Catalytic, asymmetric azidations at carbonyls: achiral and meso-anhydride desymmetrisation affords enantioenriched γ-lactams

Simon N. Smith, ${ }^{\text {a }}$ Cristina Trujillo ${ }^{\text {a }}$ and Stephen J. Connon*a

Table of Contents

1
\qquad

1. General .4
\qquad2.1 Safety considerations .4
2.2 General procedures4
2.2.1 Gen A1: Preparation of enantioenriched pyrrolidinamides catalysed by Cinchona alkaloid sulfamides4
2.2.2 Gen A2: Organocatalytic, enantioselective synthesis of chiral γ-lactams from prochiral anhydrides 5
2.2.3 Gen Rac: Preparation of racemic standards for UPC analysis 5
2.2.4 Gen B: Preparation of 9-epi-9-Amino Cinchona alkaloids from native configuration alkaloids 6
2.2.5 Gen C: Sulfamoyl chloride synthesis 6
2.2.6 Gen D: Cinchona alkaloid sulfamide preparation from sulfamoyl chlorides 6
2.3 Preparation of cyclic anhydride substrates. 7
2.3.1 Preparation of 3-(2-chlorophenyl)glutaric anhydride7
2.3.1.1 3-(2-Chlorophenyl)glutaric acid (S15) 7
2.3.1.2 3-(2-Chlorophenyl)glutaric anhydride (S7) 8
2.4 Catalyst preparation and characterisation data 8
2.4.1. Sulfamoyl chloride electrophiles 8
2.4.1.1 Azepane-1-sulfonyl chloride (S16) 8
2.4.2. Core modified 9 -epi-alkaloid hydrochlorides 8
2.4.2.1 9-Amino-(9-deoxy)epi-quininium trihydrochloride (S17) 8
2.4.2.2 2'-Chloro-9-amino-(9-deoxy)-epi-quininium trihydrochloride (S18) 9
2.4.3. Cinchona alkaloid-derived sulfamide organocatalysts 9
2.4.3.1 Quinine-derived piperidine sulfamide (13) 9
2.4.3.2 Piperidine sulfamide acetic acid complex (13•HOAc) 10
2.4.3.3 C2'-Chloroquinine azepane sulfamide (31) 10
2.5 Synthesis and characterisation of desymmetrisation products (pyrrolidinamides and γ-lactams)11
2.5.1 Pyrrolidinamide products 11
2.5.1.1 (R)-5-Oxo-3-phenyl-5-(pyrrolidin-1-yl)pentanoic acid (S1) 11
2.5.1.2 (R)-Methyl 5-oxo-3-phenyl-5-(pyrrolidin-1-yl)pentanoate (3)11
2.5.2 Enantioenriched $\boldsymbol{\gamma}$-lactams 12
2.5.2.1 $\quad(R)$-Phenibut lactam (26) 12
2.5.2.2 $\quad(R)$-Tolibut lactam (35) 12
2.5.2.3 $\quad(R)$-Baclofen lactam (36) 13
2.5.2.4 (R)-Rolipram (37) 13
2.5.2.5 (R)-4-(Thiophen-3-yl)pyrrolidin-2-one (38) 13
2.5.2.6 $\quad(R)$-Fluoribut lactam (39) 14
2.5.2.7 $\quad(R)$-4-(2-Chlorophenyl)pyrrolidine-2-one (40) 14
2.5.2.8 (S)-4-((tert-ButyIdimethylsilyl)oxy)pyrrolidin-2-one (41) 14
2.5.2.9 (S)-4-Methylpyrrolidin-2-one (42) 14
2.5.2.10 (R)-4-Isopropylpyrrolidin-2-one (43) 15
2.5.2.11 (S)-Pregabalin lactam (44) 15
2.5.2.12 (1S, 4R)-2-Azabicyclo[2.2.1]heptan-3-one (45) 15
2.6 Compounds used in mechanistic studies 16
2.6.1 Racemic sulfamide hydrogen bond donor 16
2.6.1.1 N-(1-Phenylethyl)piperidine-1-sulfonamide (S19) 16
2.7 Computational methods 16
2. Results and Discussion 16
3.1. Development of suitable conditions for initial UPC analysis of enantioenriched pyrrolidinamides 16
3.1.1. Obviating reversibility of the reaction: Amidation with pyrrolidine 16
3.1.2. Reaction optimisation: Solvent, temperature and concentration 17
3.2. Mechanistic investigation involving compartmentalisation of catalyst functionality 18
3.2.1. Racemic model of bifunctional catalysis by Cinchona alkaloid sulfamides 18
3.3. NMR spectroscopic- and DFT studies of Cinchona alkaloid sulfamides: general summary and catalytic cycle 20
3. References 24
4. CSP-SFC analysis 27
5.1 Gradient tables and methods 27
5.2 Chromatograms 29
5. NMR spectroscopic data 41
6. Coordinates 68

1. General

NMR spectral data were obtained from a Bruker DPX (400 MHz) or Bruker Avance II (600 MHz) using $\mathrm{CDCl}_{3}, \mathrm{DMSO}-\mathrm{d}_{6}$ or $\mathrm{D}_{2} \mathrm{O}$ with chemical shift data referenced relative to residual protic resonances of the deuterated solvent, ($\delta_{H}=7.26,2.50$, and 4.79 ppm respectively). ${ }^{13} \mathrm{C}$ (100.9 or 150.9 MHz) spectra were recorded on the same instruments with total proton decoupling. Additional 2D spectral acquisitions (HSQC-ME, HMBC, TOCSY, NOESY/EXSY) were obtained in order to assist in the assignment of resonances where required. Conventional abbreviations for describing peak morphologies in NMR spectroscopic analysis are observed (i.e. s, singlet; br s, broad singlet; d, doublet; dd, doublet of doublets, etc.). All coupling constants (J) are reported in Hertz (Hz). Infrared spectra were obtained as neat solids or liquids unless otherwise stated on a Perkin-Elmer Spectrum100 FT-IR instrument fitted with an attenuated-total reflectance (ATR) accessory. Abbreviations used for descriptions of transmission band intensities are as follows: w, weak; m, medium; s, strong; vs, very strong; br., broad.

Thin-layer chromatography (TLC) analyses were performed using Merck- F_{254} silica gel plates and were visualised under ultraviolet (UV) irradiation, potassium permanganate, ninhydrin, ammonium molybdate or bromocresol green staining methods. Column and flash chromatography was performed using Sigma-Aldrich $60 \AA, 230-400$ mesh particle silica gel. Melting point data were recorded on a Griffin Melting Point Apparatus; readings were obtained in triplicate and are reported uncorrected. High-resolution mass spectrometry experiments were carried out in the Mass Spectrometry Unit, School of Chemistry, TCD.

Anhydrous CHCl_{3} (amylene-stabilised) and HCl (as 2 M solution in $\mathrm{Et}_{2} \mathrm{O}$) were obtained from Sigma-Aldrich Ireland and transferred to reaction vessels using Schlenk techniques. Hünig's base on polystyrene (DIPEA@PS, Product ID: 38343) was purchased from Sigma-Aldrich Ireland and all other chemicals were of regent-grade, obtained from commercial suppliers and used without further purification unless otherwise noted.

2. Experimental Procedures

2.1 Safety considerations

While we have not experienced any issues surrounding the use of TMSN_{3} in these studies, it is imperative that the appropriate safety precautions are taken, especially when working on reaction scales $>1 \mathrm{mmol}$. In the following preparations, TMSN_{3} has the potential to liberate toxic and explosive HN_{3} on contact with $\mathrm{H}_{2} \mathrm{O}$ or in acidic media. Any volatiles removed should be carried out in a well-ventilated fume hood and reactions performed with a blast shield in large-scale preparations. It is advised that all azide-containing waste should be quenched cautiously, and in an appropriate manner. ${ }^{[1]}$

2.2 General procedures

2.2.1 Gen A1: Preparation of enantioenriched pyrrolidinamides catalysed by Cinchona alkaloid sulfamides

To a carousel tube under Ar atmosphere containing a magnetic stirrer bar, bifunctional catalyst ($0.012 \mathrm{mmol}, 0.05$ eq.) and anhydride $1(46.8 \mathrm{mg}, 0.246 \mathrm{mmol})$, anhydrous $\mathrm{CHCl}_{3}(2.00 \mathrm{~mL}, 0.12 \mathrm{M})$ was added via syringe and the resulting solution cooled to $-50^{\circ} \mathrm{C}$ and stirred for 20 minutes. $\mathrm{TMSN}_{3}(32.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ was added via μ syringe and the resulting solution stirred at $-50^{\circ} \mathrm{C}$ for 18 h to form the silylated acyl azide intermediate 2. Pyrrolidine ($100 \mu \mathrm{~L}, 1.23 \mathrm{mmol}, 5.0$ eq.) was added dropwise via syringe down the side of the carousel tube and the resulting solution stirred for 45 mins at $-50^{\circ} \mathrm{C}$. The solution was warmed to room temperature and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{NaOH}_{(\mathrm{aq.})}(15 \mathrm{~mL}, 1 \mathrm{M})$. The organic layer (which contained bifunctional catalyst, and could be recovered, unchanged) was removed and the aqueous layer carefully acidified to pH 1 with $\mathrm{HCl}_{\text {(aq.) }}(5 \mathrm{~mL}, 1.5 \mathrm{M})$. Caution: HN_{3} is generated in this step. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organics washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. The desiccant was filtered and solvent removed in vacuo to give the analytically-pure amido acid $\mathbf{S} \mathbf{1}$ as a white powder.

