): Calculated for C₁₃H₁₁ClN₂O₅S, [M+Na]⁺ 364.9975. Found 364.9970.

N-(4-chloro-2-nitrophenyl)-4-fluorobenzenesulfonamide (4d) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 4d. Yellow liquid, 42 mg, 64 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.49 (s, 1H), 8.06 (d, *J* = 2.5 Hz, 1H), 7.80 – 7.76 (m, 2H), 7.73 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.27 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.10 (d, *J* = 252.2 Hz), 144.85, 135.87 (d, *J* = 2.7 Hz), 135.87 (d, *J* = 2.7 Hz), 130.99, 130.40 (d, *J* = 9.7 Hz), 129.16, 128.43, 125.73, 117.14 (d, *J* = 22.9 Hz). ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -105.29. HRMS (ESI+): Calculated for C₁₂H₈ClFN₂O₄S, [M-H]⁻ 328.9799. Found 328.9802.

4-chloro-*N***-(4-chloro-2-nitrophenyl)benzenesulfonamide (4e)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **4e**. Yellow liquid, 47 mg, 68 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.56 (s, 1H), 8.06 (d, *J* = 2.5 Hz, 1H), 7.75 – 7.69 (m, 3H), 7.69 – 7.65 (m, 2H), 7.26 (d, *J* = 8.7 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 144.98, 138.78, 138.37, 134.36, 131.16, 130.08, 129.17, 128.96, 128.60, 125.77. **HRMS** (ESI+): Calculated for C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9503.

4-bromo-*N***-(4-chloro-2-nitrophenyl)benzenesulfonamide (4f)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **4f**. Yellow liquid, 51 mg, 66 % yield; ¹**H NMR** (400 MHz, DMSO- d_6) δ 10.57 (s, 1H), 8.06 (d, *J* = 2.5 Hz, 1H), 7.84 – 7.79 (m, 2H), 7.73 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.30 – 7.25 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.94, 138.79, 134.37, 133.02, 131.17, 129.22, 128.94, 128.58, 127.84, 125.78. **HRMS** (ESI+): Calculated for C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8969.

N-(4-chloro-2-nitrophenyl)-3-methylbenzenesulfonamide (4i) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 4i. Yellow liquid, 38 mg, 58 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.39 (s, 1H), 8.05 (d, *J* = 2.5 Hz, 1H), 7.71 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.57 (s, 1H), 7.52 (d, *J* = 7.2 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.24 (d, *J* = 8.8 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.43,

139.70, 139.45, 134.54, 134.32, 130.59, 129.75, 129.54, 127.77, 127.35, 125.73, 124.40, 21.26. **HRMS** (ESI+): Calculated for C₁₃H₁₁ClN₂O₄S, [M+Na]⁺ 349.0026. Found 349.0019.

N-(4-chloro-2-nitrophenyl)-3-fluorobenzenesulfonamide (4j) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 4j. Yellow liquid, 43 mg, 65 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.62 (s, 1H), 8.07 (d, J = 2.5 Hz, 1H), 7.73 (dd, J = 8.8, 2.5 Hz, 1H), 7.66 (ddd, J = 13.2, 7.2, 3.4 Hz, 1H), 7.57 (ddd, J = 11.8, 5.2, 3.0 Hz, 3H), 7.28 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.16 (d, J = 249.1 Hz), 144.88, 141.55 (d, J = 7.0 Hz), 134.37, 132.40 (d, J = 8.1 Hz), 131.14, 128.92, 128.47, 125.76, 123.54 (d, J = 3.2 Hz), 121.13 (d, J = 21.1 Hz), 114.23 (d, J = 24.7 Hz). ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -109.99. HRMS (ESI+): Calculated for C₁₂H₈ClFN₂O₄S, [M-H]⁻ 328.9799. Found 328.9798.

3-chloro-*N***-(4-chloro-2-nitrophenyl)benzenesulfonamide (4k)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **4k**. Yellow liquid, 46 mg, 66 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.64 (s, 1H), 8.07 (d, *J* = 2.5 Hz, 1H), 7.80 – 7.72 (m, 3H), 7.68 – 7.59 (m, 2H), 7.27 (d, *J* = 8.8 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 144.91, 141.40, 134.47, 134.38, 133.87, 131.99, 131.17, 128.87, 128.50, 126.75, 125.95, 125.78. **HRMS** (ESI+): Calculated for C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9498.

3-bromo-*N***-(4-chloro-2-nitrophenyl)benzenesulfonamide (41)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **4I**. Yellow liquid, 51 mg, 65 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.62 (s, 1H), 8.07 (d, *J* = 2.5 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.88 (t, *J* = 1.7 Hz, 1H), 7.74 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 7.9 Hz, 1H), 7.27 (d, *J* = 8.8 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 144.91, 141.50, 136.74, 134.38, 132.16, 131.16, 129.53, 128.89, 128.47, 126.26, 125.79, 122.72. **HRMS** (ESI+): Calculated for C₁₂H₈BrClN₂O₄S, [M-H]⁻ 388.8998. Found 388.8988.