Amido acid $\mathbf{S 1}$ ($55 \mathrm{mg}, 0.211 \mathrm{mmol}$) was placed in a 5 mL RBF charged with a magnetic stirrer bar and the flask placed under Ar atmosphere. Anhydrous THF (1.00 mL) was added and the resulting solution cooled to $0^{\circ} \mathrm{C}$. $\mathrm{MeOH}\left(100 \mu \mathrm{~L}\right.$), followed by TMSCHN_{2} ($150 \mu \mathrm{~L}, 0.300 \mathrm{mmol} ; 2 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}$) were added sequentially with stirring, and the resulting yellow solution warmed to room temperature over 30 mins . $\mathrm{AcOH} / \mathrm{MeOH}(1: 1)$ was added until gas evolution had ceased and the solution was concentrated in vacuo give the product as a colourless oil ($57.8 \mathrm{mg}, 99 \%$). (EtOAc): $\mathrm{R}_{f}=0.40$. CSP-SFC: ACQUITY UPC ${ }^{2}$ Trefoil CEL2 ($2.5 \mu \mathrm{~m}, 3.0 \mathrm{~mm} \mathrm{x}$ 150 mm); Mobile Phase: $\mathrm{A}=\mathrm{CO}_{2}, \mathrm{~B}=\mathrm{EtOH} / \mathrm{MeCN}(1: 1 \mathrm{v} / \mathrm{v})$; temperature: $30^{\circ} \mathrm{C}$; inlet pressure: 1500 psi; flow rate $=1.2 \mathrm{~mL} / \mathrm{min}$; UV detection at 254 nm ; RT: 3.69 min (major enantiomer) and 3.88 min (minor enantiomer). $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.29-7.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ ', H-5'), 7.26-7.28 (2H, m, H-2', H-6'), 7.21-7.23 (1H, m, H-4'), 3.76 (1 H , app quin., H-3), 3.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 3.40-3.42 (2H, m, H-6a, H9a), 3.30-3.35 (1H, m, H-6b), 3.20-3.24 (1H, m, H-9b), 2.91 ($1 \mathrm{H}, \mathrm{dd}, J 15.5,6.5, \mathrm{H}-4 \mathrm{a}$), 2.71 ($1 \mathrm{H}, \mathrm{dd}, J 15.5,8.4, \mathrm{H}-4 \mathrm{~b}), 2.67$ (1 H , dd, $J 15.0,7.7, \mathrm{H}-2 \mathrm{a}), 2.60,\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.0,6.5, \mathrm{H}-2 \mathrm{~b}\right.$) and $1.76-1.90(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8) \mathrm{ppm} . \delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.5(\mathrm{C}-5)$, 169.5 (C-1), 143.5 (C-1'), 128.6 (C-3', C-5'), 127.3 (C-2', C-6'), 126.8 (C-4'), 51.5 (C-10), 46.6, 45.6 (C-6, C-9) 41.0 (C-4), 40.0 (C-2), 38.3 (C-3), 26.0 and 24.3 (C-7, C-8) ppm. $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1}: 2970$ (s), 2876 (s), 1733 (C=O, ester), 1619 (C=O, amide), 1436 (s), 1372 (m), 1341 (m), 1254 (m), 1227 (m), 1191 (m), 1153 (m), 1084 (m), 1049 (s), 858 (w), $880(\mathrm{w}), 763(\mathrm{~s})$ and $702(\mathrm{~s}) \mathrm{cm}^{-1} . \mathrm{HRMS}^{(E S I}$) m/z: Found: $276.1587\left([\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}\right.$; requires 276.1594).

2.2.2 Gen A2: Organocatalytic, enantioselective synthesis of chiral γ-lactams from prochiral anhydrides

To a 5 mL RBF containing a magnetic stirrer bar, sulfamide 31 ($6.4 \mathrm{mg}, 0.012 \mathrm{mmol}$) and achiral or meso-anhydride 32 (0.246 mmol) under Ar atmosphere, anhydrous $\mathrm{CHCl}_{3}(2.00 \mathrm{~mL}, 0.12 \mathrm{M})$ was added via syringe before the solution was cooled to $-50^{\circ} \mathrm{C}$ for 30 mins . $\mathrm{TMSN}_{3}(32.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ was then added in one portion and the resulting solution stirred at $-50^{\circ} \mathrm{C}$ for $16 \mathrm{~h} . \mathrm{HCl}$ in $\mathrm{Et}_{2} \mathrm{O}(200 \mu \mathrm{~L}$, 0.400 mmol) was added in one portion and the resulting solution stirred for 15 mins at $-50^{\circ} \mathrm{C}$. The solution was filtered, using anhydrous $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ to effect the transfer and volatiles removed expediently in vacuo (hi-vac) to give the analytically-pure acyl azide 33. The solid was placed under Ar atmosphere and anhydrous $\mathrm{CHCl}_{3}(25.0 \mathrm{~mL}, 0.01 \mathrm{M})$ added via syringe. The resulting solution was heated gently (vigorous gas evolution observed at ca. $40^{\circ} \mathrm{C}$) to $60^{\circ} \mathrm{C}$ for 3 h under Ar atmosphere. The solution of isocyanate was then cooled to $25^{\circ} \mathrm{C}$ before DMAP ($1.5 \mathrm{mg}, 0.012 \mathrm{mmol}$) was added in one portion and the resulting solution stirred vigorously at $25^{\circ} \mathrm{C}$ for 2 h . The solution was concentrated in vacuo and the residue purified by flash column chromatography to give the γ-lactam product.

2.2.3 Gen Rac: Preparation of racemic standards for UPC analysis

Prepared according to the methodology set out previously by the Connon group, ${ }^{[2]}$ as below. Physical and spectral properties of the racemic lactams were identical to that of the enantioenriched forms.

To a 5 mL RBF containing a magnetic stirrer bar, DIPEA@PS ($4 \mathrm{mg}, 0.012 \mathrm{mmol}$) and achiral or meso-anhydride 32 (0.246 mmol) under Ar atmosphere, anhydrous $\mathrm{CHCl}_{3}(2.00 \mathrm{~mL}, 0.12 \mathrm{M})$ was added via syringe before the solution was cooled to $-20^{\circ} \mathrm{C}$ for 10 mins . $\mathrm{TMSN}_{3}(32.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ was then added in one portion and the resulting solution stirred at $-20^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h} . \mathrm{HCl}$ in $\mathrm{Et}_{2} \mathrm{O}(200 \mu \mathrm{~L}$, 0.400 mmol) was added in one portion and the resulting solution stirred for 15 mins at $-20^{\circ} \mathrm{C}$. The solution was filtered, using anhydrous $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ to effect the transfer and volatiles removed expediently in vacuo (hi-vac) to give the analytically-pure acyl azide rac-33. The solid was placed under Ar atmosphere and anhydrous $\mathrm{CHCl}_{3}(25.0 \mathrm{~mL}, 0.01 \mathrm{M})$ added via syringe. The resulting solution was heated gently (vigorous gas evolution observed at ca. $40^{\circ} \mathrm{C}$) to $60^{\circ} \mathrm{C}$ for 3 h . The solution of isocyanate was then cooled to $25^{\circ} \mathrm{C}$
before DMAP ($1.5 \mathrm{mg}, 0.012 \mathrm{mmol}$) was added in one portion and the resulting solution stirred vigorously at $25^{\circ} \mathrm{C}$ for 2 h . The solution was concentrated in vacuo and the residue purified by flash column chromatography to give the γ-lactam product.

2.2.4 Gen B: Preparation of 9-epi-9-Amino Cinchona alkaloids from native configuration alkaloids

To an oven-dried 250 mL RBF containing a stirrer bar, Cinchona alkaloid derivative (18.50 mmol) and $\mathrm{PPh}_{3}(5.82 \mathrm{~g}, 22.19 \mathrm{mmol})$ under Ar atmosphere, anhydrous THF ($125 \mathrm{~mL}, 0.15 \mathrm{M}$) was added via syringe. The solution was cooled to $0^{\circ} \mathrm{C}$ before DIAD ($4.40 \mathrm{~mL}, 22.19$ mmol) and DPPA ($4.77 \mathrm{~mL}, 22.19 \mathrm{mmol}$), were added sequentially dropwise via syringe. The resulting yellow solution was warmed to room temperature and stirred at $20^{\circ} \mathrm{C}$ for 24 h . The flask was fitted with a reflux condenser and the solution stirred at $50^{\circ} \mathrm{C}$ for a further $2 \mathrm{~h} . \mathrm{PPh}_{3}(5.82 \mathrm{~g}, 22.19 \mathrm{mmol})$ was added portionwise with stirring and the solution heated at $50^{\circ} \mathrm{C}$ for 2 h or until nitrogen evolution had ceased. $\mathrm{H}_{2} \mathrm{O}(26.4 \mathrm{~mL}, 0.7 \mathrm{M})$ was added and the solution stirred at room temperature for 16 h . The resulting mixture was concentrated as far as possible in vacuo and the residue partitioned between 2 M HCl and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL each). The aqueous phase was removed and the organic layer extracted with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$. The combined aqueous extracts were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ $x 50 \mathrm{~mL}$) and concentrated as far as possible. The viscous residue was stirred in EtOH and the resulting precipitate filtered and dried in vacuo. The precipitate can be purified by reprecipitation from boiling MeOH using EtOAc as antisolvent to give the alkaloid hydrochloride as a powder.

2.2.5 Gen C: Sulfamoyl chloride synthesis

$\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (1.5 eq.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.00 \mathrm{M}\right.$) was cooled to $-20^{\circ} \mathrm{C}$ under Ar atmosphere before a solution of NEt_{3} (1.5 eq.) and the appropriate secondary amine (1.0 eq.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{M}$ with respect to amine) was added dropwise via syringe ($>30 \mathrm{mins}$, exothermic). The resulting solution was stirred at $-20^{\circ} \mathrm{C}$ for 30 mins before warming to room temperature over 1.5 h . The resulting yellow mixture was slowly poured into ice- $\mathrm{H}_{2} \mathrm{O}$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to effect the transfer. The biphasic mixture was partitioned and the organic layer washed with $\mathrm{H}_{2} \mathrm{O}$ and brine before being dried over anhydrous MgSO_{4}, filtered and the filtrate concentrated in vacuo. The residue was dissolved in the minimum $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through a short plug of silica, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide the analytically-pure sulfamoyl chloride product after drying in vacuo.

2.2.6 Gen D: Cinchona alkaloid sulfamide preparation from sulfamoyl chlorides

To a 25 mL RBF containing a magnetic stirrer bar and the appropriate alkaloid hydrochloride salt (1.00 mmol) was added anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.00 \mathrm{~mL}, 0.20 \mathrm{M})$. To the resulting suspension, $\mathrm{NEt}_{3}(4.20 \mathrm{mmol})$ was added dropwise at $-5{ }^{\circ} \mathrm{C}$ and the resulting suspension stirred vigorously for 30 mins before sulfamoyl chloride (1.20 mmol) was added dropwise via syringe. The resulting solution was stirred at room temperature for 24-48 h until consumption of the sulfamoyl chloride was observed by TLC analysis. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed sequentially with half-saturated $\mathrm{NaHCO}_{3(\mathrm{aq.})}, \mathrm{H}_{2} \mathrm{O}$ and brine $(2 \times 10 \mathrm{~mL}$ each $)$. The solution was dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to give a yellow oil, purified by flash chromatography as appropriate (vide infra).

2.3 Preparation of cyclic anhydride substrates

$1 \mathrm{R}=\mathrm{H}$
S2 R = Me
S3 $X=C l$
S4 X = F

S7

S5

S6

S12
S8R = OTBS
S9 R = Me
S10 R = iPr
S11 R = iBu

Figure S1: Anhydride substrates examined in the study.
Anhydrides 1, S2-S6, S9-S12 were synthesised according to existing preparations. ${ }^{[2]}$ Anhydride $\mathbf{S 7}$ was prepared by a modified literature procedure, (vide infra) and anhydride $\mathbf{S 8}$ was obtained from commercial suppliers and recrystallised to analytical purity from boiling hexanes prior to use in the lactamisation.

2.3.1 Preparation of 3-(2-chlorophenyl)glutaric anhydride

Scheme S1: Knoevenagel condensation of ethyl acetoacetate (S13) and 2-chlorobenzaldehyde (S14), hydrolysisdecarboxylation of the diester intermediate and cyclodehydration of the resulting diacid S15 to the corresponding anhydride S7.
2.3.1.1 3-(2-Chlorophenyl)glutaric acid (S15)

To a stirred solution of $\mathbf{S 1 3}(6.50 \mathrm{~g}, 50.00 \mathrm{mmol})$ and $\mathbf{S} 14(3.52 \mathrm{~g}, 25.00 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, piperidine ($412 \mu \mathrm{~L}, 4.17 \mathrm{mmol}$) was added dropwise. The resulting solution was stirred at room temperature $\left(22^{\circ} \mathrm{C}\right)$ for 72 h . The yellow intractable reside was taken up in EtOH $(25 \mathrm{~mL})$ and added slowly to $50 \% \mathrm{NaOH}_{(\mathrm{aq})}(25 \mathrm{~mL})$ and the solution stirred vigorously under reflux for 3 h . The solution was poured into ice cold water (20 mL) and the mixture acidified to pH 1 with HCl (conc.). The solution was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic extracts washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the filtrate concentrated in vacuo. After trituration of the resulting solid, in cold CHCl_{3}, the product was recovered as a white, crystalline powder ($1.70 \mathrm{~g}, 28 \%$), m.p. (from $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) $180-181^{\circ} \mathrm{C}\left(\mathrm{Lit} .,,^{[3]} \mathrm{m} . \mathrm{p}\right.$. (from acetone) $152-154^{\circ} \mathrm{C}$). Product spectroscopic data correlated well to that available in the literature, ${ }^{[4]}$ and additional data are appended below. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.16(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-4), 7.39-$ 7.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-6^{\prime}$), 7.30 (1 H, app. dt, H-4'), 7.22 (1H, app. dt, H-5'), 3.93 (1H, quint, J7.4, H-3) and 2.61 ($4 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{H}-2$) ppm. $\mathrm{v}_{\text {max }}$ (neat, cm^{-1}): 2869 (m), 1708 (vs, C=O st.), 1441 (s$), 1400$ (m), 1294 (m), 1241 (w), 1050 (s), 1036 (s), 899 (m), 756 (s), 727 (s),
$704(\mathrm{~s}), 665(\mathrm{~m}), 630(\mathrm{~m}), 593(\mathrm{~m}), 524(\mathrm{w}), 471(\mathrm{~m})$ and $\left.453(\mathrm{~s}) \mathrm{ppm} . \mathrm{HRMS}_{(\mathrm{ESI}} \mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z}:$ Found: $241.0273\left(\left[\mathrm{M}-\mathrm{H}^{-} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClO}_{4}\right.\right.$; requires: 241.0273).

2.3.1.2 3-(2-Chlorophenyl)glutaric anhydride (S7)

To an oven-dried 10 mL round-bottomed flask containing a magnetic stirrer bar and $\mathbf{S 1 4}$ ($725 \mathrm{mg}, 2.99$ mmol) under Ar atmosphere, AcCl was added ($1.30 \mathrm{~mL}, 17.94 \mathrm{mmol}$) via syringe. The resulting suspension was heated at $55^{\circ} \mathrm{C}$ for 3 h . After cooling the resulting brown solution to room temperature, the solution was concentrated as far as possible in vacuo. The resulting residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and half-saturated $\mathrm{NaHCO}_{3}\left(10 \mathrm{~mL}\right.$ each), the organic layer washed with distilled $\mathrm{H}_{2} \mathrm{O}$ and brine ($2 \times 5 \mathrm{~mL}$ each) and dried over anhydrous MgSO_{4} to give the analytically-pure product as an off-white crystalline powder after drying in vacuo (418 mg , 62%), m.p. $106-107^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.47(1 \mathrm{H}$, dd, J 7.6, 1.6, H-5'), 7.28-7.37 (2H, m, H-3', H-4'), 7.19 (1H, dd, J 7.4, 1.7, H$\left.2^{\prime}\right)$, 3.88-3.96 (1H, m, H-4), $3.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.3,4.6, \mathrm{H}-3 \mathrm{a})$ and $2.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.3,10.2, \mathrm{H}-3 \mathrm{~b}) \mathrm{ppm} . \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.6(\mathrm{C}-$ 2), 136.3 ($\mathrm{C}-1^{\prime}$), 133.7 (C-6'), 130.6 (C-5'), 129.4 (C-4'), 127.9 (C-3'), 126.1 (C-2'), 35.6 (C-3), $30.9(\mathrm{C}-4) \mathrm{ppm} . \mathrm{v}_{\text {max }}\left(\mathrm{neat}, \mathrm{cm}^{-1}\right): 2923$ (m), 1805 and 1759 (vs, C=O st.), 1472 (m), 1425 (m), 1410 (m), 1350 (s), 1332 (s), 1250 (s), 1194 (s), 1132 (s), 1072 (m), 1020 (m)),
 $+\mathrm{Na}]^{+} \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClNaO}_{4}$; requires: 279.0395).