N-(4-chloro-2-nitrophenyl)-2-methylbenzenesulfonamide (40) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product 40. Yellow liquid, 44 mg, 68 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.45 (s, 1H), 8.04 (d, *J* = 2.5 Hz, 1H), 7.74 – 7.69 (m, 2H), 7.56 (td, *J* = 7.5, 1.3 Hz, 1H), 7.43 (d, *J* = 7.6 Hz,

1H), 7.35 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 8.8 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (101 MHz, DMSOd₆) δ 144.36, 137.85, 137.56, 134.33, 133.97, 133.33, 130.54, 129.51, 129.30, 128.05, 126.98, 125.63, 20.35. HRMS (ESI+): Calculated for C₁₃H₁₁ClN₂O₄S, [M-H]⁻ 325.0050. Found 325.0046. *N*-(4-chloro-2-nitrophenyl)-2-fluorobenzenesulfonamide (4p) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:70) to afford the product 4p. Yellow liquid, 48 mg, 73 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.73 (s, 1H), 8.06 (d, J = 2.5 Hz, 1H), 7.78 – 7.71 (m, 3H), 7.49 – 7.41 (m, 1H), 7.42 – 7.34 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 158.78 (d, J = 255.0 Hz), 145.06, 136.77 (d, J = 8.6 Hz), 134.25, 131.35, 130.20, 129.38, 128.82, 127.61 (d, J = 14.3 Hz), 125.58, 125.54 (d, J = 3.7 Hz), 117.88 (d, J =21.0 Hz). ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -108.99. HRMS (ESI+): Calculated for C₁₂H₈CIFN₂O₄S, [M+Na]⁺ 352.9775. Found 352.9768.

2-chloro-*N***-(4-chloro-2-nitrophenyl)benzenesulfonamide (4q)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:65) to afford the product **4q**. Yellow liquid, 48 mg, 70 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.68 (s, 1H), 8.08 (d, *J* = 2.5 Hz, 1H), 7.96 – 7.88 (m, 1H), 7.75 – 7.66 (m, 3H), 7.53 (ddd, *J* = 8.1, 6.4, 2.2 Hz, 1H), 7.33 (d, *J* = 8.8 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 144.67, 137.22, 135.46, 134.42, 132.56, 131.38, 131.32, 131.05, 129.19, 128.66, 128.40, 125.67. **HRMS** (ESI+): Calculated for C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9494.

2-bromo-*N***-(4-chloro-2-nitrophenyl)benzenesulfonamide (4r)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:70) to afford the product **4r**. Yellow liquid, 55 mg, 71 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.62 (s, 1H), 8.09 (d, *J* = 2.5 Hz, 1H), 7.98 (dd, *J* = 6.1, 3.5 Hz, 1H), 7.88 (dd, *J* = 5.8, 3.3 Hz, 1H), 7.73 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.34 (d, *J* = 8.8 Hz, 1H).¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 144.08, 138.83, 136.15, 135.42, 134.59, 131.63, 130.79, 129.47, 128.91, 128.04, 125.75, 119.83. **HRMS** (ESI+): Calculated for C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8969.

N-(4-chloro-5-methyl-2-nitrophenyl)benzenesulfonamide (4u) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 4u. Yellow liquid, 38.5 mg, 59 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.35 (s, 1H), 8.03 (s, 1H), 7.74 (dd, J = 5.3, 3.3 Hz, 2H), 7.70 – 7.65 (m, 1H), 7.61 – 7.55 (m, 2H), 7.27 (s, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 143.21, 142.10, 139.55, 133.89,

130.89, 129.89, 129.33, 128.44, 127.23, 125.99, 20.30. **HRMS** (ESI+): Calculated for $C_{13}H_{11}CIN_2O_4S$, $[M+Na]^+$ 349.0026. Found 349.0014.

N-(4-chloro-5-methoxy-2-nitrophenyl)benzenesulfonamide (4v) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:50) to afford the product 4v. Yellow liquid, 42 mg, 62 % yield; ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.18 (s, 1H), 7.90 – 7.83 (m, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.39 (s, 1H), 3.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.66, 138.49, 135.09, 134.05, 129.69, 129.58, 127.77, 127.21, 118.26, 102.41, 57.09. HRMS (ESI+): Calculated for C₁₃H₁₁ClN₂O₅S, [M+Na]⁺ 364.9975. Found 364.9958.

N-(4, 5-dichloro-2-nitrophenyl)benzenesulfonamide (4w) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product 4w. Yellow solid, 39 mg, 56 % yield, m. p. = 102-103 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.58 (s, 1H), 8.28 (s, 1H), 7.75 (dd, J = 5.2, 3.3 Hz, 2H), 7.72 – 7.67 (m, 1H), 7.60 (dd, J = 10.5, 4.7 Hz, 2H), 7.44 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 142.68, 139.33, 136.78, 134.08, 130.68, 130.01, 128.81, 127.68, 127.22. HRMS (ESI+): Calculated for C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9491.

N-(4-chloro-2-nitrophenyl)-2, 5-dimethylbenzenesulfonamide (4ab) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 4ab. Yellow liquid, 50 mg, 74 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.40 (s, 1H), 8.05 (d, *J* = 2.5 Hz, 1H), 7.71 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.58 (s, 1H), 7.37 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.31 (s, 1H), 7.30 (d, *J* = 2.2 Hz, 1H), 2.49 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.16, 137.61, 136.42, 134.54, 134.41, 134.39, 133.25, 130.42, 129.60, 129.47, 127.80, 125.64, 20.77, 19.87. HRMS (ESI+): Calculated for C₁₄H₁₃ClN₂O₄S, [M+Na]⁺ 363.0182. Found 363.0171.

N-(4-chloro-2-nitrophenyl)naphthalene-2-sulfonamide (4ac) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product 4ac. Yellow liquid, 53 mg, 73 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.55 (s, 1H), 8.42 (d, *J* = 1.8 Hz, 1H), 8.15 (t, *J* = 7.6 Hz, 2H), 8.07 – 8.03 (m, 2H), 7.77 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.72 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.69 (t, *J* = 1.9 Hz, 1H), 7.67 – 7.65 (m, 1H), 7.28 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.64, 136.60, 134.94, 134.33, 132.04, 130.76,

130.12, 129.87, 129.70, 129.42, 128.50, 128.35, 128.25, 128.05, 125.73, 122.48. **HRMS** (ESI+): Calculated for C₁₆H₁₁ClN₂O₄S, [M+Na]⁺ 385.0026. Found 385.0005.

N-(4-chloro-2-nitrophenyl)-2, 4, 6-trimethylbenzenesulfonamide (4ad) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 4ad. Yellow solid, 47 mg, 66 % yield, m. p. = 131-132 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.22 (s, 1H), 8.06 (d, J = 2.5 Hz, 1H), 7.74 (dd, J = 8.8, 2.5 Hz, 1H), 7.23 (d, J = 8.8 Hz, 1H), 7.03 (s, 2H), 2.42 (s, 6H), 2.25 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.82, 143.11, 139.19, 134.37, 133.98, 132.39, 130.84, 129.42, 128.79, 125.65, 22.96, 20.90. HRMS (ESI+): Calculated for C₁₅H₁₅ClN₂O₄S, [M-H]⁻ 353.0363. Found 353.0349.

N-(4-chloro-2-nitrophenyl)thiophene-2-sulfonamide (4ag) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:75) to afford the product 4ag. Yellow liquid, 41 mg, 65 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.60 (s, 1H), 8.08 (d, *J* = 2.5 Hz, 1H), 7.98 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.77 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.54 (dd, *J* = 3.8, 1.4 Hz, 1H), 7.32 (d, *J* = 8.7 Hz, 1H), 7.17 (dd, *J* = 5.0, 3.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 145.15, 139.61, 134.79, 134.30, 133.53, 131.31, 129.01, 128.67, 128.43, 125.76. HRMS (ESI+): Calculated for C₁₀H₇ClN₂O₄S₂, [M-H]⁻ 316.9458. Found 316.9448.

General procedure for synthesis of 5a-5ad: A mixture of the 1a (0.2 mmol), CH₃COOK (0.3 mmol), Fe(NO₃)₃•9H₂O (0.3 mmol), TBAI (0.4 mmol) and DCE (2.0 mL) was in a sealed tube with an air atmosphere at 120 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a short silica gel to afford the product 5a-5ad.

N-(4-iodo-2-nitrophenyl)benzenesulfonamide (5a) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product 5a. Yellow liquid, 59 mg, 73 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.41 (s, 1H), 8.21 (d, *J* = 2.0 Hz, 1H), 7.95 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.74 (dd, *J* = 5.3, 3.3 Hz, 2H), 7.66 (dd, *J* = 5.0, 3.7 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.04 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 144.39, 142.96, 139.48, 133.92, 133.78, 130.19, 129.92, 127.80, 127.22, 90.62. HRMS (ESI+):

Calculated for C₁₂H₉IN₂O₄S, [M+Na]⁺ 426.9225. Found 426.9218.

N-(4-iodo-2-nitrophenyl)-4-methylbenzenesulfonamide (5b) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product **5b**. Yellow liquid, 63 mg, 75 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.31 (s, 1H), 8.21 (d, *J* = 2.0 Hz, 1H), 7.95 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.39, 144.15, 142.96, 136.60, 133.77, 130.71, 130.41, 130.34, 128.18, 127.42, 127.31, 90.29, 21.49. HRMS (ESI+): Calculated for C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9375.

N-(4-iodo-2-nitrophenyl)-4-methoxybenzenesulfonamide (5c) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:60) to afford the product 5c. Yellow liquid, 61 mg, 70 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.22 (s, 1H), 8.21 (d, *J* = 2.0 Hz, 1H), 7.96 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.72 – 7.65 (m, 2H), 7.12 – 7.04 (m, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 163.34, 143.98, 142.98, 133.76, 130.90, 130.59, 129.61, 127.25, 115.03, 90.09, 56.20. HRMS (ESI+): Calculated for C₁₃H₁₁IN₂O₅S, [M+Na]⁺ 456.9331. Found 456.9324.

4-fluoro-*N*-(**4-iodo-2-nitrophenyl**)**benzenesulfonamide (5d)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product **5d**. Yellow liquid, 56 mg, 66 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.45 (s, 1H), 8.22 (d, *J* = 2.0 Hz, 1H), 7.97 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.79 (ddd, *J* = 8.3, 5.2, 2.6 Hz, 2H), 7.47 – 7.38 (m, 2H), 7.04 (d, *J* = 8.5 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 165.09 (d, *J* = 252.3 Hz), 144.71, 142.98, 135.87 (d, *J* = 3.0 Hz), 133.77, 130.41 (d, *J* = 9.9 Hz), 129.90, 128.24, 117.14 (d, *J* = 23.0 Hz), 91.00. ¹⁹**F NMR** (377 MHz, DMSO-*d*₆) δ -105.25. **HRMS** (ESI+): Calculated for C₁₂H₈FIN₂O₄S, [M+Na]⁺ 444.9131. Found 444.9123.

4-chloro-*N*-(**4-iodo-2-nitrophenyl**)**benzenesulfonamide (5e)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **5e.** Yellow liquid, 60 mg, 68 % yield; ¹**H** NMR (400 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 8.21 (d, *J* = 2.0 Hz, 1H), 7.97 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.74 – 7.69 (m, 2H), 7.68 – 7.64 (m, 2H), 7.03 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.84, 142.99, 138.77, 138.40, 133.79, 130.08, 129.74, 129.17, 128.41, 91.17. **HRMS** (ESI+): Calculated for C₁₂H₈CIIN₂O₄S, [M+Na]⁺ 460.8836. Found 460.8829.

4-bromo-*N***-(4-iodo-2-nitrophenyl)benzenesulfonamide (5f)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **5f.** Yellow liquid, 67 mg, 70 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 8.22 (d, *J* = 2.0 Hz, 1H), 7.97 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.91 – 7.70 (m, 2H), 7.71 – 7.53 (m, 2H), 7.04 (d, *J* = 8.5 Hz, 1H). ¹³C **NMR** (101 MHz, DMSO-*d*₆) δ 144.81, 142.99, 138.79, 133.80, 133.01, 129.75, 129.22, 128.37, 127.83, 91.20. **HRMS** (ESI+): Calculated for C₁₂H₈BrIN₂O₄S, [M+Na]⁺ 504.8331. Found 504.8330.