2.4 Catalyst preparation and characterisation data

2.4.1. Sulfamoyl chloride electrophiles

2.4.1.1 Azepane-1-sulfonyl chloride (S16)

Prepared according to Gen C using azepane ($376 \mu \mathrm{~L}, 3.33 \mathrm{mmol}$) and purified by passing through a short plug of silica, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the product as a colourless oil ($394.4 \mathrm{mg}, 60 \%$). $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, ninhydrin): $\mathrm{R}_{\mathrm{f}}=0.83 . \delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{CDCl} 3): 3.46-3.53(4 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1)$, 1.80-1.86 (4H, m, H-2) and 1.63-1.69 (4H, m, H-3) ppm. $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 50.1(\mathrm{C}-1), 27.5(\mathrm{C}-3)$ and $27.0(\mathrm{C}-2) \mathrm{ppm} . \mathrm{v}_{\mathrm{max}}$ (neat)/ $\mathrm{cm}^{-1}: 2932$ (m), 2860 (m), 1462 (w), 1386 (S=O, s), 1367 (s), 1172 (s), 1144 (m), 1042 (m), 888 (m) and 693 (s) cm cm^{-1}.

2.4.2. Core modified 9 -epi-alkaloid hydrochlorides

2.4.2.1 9-Amino-(9-deoxy)epi-quininium trihydrochloride (S17)

Prepared according to Gen B using anhydrous quinine ($6.00 \mathrm{~g}, 18.50 \mathrm{mmol}$) to give the product as a light yellow powder after drying in vacuo ($7.14 \mathrm{~g}, 89 \%$), m.p. (from MeOH/EtOAc) $218{ }^{\circ} \mathrm{C}$ (decomp.), (Lit., ${ }^{[5]} \mathrm{m} . \mathrm{p} .220-221^{\circ} \mathrm{C}$ (decomp.)); $\left.\alpha\right]_{D}^{2 \mu}=+49.7(c=0.98$,
$\mathrm{H}_{2} \mathrm{O}$). Product spectroscopic data correlated well to that in the literature. ${ }^{[5]} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): 11.20 and 9.61 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \mathrm{HCl}$), 9.06 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1$), 8.23-8.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-5$), 7.94 ($1 \mathrm{H}, \mathrm{d}, ~ J 2.1, \mathrm{H}-3$), 7.69 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,2.1, \mathrm{H}-4$), 5.93 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1, \mathrm{H}-6$), 5.89$5.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 5.29(1 \mathrm{H}$, app. d, H-15a), 5.17 (1H, app. d, H-15b), 4.71 (1 H , app. q, H-7), 4.28-4.31 (2H, br s, H-17), 4.08-4.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$), 4.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.6,10.7, \mathrm{H}-8 \mathrm{~b}$), 3.34-3.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}, \mathrm{H}-8 \mathrm{a}$), 2.75 (1H, br s, H-9), 1.84-1.89 (3H, m, H-10, H-11a, H-11b), 1.48-1.56 (1H, m, H-13b) and 0.86-0.91 (1H, m, H-13a) ppm. $\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \quad: 159.6$ (C-20), 145.7 (C-1), 141.8 (C-18), 140.6 (C-21), 138.7 (C-14), 128.8 (C-5), 125.0 (C-19, C-4), 121.7 (C-2), 117.1 (C-15), 103.3 (C-3), 59.2 (C-7), 57.0 (C-16), 52.4 (C-8), 48.2 (C-6), 42.2 (C-12), 36.3 (C-9), 26.0 (C-10), 24.0 (C-11) and 23.9 (C-13) ppm HRMS (ESI ${ }^{+}$) m/z: Found: $324.2073\left(\left[\mathrm{M}+\mathrm{H}^{+} \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}\right.\right.$; requires 324.2070).
2.4.2.2 2'-Chloro-9-amino-(9-deoxy)-epi-quininium trihydrochloride (S18)

Prepared according to Gen B using C2'-chloroquinine ${ }^{[6]}(1.39 \mathrm{~g}, 3.88 \mathrm{mmol})$ and precipitated after ceqevaporation of residual $\mathrm{H}_{2} \mathrm{O}$ with EtOH to give the product as a bright yellow powder ($1.09 \mathrm{~g}, 80 \%$), m.p. $198-204{ }^{\circ} \mathrm{C}$ (decomp.); $\left.\alpha\right]_{D=+2.5\left(c=0.20, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, ~}^{\text {(}}$ NMR and EXSY spectroscopic analyses in DMSO- d_{6} revealed rotameric species in the ratio $93: 7$ at $25^{\circ} \mathrm{C}$. ${ }^{13} \mathrm{C}$ Resonances are clearly observable for the major rotamer only. Major rotamer: $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $11.12,9.48(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.97$ (1H, d, J 9.2, H-5), 7.83 ($1 \mathrm{H}, \mathrm{d}, ~ J 1.9, \mathrm{H}-3$), 7.58 ($1 \mathrm{H}, \mathrm{dd}, J 9.2,1.9, \mathrm{H}-4$), $5.87-5.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 5.82(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{H}-6), 5.26$ (1H, d, J 17.3, H-15a), 5.16 (1H, d, J 10.5, H-15b), 4.61-4.68 (1H, app. q., H-7), 4.09-4.18 (1H, m, H-12a), 4.01 (3H, s, H-16), 3.70-3.76 (1H, m, $\mathrm{H}-8 \mathrm{~b}), 3.28-3.38(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-12 \mathrm{~b}), 2.76$ (1H, br s, H-9), 1.80-1.92 (3H, m, H-10, H-11a, H-11b), 1.57-1.63 (1H, m, H-13b) and 0.87 (1H, dd, J 13.3, 8.4, H-13a) ppm. $\delta_{\mathrm{C}}(151 \mathrm{MHz}$, DMSO-d): 158.7 (C-20), 146.9 (C-1), 143.6 (C-19), 141.6 (C-17), 138.3 (C-14), 130.4 (C-5), 126.7 (C-18), 123.7 (C-3), 122.0 (C-2), 116.7 (C-15), 103.0 (C-4), 58.7 (C-7), 56.4 (C-16), 52.1 (C-8), 47.7 (C-6), 41.6 (C-12), 35.9 (C-9), 25.5 (C-10), 23.6 (C-11) and 23.4 (C-13) ppm. Minor rotamer: $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 11.12,9.48$ ($3 \mathrm{H}, \mathrm{br}$ s, NH), 8.11 (1H, s, H-2), $7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0, \mathrm{H}-5), 7.54(1 \mathrm{H}, \mathrm{dd}, J 9.0,2.0, \mathrm{H}-4), 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0, \mathrm{H}-3), 5.77-5.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 5.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 17.5, H-15a), 5.22-5.25 (1H, m, J 10.4, H-6), 5.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.5, \mathrm{H}-15 \mathrm{~b}$), 4.96 (1 H , app. q., H-7), 4.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.93-3.95 (1H, m, H-12a), 3.70-3.76 (1H, m, H-8b), 3.28-3.38 (2H, m, H-8a, H-12b), 2.76 ($1 \mathrm{H}, \mathrm{br}$ s, H-9), 1.99 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-10$), 1.80-1.92 (2H, m, H-11a, $\mathrm{H}-11 \mathrm{~b}), 1.21-1.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b})$ and 1.06-1.15 (1H, dd, J 13.3, 8.4, H-13a) ppm. $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1}: 3478(\mathrm{~m}, \mathrm{NH}$ st.), $2560(\mathrm{w}), 1617$ (s), 1510 (m), 1460 (m), 1395 (m), 1320 (w), 1279 (m), 1235 (s), 1140 (s), 1019 (m), 920 (s), 831 (s), 774 (s), 728 (w) and $681(\mathrm{~s}) \mathrm{cm}^{-1}$. HRMS (APCl^{+}) m/z: Found: $358.1685\left(\left[\mathrm{M}+\mathrm{H}^{+} \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{CIN}_{3} \mathrm{O}\right.\right.$; requires 358.1680).