N-(4-iodo-2-nitrophenyl)-3-methylbenzenesulfonamide (5i) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 5i. Yellow liquid, 45 mg, 54 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.38 (s, 1H), 8.21 (d, *J* = 2.1 Hz, 1H), 7.95 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.58 (d, *J* = 2.0 Hz, 1H), 7.56 – 7.41 (m, 3H), 7.03 (d, *J* = 8.6 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.24, 142.96, 139.69, 139.43, 134.54, 133.78, 130.33, 129.74, 127.52, 127.37, 124.42, 90.42, 21.28. HRMS (ESI+): Calculated for C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9375.

3-chloro-*N***-(4-iodo-2-nitrophenyl)benzenesulfonamide (5j)** The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **5j.** Yellow liquid, 58 mg, 66 % yield; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.59 (s, 1H), 8.23 (d, *J* = 2.0 Hz, 1H), 7.98 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.77 (dt, *J* = 2.9, 1.9 Hz, 2H), 7.66 (dt, *J* = 7.9, 1.4 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.04 (d, *J* = 8.5 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 144.78, 143.01, 141.44, 134.46, 133.86, 133.80, 131.98, 129.68, 128.29, 126.76, 125.95, 91.17. **HRMS** (ESI+): Calculated for C₁₂H₈ClIN₂O₄S, [M-H]⁻ 436.8860 Found 436.8839.

N-(4-iodo-2-nitrophenyl)-2-methylbenzenesulfonamide (5m) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:70) to afford the product 5m.Yellow liquid, 62 mg, 74 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.44 (s, 1H), 8.21 (d, *J* = 2.0 Hz, 1H), 7.95 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.73 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.56 (td, *J* = 7.5, 1.4 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.35 (td, *J* = 7.7, 1.3 Hz, 1H), 7.07 (d, *J* = 8.6 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.18, 142.96, 137.79, 137.56, 133.98, 133.71, 133.33, 130.26, 129.32, 127.81, 126.98, 90.39, 20.35. HRMS (ESI+): Calculated for C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9376.

2-fluoro-N-(4-iodo-2-nitrophenyl)benzenesulfonamide (5n) The residue was purified by flash

chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:70) to afford the product **5n.** Yellow liquid, 60 mg, 71 % yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.70 (s, 1H), 8.22 (d, J = 2.0 Hz, 1H), 8.00 (dd, J = 8.5, 2.1 Hz, 1H), 7.74 (dddd, J = 8.7, 7.3, 3.2, 1.5 Hz, 2H), 7.50 – 7.40 (m, 1H), 7.40 – 7.32 (m, 1H), 7.15 (d, J = 8.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 158.77 (d, J = 255.0 Hz), 144.98, 142.90, 136.76 (d, J = 8.7 Hz), 133.64, 130.21, 129.60, 129.25, 127.60 (d, J = 14.4 Hz), 125.53 (d, J = 3.6 Hz), 117.89 (d, J = 20.7 Hz), 91.47. ¹⁹F NMR (377 MHz, DMSO- d_6) δ -108.98. HRMS (ESI+): Calculated for C₁₂H₈FIN₂O₄S, [M+Na]⁺ 444.9131. Found 444.9121.

N-(4-iodo-5-methyl-2-nitrophenyl)benzenesulfonamide (5q) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 5q. Yellow liquid, 50 mg, 60 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.31 (s, 1H), 8.28 (s, 1H), 7.77 – 7.73 (m, 2H), 7.67 (dd, *J* = 10.5, 4.3 Hz, 1H), 7.57 (dd, *J* = 10.5, 4.7 Hz, 2H), 7.22 (s, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 148.63, 141.63, 139.59, 135.00, 133.90, 130.50, 129.90, 127.25, 126.43, 96.90, 28.09. HRMS (ESI+): Calculated for C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9371.

N-(5-chloro-4-iodo-2-nitrophenyl)benzenesulfonamide (5r) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 5r. Yellow liquid, 45 mg, 52 % yield; ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.55 (s, 1H), 7.98 (s, 1H), 7.88 (dd, *J* = 5.3, 3.4 Hz, 2H), 7.63 (dt, *J* = 8.6, 1.1 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.02, 138.23, 137.00, 134.44, 134.22, 129.70, 127.27, 120.33, 90.05. HRMS (ESI+): Calculated for C₁₂H₈ClIN₂O₄S, [M-H]⁻ 436.8860. Found 436.8861. *N*-(4-iodo-2-nitrophenyl)-2,5-dimethylbenzenesulfonamide (5w) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product 5w. Yellow liquid, 64.8 mg, 75 % yield; ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.45 (d, *J* = 2.1 Hz, 1H), 7.86 (s, 1H), 7.78 (dd, *J* = 8.9, 2.0 Hz, 1H), 7.46 (d, *J* = 8.9 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.18 (d, *J* = 7.7 Hz, 1H), 2.59 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.44, 136.60, 136.34, 136.19, 134.85, 134.58, 134.39, 133.97, 133.13, 130.27, 120.84, 84.43, 20.91, 19.67. HRMS (ESI+): Calculated for C₁₄H₁₃IN₂O₄S, [M+Na]⁺ 454.9538. Found 454.9532.

N-(4-iodo-2-nitrophenyl)naphthalene-2-sulfonamide (5x) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product 5x. Yellow liquid, 69 mg, 76 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.53 (s, 1H), 8.43 (d, *J* = 1.9 Hz, 1H), 8.20 (d, *J* = 2.0 Hz, 1H), 8.18 – 8.10 (m, 2H), 8.04 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.92 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.77 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.72 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 7.66 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.48, 142.96, 136.59, 134.93, 133.79, 132.02, 130.20, 130.12, 129.88, 129.71, 128.53, 128.34, 128.26, 127.83, 122.49, 90.65. HRMS (ESI+): Calculated for C₁₆H₁₁IN₂O₄S, [M+Na]⁺ 476.9382. Found 476.9372.

N-(4-iodo-2-nitrophenyl)thiophene-2-sulfonamide (5aa) The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:70) to afford the product 5aa. Yellow liquid, 52 mg, 64 % yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.56 (s, 1H), 8.24 (d, *J* = 2.0 Hz, 1H), 8.01 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.98 (dd, *J* = 4.9, 1.4 Hz, 1H), 7.54 (dd, *J* = 3.8, 1.4 Hz, 1H), 7.17 (dd, *J* = 5.0, 3.8 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 145.03, 142.94, 139.65, 134.77, 133.78, 133.52, 129.80, 128.49, 128.42, 91.36. HRMS (ESI+): Calculated for C₁₀H₇IN₂O₄S₂, [M+Na]⁺ 432.8790. Found 432.8780.

General procedure for synthesis of 4-methoxy-2-nitroaniline

Synthesis of *N*-(4-methoxy-2-nitrophenyl)-4-methylbenzenesulfonamide (7a): A mixture of the **6a** (2 mmol), C_3H_3N (3 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (3 mmol), TBAB (4 mmol) and DCE (20 mL) was in a sealed tube with an air atmosphere at 110 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a silica gel (eluent: ethyl acetate / petroleum ether = 1:50) to afford the product 7a. Orange solid, 503 mg, 78 % yield, m. p. = 104-105 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.98 (s, 1H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 3.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.19 (dd, *J* = 8.9, 3.0 Hz, 1H), 7.05 (d, *J* = 8.9 Hz, 1H), 3.79 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.93, 146.45, 143.92, 136.94, 130.16, 129.62, 127.21, 122.49, 120.17, 110.29, 56.52, 21.45. HRMS (ESI+): Calculated for $C_{14}H_{14}N_2O_5S$, [M+Na]⁺ 345.0521. Found 345.0524.

Synthesis of 4-methoxy-2-nitroaniline (8a): A sealed tube equipped with a rubber septum was charged with 7a (1 mmol), TfOH (2 mmol), and DCE (10 ml) at 0 °C under argon. The mixture was stirred at 90 °C for 8 h and then quenched with 6 drops of neat Et₃N and subsequently diluted with 1.0 M NaOH aq solution. The biphasing resulting mixture was extracted with EA (3 times); the combined organic extracts were dried over MgSO₄, filtered, and then concentrated in vacuum. The residue was purified by silica gel flash column chromatography (eluent: ethyl acetate / petroleum ether = 1:10) to afford the product 8a. Orange solid, 155 mg, 92 % yield, m. p. = 119-120 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.36 (d, *J* = 3.0 Hz, 1H), 7.28 (s, 2H), 7.16 (dd, *J* = 9.2, 3.0 Hz, 1H), 7.00 (d, *J* = 9.2 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 149.63, 142.45, 129.48, 127.67, 121.27, 105.25, 55.94. HRMS (ESI+): Calculated for C₇H₈N₂O₃, [M+H]⁺ 169.0613. Found 169.0602.

General procedure for synthesis of 4,5-dichloro-2-nitroaniline

Synthesis of *N*-(4,5-dichloro-2-nitrophenyl)benzenesulfonamide (4w): A mixture of the *N*-(3-chlorophenyl)benzenesulfonamide (2 mmol), CH₃COOK (3 mmol), Cu(NO₃)₂ • 3H₂O (3 mmol), TBAC (4 mmol) and DCE (20 mL) was in a sealed tube with an air atmosphere at 100 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product **4w**. Yellow solid, 368 mg, 53 % yield, m. p. = 102-103 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.58 (s, 1H), 8.28 (s, 1H), 7.75 (dd, *J* = 5.2, 3.3 Hz, 2H), 7.72 – 7.67 (m, 1H), 7.60 (dd, *J* = 10.5, 4.7 Hz, 2H), 7.44 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 142.68, 139.33, 136.78, 134.08, 130.68, 130.01, 128.81, 127.68, 127.22. HRMS (ESI+): Calculated for C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9491.

Synthesis of 4,5-dichloro-2-nitroaniline (8b): A sealed tube equipped with a rubber septum was charged with **4w** (1 mmol), DCE (10 ml), and TfOH (3 mmol) at 0 °C under argon. The mixture was stirred at 100 °C for 8 h and then quenched with 6 drops of neat Et₃N and subsequently diluted with 1.0 M NaOH aq solution. The biphasing resulting mixture was extracted with EA (3 times); the combined organic extracts were dried over MgSO₄, filtered, and then concentrated in

vacuum. The product was purified by silica gel flash column chromatography (eluent: ethyl acetate / petroleum ether = 1:10) to afford the product **8b**. Orange solid, 182 mg, 88 %, 160-161 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.09 (s, 1H), 7.61 (s, 2H), 7.25 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 145.67, 138.72, 129.67, 126.92, 120.26, 116.82. HRMS (ESI+): Calculated for C₆H₄Cl₂N₂O₂, [M-H]⁻ 204.9572. Found 204.9571.

General procedure for synthesis of 4-bromo-2-nitroaniline

Synthesis of *N*-(4-bromo-2-nitrophenyl)benzenesulfonamide (3a): A mixture of the 1a (20 mmol), C_5H_5N (30 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (30 mmol), TBAB (40 mmol) and DCE (100 mL) was in reaction kettle with an air atmosphere at 110 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product **3a**. Yellow solid, 5.43 g, 76 % yield, m. p. = 98-99 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.45 (s, 1H), 8.12 (d, *J* = 2.4 Hz, 1H), 7.81 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.80 – 7.71 (m, 2H), 7.70 – 7.63 (m, 1H), 7.62 – 7.52 (m, 2H), 7.22 (d, *J* = 8.7 Hz, 1H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.61, 139.40, 137.22, 133.95, 129.94, 129.76, 128.45, 128.06, 127.21, 118.43. HRMS (ESI+): Calculated for C₁₂H₉BrN₂O₄S, [M-H]⁻ 354.9388. Found 354.9334.