2.4.3. Cinchona alkaloid-derived sulfamide organocatalysts

2.4.3.1 Quinine-derived piperidine sulfamide (13)

Prepared according to Gen \mathbf{D} using $\mathbf{S 1 7}(1.38 \mathrm{~g}, 3.19 \mathrm{mmol})$ and commercial piperidine-1-sulfonyl chloride ($447 \mu \mathrm{~L}, 3.19 \mathrm{mmol}$) and the crude residue purified by flash chromatography ($98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} 42 \mathrm{~A}=\mathrm{OH}$) to afford the product as a white, crystalline powder (460 mg , 30%), m.p. $51-52{ }^{\circ} \mathrm{C}$. TLC ($95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$): $\left.\mathrm{R}_{\mathrm{f}}=0.40 ;{ }^{[\alpha}\right]_{D}+37.2\left(c=0.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and EXSY spectroscopic analyses revealed rotameric species in the ratio $68: 32$ in CDCl_{3} at $25^{\circ} \mathrm{C}$. Major rotamer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.6, \mathrm{H}-1)$,
8.03 (1H, d, J 9.2, H-5), 7.56-7.59 (2H, m, H-2, H-3), 7.41 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,2.6, \mathrm{H}-4$), 5.90 ($1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{H}-17$), $5.67-5.76$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), 5.10 (1H, d, J 10.8, H-6), 4.97-5.04 (2H, m, H-15a, H-15b), 4.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.26-3.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}, \mathrm{H}-12 \mathrm{~b}$), 3.09-3.19 (1H, m, H-7), 2.592.90 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-12 \mathrm{a}, \mathrm{H}-22 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 2.31-2.40 (1H, m, H-9), 1.65-1.72 (3H, m, H-9, H-11a, H-11b), 1.39-1.45 (1H, m, H-13b), $1.00-1.06(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 0.81-0.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a})$ and $0.70-0.76(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-23 \mathrm{a}, \mathrm{H}-23 \mathrm{~b}) \mathrm{ppm} . \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 158.2(\mathrm{C}-20), 147.6$ (C-1), 145.0 (C-18), 144.5 (C-21), 141.2 (C-14), 131.7 (C-5), 129.5 (C-19), 122.0 (C-4), 119.7 (C-2), 114.7 (C-15), 100.8 (C-3), 60.6 (C-7), 55.73 (C-16), 55.7 (C-8), 53.0 (C-6), 46.0 (C-22), 40.3 (C-12), 39.5 (C-9), 27.9 (C-11), 27.4 (C-10), 25.4 (C-13), 24.35 (C-23) and 23.1 (C-24) ppm. Minor rotamer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.3, \mathrm{H}-1), 8.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{H}-5), 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7, \mathrm{H}-3)$, 7.39 (1H, dd, J 9.3, 2.7, H-4), 7.27 (1H, d, J 4.3, H-2), 5.59-5.64 (1H, m, H-14), 4.90-4.98 (2H, m, H-15a, H-15b), 4.44 (1H, d, J 11.0, $\mathrm{H}-6$), 3.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.48-3.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 3.18-3.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}, \mathrm{H}-12 \mathrm{~b}$), 2.59-2.90 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-12 \mathrm{a}, \mathrm{H}-22 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 2.31$2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.73-1.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 1.60-1.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}), 1.33-1.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b}), 0.96-1.01(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-24)$ and $0.62-0.87$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}, \mathrm{H}-23 \mathrm{a}, \mathrm{H}-23 \mathrm{~b}$) ppm. $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 157.0 (C-20), 147.2 (C-1), 145.4 (C-18), 141.5 (C-21), 141.4 (C14), 132.0 (C-5), 127.3 (C-19), 123.7 (C-2), 121.6 (C-4), 114.7 (C-15), 103.4 (C-3), 65.9 (C-7), 63.3 (C-6), 56.1 (C-16), 56.0 (C-8), 46.2 (C-22), 40.0 (C-12), 39.7 (C-9), 27.7 (C-11), 27.5 (C-10), 26.6 (C-13), 24.44 (C-23) and 23.1 (C-24) ppm.
NMR spectroscopic analysis of the solid in $\mathrm{CD}_{3} \mathrm{COOD}$ identifies the title product as one species: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COOD}\right): 8.97(1 \mathrm{H}$, d, J 5.0, H-1), 8.30 (1H, d, J 9.3, H-5), 8.04 (1H, d, J 5.0, H-2), 7.67 (1H, d, J 2.4, H-3), 7.63 (1H, dd, J 9.3, 2.4, H-4), 5.84 (1H, ddd, J 17.3, 10.2, 7.0, H-14), 5.45 (1H, d, J 11.4, H-6), 5.16-5.20 (1H, m, H-15b), 5.10-5.15 (1H, m, H-15a), 4.29-4.35 (1H, m, H-7), 4.00-4.08 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}, \mathrm{H}-16$), 3.91 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.2,10.5, \mathrm{H}-8 \mathrm{~b}$), $3.55-3.64$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$), 3.22-3.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 2.84-2.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 2.69-2.74 (2H, m, H-22a), 2.57-2.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-22 \mathrm{~b}$), 2.10-2.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), 1.97-2.00 (1H, m, H-10), 1.83-1.89 (1H, m, H-13b), 1.071.14 (1H, m, H-13a), 0.98-1.05 (2H, m, H-24), 0.64-0.74 (2H, m, H-23a) and 0.45-0.56 (2H, m, H-23b) ppm. $\mathrm{v}_{\text {max }}$ (neat)/ cm- ${ }^{-1}: 3214$ (br. m, N-H st.), 2937 (s), 2859 (s), 1621 (s), 1591 (m), 1508 (s), 1474 (m), 1452 (m), 1432 (m) 1356 (s, S=O), 1319 (s, S=O), 1302 (m), 1260 (m), 1240 (m), 1229 (s), 1155 (s), 1140 (s), 1102 (m), 1083 (m), 1053 (s), 1029 (s), 988 (s), 937 (s), 876 (m), 854 (s), $830(\mathrm{~m})$, $764(\mathrm{w}), 719(\mathrm{~m}), 709(\mathrm{~m})$ and $670(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (APCI $) \mathrm{m} / \mathrm{z}$: Found: $471.2437\left(\left[\mathrm{M}+\mathrm{H}^{+} \mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right.\right.$; requires 471.2424).