Synthesis of 4-bromo-2-nitroaniline (8c): The mixture charged with 3a (15 mmol), TfOH (45 mmol), and DCE (60 ml) was stirred at 100 °C for 10 h under argon and subsequently diluted with 1.0 M NaOH aq solution. The biphasing resulting mixture was extracted with EA (3 times); the combined organic extracts were dried over MgSO₄, filtered, and then concentrated in vacuum. The product was purified by silica gel flash column chromatography (eluent: ethyl acetate / petroleum ether = 1:10) to afford the product 8c. Orange solid, 2.86 g, 88 % yield, m. p. = 109-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 2.3 Hz, 1H), 7.43 (dd, *J* = 8.9, 2.3 Hz, 1H), 6.74 (d, *J* = 8.9 Hz, 1H), 6.03 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.59, 138.50, 132.48, 128.33, 120.35, 107.85. HRMS (ESI+): Calculated for C₆H₅BrN₂O₂, [M-H]⁻ 214.9456. Found 214.9470.

General procedure for synthesis of N-(2-nitrophenyl)benzenesulfonamide (11): A mixture of

the **1a** (0.2 mmol), C_3H_5N (0.3 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (0.3 mmol) and DCE (2.0 mL) was in a sealed tube with an air atmosphere at 110 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:80) to afford the product **11**. Yellow solid, 24 mg, 43 % yield, m. p. = 100-101 °C; **¹H NMR** (400 MHz, DMSO-*d*₆) δ 10.35 (s, 1H), 7.92 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.78 – 7.73 (m, 2H), 7.68 – 7.62 (m, 1H), 7.58 (ddd, *J* = 13.7, 7.4, 1.3 Hz, 3H), 7.40 – 7.34 (m, 1H), 7.27 (dd, *J* = 8.2, 1.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 143.82, 139.65, 134.63, 133.81, 130.57, 129.84, 127.22, 126.90, 126.16, 125.95. HRMS (ESI+): Calculated for C₁₂H₁₀N₂O₄S, [M-H]⁻ 277.0283. Found 277.0288.

General procedure for synthesis of 4-methyl-*N*-(4-methyl-2-nitrophenyl)benzenesulfonamide (13): A mixture of the 12 (0.2 mmol), C₅H₅N (0.3 mmol), Cu(NO₃)₂•3H₂O (0.3 mmol), TBAB (0.4 mmol) and DCE (2.0 mL) was in a sealed tube with an air atmosphere at 110 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:60) to afford the product 13. Yellow solid, 49 mg, 80 % yield, m. p. = 145-146 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.11 (s, 1H), 7.72 (d, *J* = 1.3 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.42 – 7.37 (m, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 1H), 2.33 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.12, 143.83, 137.14, 136.85, 135.09, 130.18, 128.07, 127.27, 126.36, 125.79, 21.41, 20.38. HRMS (ESI+): Calculated for C₁₄H₁₄N₂O₄S, [M+Na]⁺ 329.0572. Found 329.0576.

General procedure for synthesis of *N*-(2-nitrophenyl)benzamide (18): A mixture of the 17 (0.2 mmol), C₅H₅N (0.3 mmol), Cu(NO₃)₂•3H₂O (0.3 mmol), TBAB (0.4 mmol) and DCE (2.0 mL) was in a sealed tube with an air atmosphere at 110 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:90) to afford the product 18. Yellow solid, 22 mg, 45 % yield, 95-96 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.77 (s, 1H), 8.03 (dd, *J* =

8.2, 1.4 Hz, 1H), 7.99 – 7.95 (m, 2H), 7.79 (dtd, J = 9.6, 8.2, 1.5 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.61 – 7.55 (m, 2H), 7.43 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 165.82, 143.31, 134.52, 134.01, 132.79, 132.05, 129.16, 128.18, 126.39, 126.05, 125.47. **HRMS** (ESI+): Calculated for C₁₃H₁₀N₂O₃, [M+Na]⁺ 265.0589. Found 265.0581.

General procedure for synthesis of (2-nitroethene-1,1-diyl)dibenzene (21): A mixture of the 1b (0.2 mmol), ethene-1,1-diyldibenzene (0.2 mmol), C_3H_5N (0.3 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (0.3 mmol), TBAB (0.4 mmol) and DCE (2.0 mL) was in a sealed tube with an air atmosphere at 110 °C stirred for 12 h. After that time, the media was acidified until pH = 6 and extracted with EA (3 times); the combined organic phase was dried over MgSO₄ and evaporated. The residue was purified by flash chromatography on a short silica gel (eluent: ethyl acetate / petroleum ether = 1:100) to afford the product **21**. Yellow solid, 20 mg, 46 % yield, m. p. = 81-82 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.95 (s, 1H), 7.52 – 7.40 (m, 6H), 7.36 (ddd, *J* = 7.2, 3.5, 1.9 Hz, 2H), 7.24 – 7.18 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 148.91, 136.78, 136.10, 131.28, 129.43, 129.35, 129.21, 129.04, 128.83. HRMS (ESI+): Calculated for C₁₄H₁₁NO₂, [M+H]⁺ 226.0868. Found 226.0864.