2.4.3.2 Piperidine sulfamide acetic acid complex (13•HOAc)

To a 2.5 mL RBF containing a solution of piperidine sulfamide 13 ($75.1 \mathrm{mg}, 0.160 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(160 \mu \mathrm{~L}, 1.0 \mathrm{M})$, AcOH $(9.4 \mu \mathrm{~L}, 0.164 \mathrm{mmol})$ was added and the resulting solution heated to $40^{\circ} \mathrm{C}$ for 1 h . The cogled yellow solution was concentrated in vacuo to provide the product as a white, crystalline solid ($84.0 \mathrm{mg}, 99 \%$), m.p. $88-90^{\circ} \mathrm{C} .[\alpha]_{22}+18.6\left(c=0.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and EXSY spectroscopic analyses in CDCl_{3} revealed rotameric species in the ratio 70:30 at $25{ }^{\circ} \mathrm{C}$. Major Rotamer: $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}): 8.81 (1H, d, J 4.6, H-1), 8.05 (1H, d, J 9.3, H-5), 7.55-7.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3$), 7.41 ($1 \mathrm{H}, \mathrm{dd}, J 9.3,2.6, \mathrm{H}-4$), 5.90 ($1 \mathrm{H}, \mathrm{br}$. s, H17), 5.67-5.76 (1H, m, H-14), 5.14 (1H, d, J 10.8, H-6), 4.97-5.04 (2H, m, H-15a, H-15b), 3.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.45-3.51 (1H, m, H-12b), 3.36 (1H, dd, J 13.9, 10.3, H-8b), 3.14-3.21 (1H, m, H-7), 2.85-2.91 (1H, m, H-12a), 2.75-2.80 (1H, m, H-8a), 2.62-2.69 (4H, m, H-22a, $\mathrm{H}-22 \mathrm{~b}), 2.40-2.44$ (1H, m, H-9), 2.12 (3H, s, H-26), 1.71-1.77 (3H, m, H-10, H-11a, H-11b), 1.43-1.49 (1H, m, H-13b), 1.02-1.08 (2H, $\mathrm{m}, \mathrm{H}-24), 0.83-0.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a})$ and $0.69-0.78$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-23 \mathrm{a}, \mathrm{H}-23 \mathrm{~b}$) ppm. $\mathrm{\delta}_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 175.2$ (C-25), 158.4 (C-20), 147.8 (C-1), 145.0 (C-18), 144.5 (C-21), 140.2 (C-14), 131.8 (C-5), 129.4 (C-19), 122.2 (C-4), 119.9 (C-2), 115.5 (C-15), 101.0 (C-3), 60.2 (C-7), 55.85 (C-16), 55.2 (C-8), $53.0(\mathrm{C}-6), 46.2(\mathrm{C}-22), 40.4(\mathrm{C}-12), 38.9(\mathrm{C}-9), 27.9(\mathrm{C}-11), 27.5(\mathrm{C}-10), 27.3(\mathrm{C}-13), 23.3(\mathrm{C}-23)$, 23.1 (C-24) and 21.1 (C-26) ppm. Minor Rotamer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 8.70 ($1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{H}-1$), 8.08 ($1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{H}-5$), 7.86 ($1 \mathrm{H}, \mathrm{d}$, J 2.5, H-3), 7.41 (1H, dd, J 9.5, 2.5, H-4), 7.30 (1H, d, J 4.3, H-2), 5.63-5.68 (1H, m, H-14), 6.98 (1H, d, J 17.3, H-15b), 4.92 (1H, d, J 10.4, H-15a), 4.46 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9, \mathrm{H}-6$), 3.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), $3.50-3.54$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), $3.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7,10.2, \mathrm{H}-8 \mathrm{~b}), 3.15-3.50$ ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-12 \mathrm{~b}), 2.70-2.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-12 \mathrm{a}), 2.58-2.65(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-22 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}), 2.33-2.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-26), 1.73-1.76$ (1H, $\mathrm{m}, \mathrm{H}-10$), 1.59-1.70 (2H, m, H-11a, H-11b), 1.33-1.39 (1H, m, H-13b), 0.96-1.01 (1H, m, H-13a) and 0.62-0.70 (4H, m, H-23a, H-23b) ppm. $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 175.2 (C-25), 158.4 (C-20), 147.2 (C-1), 145.4 (C-18), 141.7 (C-21), 141.2 (C-14), 132.0 (C-5), 127.1 (C19), 123.9 (C-2), 121.8 (C-4), 115.0 (C-15), 103.4 (C-3), 63.3 (C-7), 56.2 (C-6), 56.0 (C-16), 55.9 (C-8), 46.4 (C-22), 40.0 (C-12), 39.7 (C-9), 27.6 (C-11), 27.5 (C-10), 26.7 (C-13), 24.6 (C-23), 23.2 (C-24) and 21.1 (C-26) ppm. $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1}: 3587$ (s, $\mathrm{R}_{3} \mathrm{~N}^{+}-\mathrm{H}$ st.), 3360 (w, br, N-H st.), 3273 (w, br, N-H st.), 2941 (m, C-H st.), 1620 (m, OAc C-O st.), 1571 (s), 1507 (m), 1477 (m), 1455 (w), 1437 (m),
 $860(\mathrm{~s}), 836(\mathrm{~m}), 760(\mathrm{~m})$ and $720(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (APCI ${ }^{+}$) m/z: Found: $471.2427\left([\mathrm{M}-\mathrm{OAc}]^{+} \mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right.$; requires 471.2424)

Prepared according to Gen D using S18 ($573 \mathrm{mg}, 1.33 \mathrm{mmol}$) and sulfamoyl chloride $\mathbf{S 1 6}$ ($291.3 \mathrm{mg}, 1.47 \mathrm{mmol}$), purified by flash chromatography ($7: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{E} \mathrm{E} \mathrm{t} \mathrm{Ac}$) to give the title product as a white, crystalline powder ($271 \mathrm{mg}, 39 \%$), m.p. $58-60{ }^{\circ} \mathrm{C}$. TLC ($98: 2$ $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right): \mathrm{R}_{f}=0.44 .{ }^{\alpha}\right]_{D}+2.1\left(c=0.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and EXSY spectroscopic analyses in CDCl_{3} revealed rotameric species in the ratio $70: 30$ at $25^{\circ} \mathrm{C}$. Major Rotamer: $\delta_{H}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $7.95(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.48$ (1H, d, J 2.7, $\mathrm{H}-3), 7.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,2.7, \mathrm{H}-4), 6.12$ (1 H , br. s, H-17), 5.68-5.74 (1H, m, H-14), 5.03 (1H, d, J 10.6, H-6),4.94-4.99 (2H, m, H-15), 3.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.19-3.26 (2H, m, H-8b, H-12b), 2.75-2.83 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-12 \mathrm{a}$), 2.55-2.72 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-22 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 2.28-2.33 (1H, m, H-9), 1.57-1.68 (3H, m, H-10, H-11a, H-11b), 1.37-1.41 (1H, m, H-13b), 1.27-1.38 (6H, m, H-23a, H-23b, H-24a, H-24b), 0.860.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}$) ppm. $\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 158.4$ (C-20), 148.5 (C-21), 148.0 (C-1), 144.1 (C-18), 141.0 (C-14), 130.9 (C-5), 127.5 (C-19), 122.7 (C-4), 121.2 (C-2), 114.9 (C-15), 101.5 (C-3), 61.3 (C-7), 55.78 (C-8), 55.75 (C-16), 53.0 (C-6), 48.2 (C-22), 40.4 (C-12), 39.4 (C-9), 28.62 (C-23), 27.9 (C-11), 27.40 (C-10), 26.7 (C-24), 25.2 (C-13) ppm. Minor Rotamer: $\delta_{H}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.96 (1H, d, J $9.2, \mathrm{H}-5), 7.87$ (1H, d, J2.8, H-3), 7.40 (1H, dd, J9.2, 2.8, H-5), 7.30 (1H, s, H-2), 6.29 ($1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{H}-17$), 5.60-5.66 (1H, m, H-14), 4.89$4.95(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 4.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9, \mathrm{H}-6), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16), 3.35-3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 3.19-3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}), 3.05-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 12b), 2.72-2.76 (1H, m, H-12a), 2.55-2.72 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-22 \mathrm{a}, \mathrm{H}-22 \mathrm{~b}$), 2.28-2.33 (1H, m, H-9), 1.73-1.76 (1H, m, H-10), 1.58-1.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$), 1.27-1.38 (7H, m, H-13b, H-23a, H-23b, H-24a, H-24b) and 0.94-0.99 (1H, m, H-13a) ppm. $\mathrm{\delta}_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 157.3 (C-20), 147.5 (C-1), 145.1 (C-21), 144.7 (C-18), 141.0 (C-14), 131.0 (C-5), 125.9 (C-19), 124.0 (C-2), 122.5 (C-4), 114.8 (C-15), 104.0 (C-3), 62.6 (C-6), 56.0 (C-8), 55.7 (C-16), 48.3 (C-22), 40.0 (C-12), 39.6 (C-9), 28.57 (C-23), 27.6 (C-11), 27.43 (C-10), 26.64 (C-24), 26.54 (C-13) ppm. $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1}: 3189$ (w, br, N-H st.), 3073 (w, N-H st.), 2926 (m, C-H st.), 2862 (w), 1620 (s), 1581 (m), 1505 (s), 1455 (s), 1394 (m), 1234 (m), 1228 (m), 1143 (vs, br), 1101 (w), 1044 (w), 1030 (w), 987 (m), 941 (s), 880 (m), 828 (m), 768 (w), 692 (vs), $669(\mathrm{~m}), 617$ (w) and $576(\mathrm{~s}) \mathrm{cm}^{-1}$. HRMS (APCl^{+}) m/z: Found: $519.2195\left(\left[\mathrm{M}+\mathrm{H}^{+} \mathrm{C}_{26} \mathrm{H}_{36} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S}\right.\right.$; requires 519.2192).

2.5 Synthesis and characterisation of desymmetrisation products (pyrrolidinamides and γ-lactams)

2.5.1 Pyrrolidinamide products

2.5.1.1 (R)-5-Oxo-3-phenyl-5-(pyrrolidin-1-yl)pentanoic acid (S1)

Prepared according to Gen A1 using sulfamide $31(6.4 \mathrm{mg}, 0.012 \mathrm{mmol})$ to yield the title product as a white powder ($55.3 \mathrm{mg}, 86 \%$), m.p. (from EtOAc) $108-109^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.28-7.32 (2H, m, H-3'), 7.21-7.25 (3H, m, H-2', H-4'), 3.70 (1 H , app. quin, $\mathrm{H}-3$), 3.35-3.44 (2H, m, H-9), 3.01-3.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 2.95 (1 H , ddd, J 14.8, 8.5, 2.4, H-4a), 2.77 (1H, ddd, J 14.4, 6.6, 2.3, H-2a), 2.73 (1 H , ddd, J 14.8, 6.1, 2.6, H-4b), 2.66 (1 H , ddd, J 14.4, 6.7, 2.1, H-2b) and 1.69-1.82 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8$) ppm. $\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 174.9 (C-5), 170.8 (C-1), 143.2 (C-1'), 128.6 (C-3'), 127.2 (C-2'), 127.0 (C-4'), 46.9 (C-6), 45.9 (C-9), 40.6 (C-2), 40.1 (C-4), 38.8 (C-3), and 25.8, 24.3 (C-7 ,C-8) ppm. $\mathrm{v}_{\text {max }}$ (neat)/ cm¹: 2974 (m), 2868 (m), 1947 (br, w), 1698 (s, C=O), 1576 (s, amide I), 1481 (s), 1453 (s), 1367 (m), 1324 (s), 1267 (s), 1229 (s), 1191 (m), 1167 (m), 1113 (w), 1085 (m), 1067 (w), 1037 (w), 999 (m), 975 (m), 952 (m), 915 $(\mathrm{m}), 903(\mathrm{~m}), 854(\mathrm{~m}), 760(\mathrm{~s}), 699(\mathrm{~s}), 637(\mathrm{~m})$ and $576(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (APCI $) \mathrm{m} / \mathrm{z}$: Found: $262.1440\left([\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}\right.$; requires 262.1438).
2.5.1.2 (R)-Methyl 5-oxo-3-phenyl-5-(pyrrolidin-1-yl)pentanoate (3)

Amido acid S1 ($55.0 \mathrm{mg}, 0.211 \mathrm{mmol}$) was placed in a 5 mL RBF charged with a magnetic stirrer bar and the flask placed under Ar atmosphere. Anhydrous THF (1 mL) was added and the resulting solution cooled to $0^{\circ} \mathrm{C}$. $\mathrm{MeOH}(100 \mu \mathrm{~L})$, followed by TMSCHN_{2} ($0.237 \mathrm{mmol}, 1.1$ eq., 2 M in Et2O) were added sequentially with stirring, and the resulting solution warmed to room temperature over 30 mins. $\mathrm{AcOH} / \mathrm{MeOH}(1: 1)$ was added until gas evolution had ceased and the solution was concentrated in vacuo give the product as a colourless oil ($57.8 \mathrm{mg}, 99 \%$). A sample of the oil was purified by preparative-TLC using EtOAc as mobile phase prior to CSP-SFC analysis. TLC (EtOAc): $\mathrm{R}_{f}=0.40$. CSP-SFC analysis: Step 3 was employed with UV detection at 254 nm ; $\mathrm{R}_{\mathrm{T}}: 3.88 \mathrm{~min}$ (major enantiomer) and 4.11 min (minor enantiomer). $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.29-7.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$), 7.26-7.28 (2H, m, H-2', H-6'), 7.21$7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ '), $3.76(1 \mathrm{H}$, app quin., H-3), $3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10), 3.40-3.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-9 \mathrm{a}), 3.30-3.35$ (1H, m, H-6b), 3.20-3.24 (1H, m, H-9b), 2.91 (1H, dd, J 15.5, 6.5, H-4a), 2.71 (1H, dd, J 15.5, 8.4, H-4b), 2.67 (1H, dd, J 15.0, 7.7, H-2a), 2.60, (1H, dd, J 15.0, $6.5, \mathrm{H}-2 \mathrm{~b}$) and 1.76-1.90 (4H, m, H-7, H-8) ppm. $\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.5(\mathrm{C}-5), 169.5(\mathrm{C}-1), 143.5$ (C-1'), 128.6 (C-3', C-5'), 127.3 (C-2', C-6'), 126.8 (C-4'), 51.5 (C-10), 46.6, 45.6 (C-6, C-9) $41.0(\mathrm{C}-4), 40.0$ (C-2), 38.3 (C-3), 26.0 and 24.3 (C-7, C-8) ppm. $\mathrm{v}_{\text {max }}(\mathrm{neat}) /$ $\mathrm{cm}^{-1}: 2970$ (s), 2876 (s), 1733 (C=O, ester), 1619 (C=O, amide), 1436 (s), 1372 (m), 1341 (m), 1254 (m), 1227 (m), 1191 (m), 1153 (m), 1084 (m), 1049 (s), 858 (w), $880(\mathrm{w}), 763(\mathrm{~s})$ and $702(\mathrm{~s}) \mathrm{cm}^{-1}$. HRMS (ESI $) \mathrm{m} / \mathrm{z}$: Found: $276.1587\left([M+\mathrm{H}]+\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}\right.$; requires 276.1594).

2.5.2 Enantioenriched γ-lactams

Note: Absolute stereochemistry of the lactam products were determined by comparison of the optical rotation data obtained for (R) lactam 26 to previously-reported values (vide infra).

2.5.2.1 (R)-Phenibut lactam (26)

Prepared according to Gen A2 using anhydride $1(46.8 \mathrm{mg}, 0.246 \mathrm{mmol})$ and purified by flash column chromatography ($98: 2$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to give the product as a white powder ($35.7 \mathrm{mg}, 90 \%, 69 \%$ ee), m.p. $75-76{ }^{\circ} \mathrm{C}$ (Lit., ${ }^{[7]}$ m.p. $73-75{ }^{\circ} \mathrm{C}$). TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2\right)$: $\mathrm{R}_{f}=0.42$. A larger scale preparation using anhydride $1(190.2 \mathrm{mg}, 1.00 \mathrm{mmol})$ afforded the title product by the same method (148.3 mg , $92 \% 2270 \%$ ee) which was recrystallised from hot Hex/EtOAc to provide large, colourless plate crystals (100.6 $\mathrm{mg}, 62 \%,>99 \%$ ee $)$ with $[\alpha]_{D}^{20}=-39.6$ (c $=0.91, \mathrm{CHCl}_{3}$), (Lit., ${ }^{[8]}[\alpha]_{D}^{2}=-39.4$ ($\mathrm{c}=0.90, \mathrm{CHCl}_{3}$) for 99% ee of the (R)-enantiomer). Spectroscopic data correlates well to that in the literature. ${ }^{[7]}$ CSP-SFC analysis: Step 3 was employed with UV detection at 254 nm ; R_{T} : 3.45 min (minor enantiomer) and 3.56 min (major enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.33-7.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 7.25-7.28\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$, H-4'), 6.09 (1H, br s, H-4), 3.79 (1H, dd, J 9.4, 8.3, H-1a), 3.71 (1H, app. quin., H-2), 3.43 (1H, dd, J 9.4, 7.3, H-1b), 2.75 (1H, dd, J $17.0,9.0, \mathrm{H}-3 \mathrm{a}$) and 2.52 (1 H , dd, J 17.0, 8.9, H-3b) ppm. $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 177.7 (C-2), 142.1 (C-1'), $129.1\left(\mathrm{C}-3^{\prime}\right), 127.4$ (C-4'), 126.9 (C-2'), $49.7(C-5), 40.5(C-4)$ and $38.1(C-3)$ ppm. HRMS (APCI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}$: Found: $162.0912\left([M+]^{+} ; \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\right.$ requires: 162.0913).

2.5.2.2 (R)-Tolibut lactam (35)

Prepared according to Gen A2 using S2 ($50.2 \mathrm{mg}, 0.246 \mathrm{mmol}$) and purified by flash column chromatography $\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{MeOH}^{2}\right)$ to give the product as a white powder ($40.5 \mathrm{~m} \mathrm{mg}, 94 \%, 65 \%$ ee), m.p. $110-112{ }^{\circ} \mathrm{C}$ (Lit., ${ }^{[9]} \mathrm{m} . \mathrm{p} .108-110{ }^{\circ} \mathrm{C}$). $\mathrm{TLC}(\mathrm{EtOAc}): \mathrm{R}_{f}=0.40$. $[\alpha]_{D}=-9.6\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$, (Lit., ${ }^{[9]}[\alpha]_{D}^{2}=-33.7\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right)$ for 99% ee $)$. Spectroscopic data correlates well to that in the
literature. ${ }^{[9]}$ CSP-SFC analysis: Step 6 was employed with UV detection at $230 \mathrm{~nm} ; \mathrm{R}_{\mathrm{T}}: 5.50 \mathrm{~min}$ (minor enantiomer) and 5.88 min (major enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.14 (4 H , app. s, H-2', H-3'), 6.71 ($1 \mathrm{H}, \mathrm{br}$. s, H-1), 3.77 (1 H , dd, J 9.4, 8.3, H-5a), 3.61-3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), $3.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.4,7.4, \mathrm{H}-5 \mathrm{~b}), 2.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.9,8.8, \mathrm{H}-3 \mathrm{a}), 2.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.9,8.9)$ and $2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6) \mathrm{ppm} . \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 177.9 (C-2), $139.0\left(\mathrm{C}-1^{\prime}\right), 136.8$ (C-4'), 129.5 (C-3'), 126.7 (C-2'), 49.8 (C-5), 40.0 (C-4), 38.2 (C-3) and $21.0(\mathrm{C}-6)$ ppm.