3. Crystal data of 3a

X-ray structure of **3a** CCDC 2123138

Empirical formula C24 H18 Br2 N4 O8 S2 714.36 Formula weight Temperature 296(2) K Wavelength 0.71073 Å Crystal system monoclinic P 21/n Space group Unit cell dimensions a = 10.609(6) Å $\alpha = 90^{\circ}$. b = 8.728(5 Å $\beta = 91.652(12)^{\circ}$. $\gamma = 90^{\circ}$. c = 29.627(17) Å2742(3) Å³ Volume Ζ 4 1.730 g/cm³ Density (calculated) 3.164 mm⁻¹ Absorption coefficient F(000) 1424 0.260 x 0.250 x 0.210 mm³ Crystal size 2.43 to 21.42° Theta range for data collection Index ranges -11<=h<=12, -10<=k<=10, -35<=l<=30 Reflections collected / unique 13522 / 4825 [R(int) = 0.0393] Completeness to theta = 24.99999.6% Absorption correction None 0.7456 and 0.5220 Max. and min. transmission Full-matrix least-squares on F² Refinement method Data / restraints / parameters 4825 / 1 / 361 Goodness-of-fit on F² 1.013 Final R indices [I>2sigma(I)] R1 = 0.0510, wR2 = 0.1284R indices (all data) R1 = 0.0991, wR2 = 0.1410

4. Copies of NMR and HPLC-MS Spectra

3a ¹H NMR

3a C₁₂H₉BrN₂O₄S, [M-H]⁻354.9388. Found 354.9334.

3b¹H NMR

3b C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9509.

3c¹H NMR

3c¹³C NMR

3c C₁₃H₁₁BrN₂O₅S, [M+Na]⁺ 408.9470. Found 408.9464

3d ¹H NMR

¹**H NMR** (400MHz, Chloroform-*d*)

3d ¹³C NMR

3d ¹⁹F NMR

3d C₁₂H₈BrFN₂O₄S, [M-H]⁻ 372.9294. Found 372.9295.

3e¹H NMR

3e¹³C NMR

3e C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8967.

3f¹H NMR

3f C₁₂H₈Br₂N₂O₄S, [M+Na]⁺ 458.8449. Found 458.8443.

3i¹H NMR

3i C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9515.

3j¹H NMR

3j¹³C NMR

3j¹⁹F NMR

3j C₁₂H₈BrFN₂O₄S, [M+Na]⁺ 396.9270. Found 396.9259.

3k¹H NMR

3k C₁₂H₈BrClN₂O₄S, [M-H]⁻ 388.8998. Found 388.8996.

3l¹H NMR

3l ¹³C NMR

3l C₁₂H₈Br₂N₂O₄S, [M+Na]⁺ 458.8449. Found 458.8418.

30 ¹H NMR

30 C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9515.

3p ¹H NMR

3p¹³C NMR

3p¹⁹F NMR

3p C₁₂H₈BrFN₂O₄S, [M+Na]⁺ 396.9270. Found 396.9270.

3q ¹H NMR

3q¹³C NMR

3q C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8992.

3r¹H NMR

 $\begin{array}{c} \texttt{F} \texttt{F} \texttt{L} \\ \texttt{F} \texttt{L} \\ \texttt{F} \texttt{F} \texttt{L} \\ \texttt{F} \texttt{L} \\ \texttt{F} \texttt{F} \texttt{L} \\ \texttt{C} \texttt{L} \\ \texttt{F} \texttt{L} \\ \texttt{C} \texttt{C} \texttt{L} \\ \texttt{C} \texttt{C} \texttt{L} \\ \texttt{C} \texttt{C} \texttt{L} \\ \texttt{C} \texttt{C} \texttt{C} \\ \texttt{C} \texttt{C} \\ \texttt{C} \texttt{C} \\ \texttt{C} \texttt$

3r¹³C NMR

3r C₁₂H₈Br₂N₂O₄S, [M+Na]⁺ 458.8449. Found 458.8471.

3u¹³C NMR

3u C₁₃H₁₁BrN₂O₄S, [M+Na]⁺ 392.9521. Found 392.9528.

3v¹H NMR

3v ¹³C NMR

3v C₁₃H₁₁BrN₂O₅S, [M+Na]⁺ 408.9470. Found 408.9480

3w¹H NMR

3w¹³C NMR

3w C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8963.

3ab ¹H NMR

3ab C₁₄H₁₃BrN₂O₄S, [M+Na]⁺ 406.9677. Found 406.9686.

3ac ¹H NMR

3ac ¹³C NMR

3ac C₁₆H₁₁BrN₂O₄S, [M+Na]⁺ 428.9521. Found 428.9522.

3ad ¹H NMR

3ad ¹³C NMR

3ad C₁₅H₁₅BrN₂O₄S, [M-H]⁻ 396.9858. Found 396.9851.

3ag ¹H NMR

3ag ¹³C NMR

3ag C₁₀H₇BrN₂O₄S₂, [M+Na]⁺ 384.8928. Found 384.8926.

4a ¹H NMR

4a C₁₂H₉ClN₂O₄S, [M-H]⁻ 310.9893. Found 310.9894.

4b¹H NMR

4b¹³C NMR

4b C₁₃H₁₁ClN₂O₄S, [M-H]⁻ 325.0050 Found 325.0052.

Spectrum from y023.wiff (sample 2) - 3, -TOF MS (150 - 450) from 0.028 to 0.479 min

4c¹H NMR

4c¹³C NMR

4c C₁₃H₁₁ClN₂O₅S, [M+Na]⁺ 364.9975. Found 364.9970.

4d ¹H NMR

4d ¹³C NMR

4d ¹⁹F NMR

4d C₁₂H₈ClFN₂O₄S, [M-H]⁻ 328.9799. Found 328.9802.

4e¹H NMR

¹**H NMR** (400MHz, DMSO-*d*₆)

4e¹³C NMR

4e C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9503.

4f¹H NMR

4f¹³C NMR

4f C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8969

4i¹H NMR

4i¹³C NMR

4i C₁₃H₁₁ClN₂O₄S, [M+Na]⁺ 349.0026. Found 349.0019.

4j ¹H NMR

4j¹³C NMR

4j C₁₂H₈ClFN₂O₄S, [M-H]⁻ 328.9799. Found 328.9798.

4k¹H NMR

4k¹³C NMR

4k C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9498.

4l¹H NMR

4l ¹³C NMR

4l C₁₂H₈BrClN₂O₄S, [M-H]⁻ 388.8998. Found 388.8988.

40¹H NMR

40 ¹³C NMR

40 C₁₃H₁₁ClN₂O₄S, [M-H]⁻ 325.0050. Found 325.0046.

4p¹³C NMR

4p¹⁹F NMR

4p C₁₂H₈ClFN₂O₄S, [M+Na]⁺ 352.9775. Found 352.9768.

4q ¹H NMR

4q¹³C NMR

4q C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9494.

4r¹H NMR

4r¹³C NMR

4r C₁₂H₈BrClN₂O₄S, [M+Na]⁺ 412.8974. Found 412.8969.

4u ¹H NMR

4u¹³C NMR

4u C₁₃H₁₁ClN₂O₄S, [M+Na]⁺ 349.0026. Found 349.0014.

4v¹H NMR

4v¹³C NMR

4v C₁₃H₁₁ClN₂O₅S, [M+Na]⁺ 364.9975. Found 364.9958.

4w¹H NMR

4w¹³C NMR

4w C₁₂H₈Cl₂N₂O₄S, [M-H]⁻ 344.9504. Found 344.9491.

4ab ¹H NMR

4ab ¹³C NMR

4ab C₁₄H₁₃ClN₂O₄S, [M+Na]⁺ 363.0182. Found 363.0171.

4ac ¹³C NMR

4ac C₁₆H₁₁ClN₂O₄S, [M+Na]⁺ 385.0026. Found 385.0005.

4ad ¹H NMR

4ad C₁₅H₁₅ClN₂O₄S, [M-H]⁻ 353.0363. Found 353.0349.

4ag ¹³C NMR

4ag C₁₀H₇ClN₂O₄S₂, [M-H]⁻ 316.9458. Found 316.9448.

5a ¹³C NMR

5a C₁₂H₉IN₂O₄S, [M+Na]⁺ 426.9225. Found 426.9218.

5b¹H NMR

5b¹H NMR

5b C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9375.

5c ¹H NMR

5c¹³C NMR

5c C₁₃H₁₁IN₂O₅S, [M+Na]⁺ 456.9331. Found 456.9324.

5d ¹H NMR

5d ¹³C NMR

5d ¹⁹F NMR

5d C₁₂H₈FIN₂O₄S, [M+Na]⁺ 444.9131. Found 444.9123.

5e¹H NMR

¹**H NMR** (400MHz, DMSO-*d*₆)

5e $C_{12}H_8CIIN_2O_4S$, [M+Na]⁺ 460.8836. Found 460.8829.

5f¹H NMR

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.c fl (ppm)

5f¹³C NMR

5f C₁₂H₈BrIN₂O₄S, [M+Na]⁺ 504.8331. Found 504.8330.

5i¹H NMR

5i¹³C NMR

5i C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9375.

5j ¹H NMR

5j¹³C NMR

5j Calculated for C₁₂H₈CIIN₂O₄S, [M-H]⁻ 436.8860 Found 436.8839.

5m¹H NMR

5m¹³C NMR

5m C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9376.

5n ¹H NMR

3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. fl (ppm)

5n ¹³C NMR

5n C₁₂H₈FIN₂O₄S, [M+Na]⁺ 444.9131. Found 444.9121.

5q ¹H NMR

5q¹³C NMR

5q C₁₃H₁₁IN₂O₄S, [M+Na]⁺ 440.9382. Found 440.9371.

5r ¹H NMR

5r¹³C NMR

5r Calculated for $C_{12}H_8CIIN_2O_4S$, [M-H]⁻ 436.8860. Found 436.8861.

5w¹H NMR

5w C₁₄H₁₃IN₂O₄S, [M+Na]⁺ 454.9538. Found 454.9532.

5x¹H NMR

5x C₁₆H₁₁IN₂O₄S, [M+Na]⁺ 476.9382. Found 476.9372.

5aa ¹H NMR

5aa ¹³C NMR

5aa $C_{10}H_7IN_2O_4S_2$, $[M+Na]^+$ 432.8790. Found 432.8780.

7a ¹H NMR

7a¹³C NMR

7a C₁₄H₁₄N₂O₅S, [M+Na]⁺ 345.0521. Found 345.0524.

8a ¹H NMR

8a ¹³C NMR

8a C₇H₈N₂O₃ [M+H]⁺ 169.0613. Found 169.0602.

8b¹H NMR

LI.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2 fl (ppm)

8b Calculated for C₆H₄Cl₂N₂O₂, [M-H]⁻ 204.9572. Found 204.9571.

8c ¹H NMR

8c¹³C NMR

8c C₆H₅BrN₂O₂, [M-H]⁻ 214.9456. Found 214.9470.

11¹H NMR

11 C₁₂H₁₀N₂O₄S, [M-H]⁻ 277.0283. Found 277.0288.

13 C₁₄H₁₄N₂O₄S, [M+Na]⁺ 329.0572. Found 329.0576.

18¹H NMR

 $C_{13}H_{10}N_2O_3$, [M+Na]⁺ 265.0589. Found 265.0581.

21¹H NMR

21 C₁₄H₁₁NO₂, [M+H]⁺ 226.0868. Found 226.0864.

Reaction solution for two hours:

11 C₁₂H₁₀N₂O₄S, [M-H]⁻ 277.0283. Found 277.0285.

3a C₁₂H₉BrN₂O₄S, [M-H]⁻ 354.9388. Found 354.9400.