2.5.2.3 $\quad(R)$-Baclofen lactam (36)

Prepared according to GenA2 using S3 ($55.3 \mathrm{mg}, 0.246 \mathrm{mmol}$) and purified by flash chromatography (EtOAc) to give the product as a white poygder ($46.2 \mathrm{mg}, 96 \%, 64 \%$ ee), m.p. $110_{2} 1{ }^{12}{ }^{\circ} \mathrm{C}$ (Lit., [10] m.p. (from Hex/EtOAc) $108-110{ }^{\circ} \mathrm{C}$). $\mathrm{TLC}\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$): $\mathrm{R}_{f}=$
 to that in the literature. ${ }^{[7]}$ CSP-SFC analysis: Step 4 was employed with UV detection at $254 \mathrm{~nm} ; \mathrm{R}_{\mathrm{T}}: 3.47$ min (major enantiomer) and 3.70 min (minor enantiomer). $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.30-7.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 7.17-7.20 (2 H , app. d, $\mathrm{H}-\mathbf{2}^{\prime}$), $6.14(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{H}-1$), 3.78 (1H, dd, J 9.5, 8.3, H-5a), 3.65-3.70 (1H, m, H-4), 3.38 (1H, dd, J 9.5, 7.1, H-5b), 2.74 (1H, dd, J 16.9, 9.0, H-3a) and 2.46 (1H, dd, J 16.9, 8.6, H-3b) ppm. $\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 177.2 (C-2), 140.6 (C-1'), 133.0 (C-4'), 129.0 (C-3'), 128.1 (C-2'), 49.3 (C-5), 39.7 (C-4) and 37.7 (C-3) ppm.

2.5.2.4 (R)-Rolipram (37)

Prepared according to Gen A2 using anhydride S5 ($74.9 \mathrm{mg}, 0.246 \mathrm{mmol}$) and the crude residue purified by flash column chromatography ($98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to give the title product as an off-whepite crystalline powder ($64.3 \mathrm{mg}, 95 \%, 270 \%$ ee), m.p. 132$133^{\circ} \mathrm{C}$ (Lit., ${ }^{[11]} \mathrm{m} . \mathrm{p} .131-133^{\circ} \mathrm{C}$). $\mathrm{TLC}\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} \text {): } \mathrm{R}_{\mathrm{f}}=0.30 .{ }^{\alpha}\right]_{D}^{2}=-12.1$ ($\mathrm{c}=0.15, \mathrm{MeOH}$), (Lit., ${ }^{[7]}[\alpha]_{D=-33.0 \text { (c }=1.00 \text {, }}$ MeOH) for 99.3% ee). Product spectroscopic data correlated well to that in the literature ${ }^{[12]}$ CSP-SFC analysis: Step 3 was employed with UV detection at 254 nm ; $\mathrm{R}_{\mathrm{T}}: 4.01 \mathrm{~min}$ (minor enantiomer) and 4.22 min (major enantiomer). $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 6.83-6.84 (1H, m, H-5'), 6.76-6.79 (2H, m, H-2', H-6'), 6.06 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1$), 4.74-4.79 (1H, m, H-7), $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.75$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3,8.2, \mathrm{H}-5 \mathrm{a}$), 3.38 (1 H , dd, J $9.3,7.4, \mathrm{H}-5 \mathrm{~b}$), 2.71 ($1 \mathrm{H}, \mathrm{dd}, J 16.9,8.8, \mathrm{H}-3 \mathrm{a}$), 2.47 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.9,8.9$)1.78-1.97 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-8 \mathrm{~b}, \mathrm{H}-9 \mathrm{a}$) and 1.561.66 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{~b}$) ppm. $\mathrm{\delta}_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 177.6 (C-2), 149.3 (C-4'), 148.0 (C-3'), 134.6 (C-1'), 118.9 (C-6'), 113.9 (C-2'), 112.3 (C-5'), 80.8 (C-7), 56.2 (C-6), 49.8 (C-5), 40.1 (C-4), 38.1 (C-3), 32.9 (C-8) and 24.1 (C-9) ppm.

2.5.2.5 (R)-4-(Thiophen-3-yl)pyrrolidin-2-one (38)

Prepared according to Gen A2 using anhydride $\mathbf{S 6}$ ($48.3 \mathrm{mg}, 0.246 \mathrm{mmol}$) and the crude residue purified by flash column chromatography ($98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to gize the title product as a white crystalline powder ($37.4 \mathrm{mg}, 91 \%, 65 \%$ ee), m.p. $86-88^{\circ} \mathrm{C}$. TLC (98:2 $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right): \mathrm{R}_{\mathrm{f}}=0.28 .[\alpha]_{D}=-14.0(\mathrm{c}=0.15, \mathrm{CHCl} 3)$. Product spectroscopic data correlated well to that in the literature. ${ }^{[12]}$ CSP-SFC analysis: Step 3 was employed with UV detection at $254 \mathrm{~nm} ; \mathrm{R}_{\mathrm{T}}: 3.35$ min (major enantiomer) and 3.52 min (minor enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.32 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0,2.9, \mathrm{H}-3^{\prime}$), 7.02 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9,1.3, \mathrm{H}-2^{\prime}$), 6.99 ($1 \mathrm{H}, \mathrm{dd}, J 5.0,1.3, \mathrm{H}-4^{\prime}$), 6.58 (1 H , br. s, H-1), 3.73-3.82 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5 \mathrm{a}$), 3.39-3.45 (1H, m, H-5b), 2.70-2.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}$) and 2.44-2.54 (1H, m, H-2b) ppm.

2.5.2.6 (R)-Fluoribut lactam (39)

Prepared according to Gen A2 using S4 ($51.2 \mathrm{mg}, 0.246 \mathrm{mmol}$) and purified by flash column chromatography ($4: 1 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the produet as a white, crystalline powder (39.5 mg , 90%, 66% ee), m.p. $97-99^{\circ} \mathrm{C}$ (Lit., ${ }^{[13]}$ m.p. $98-99{ }^{\circ} \mathrm{C}$). $\mathrm{TLC}\left(1: 1 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$:
 well to that in the literature. ${ }^{[13]}$ CSP-SFC analysis: Step 1 was employed with UV detection at $254 \mathrm{~nm} ; \mathrm{R}_{\mathrm{T}}: 3.01$ min (major enantiomer) and 3.14 min (minor enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.18-7.23 (2H, m, H-3'), 6.99-7.05 (2H, m, H-2'), $6.70(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-1), 3.77$ (1 H , dd, J 9.3, 8.3, H-5a), 6.62-3.71 (1H, m, H-4), 3.37 (1H, dd, J9.3, 7.2, H-5b), 2.72 (1H, dd, J 16.9, 8.9, H-3a) and 2.44 (1H, dd, J 16.9, 8.7, H-3b) ppm. $\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-115.53(\mathrm{~s}) \mathrm{ppm} . \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 177.8(\mathrm{C}-2), 162.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 245.5, \mathrm{C}-4^{\prime}\right), 138.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ 3.1, C-1'), 128.4 (d, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}} 8.0, \mathrm{C}-3^{\prime}\right), 115.8$ ($\left.\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 21.2, \mathrm{C}-2^{\prime}\right), 49.8$ (C-5), 39.8 (C-4) and 38.2 (C-3) ppm.

2.5.2.7 (R)-4-(2-Chlorophenyl)pyrrolidine-2-one (40)

Prepared according to Gen A2 using $\mathbf{S 7}(55.3 \mathrm{mg}, 0.246 \mathrm{mmol})$ and purified by flash column chromatography $\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give the preduct as a white, crystalline powder ($45.2 \mathrm{mg}, 94 \%, 65 \%$ ee), m.p. $112-114{ }^{\circ} \mathrm{C}$ (Lit., ${ }^{[9]} \mathrm{m} . \mathrm{p} .112-115^{\circ} \mathrm{C}$). TLC (EtOAc): $\mathrm{R}_{f}=$ 0.49. $[\alpha]_{D}^{28}=-9.4\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right)$. Product spectroscopic data correlated well to that in the literature. ${ }^{[9]}$ CSP-SFC analysis: Step 6 was employed with UV detection at $254 \mathrm{~nm} ; \mathrm{R}_{\mathrm{T}}: 6.77 \mathrm{~min}$ (minor enantiomer) and 7.13 min (major enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.39 ($1 \mathrm{H}, \mathrm{dd}, J 7.8,1.4, \mathrm{H}-5^{\prime}$), 7.33 ($1 \mathrm{H}, \mathrm{dd}, J 7.7,1.6, \mathrm{H}^{\prime}$ '), $7.25-7.29$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), 7.18-7.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 6.45 ($1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{H}-1$), 4.12-4.20 (1H, m, H-4), $3.86(1 \mathrm{H}, \mathrm{dd}, J 9.7,8.2$, H-5a), 3.42 ($1 \mathrm{H}, \mathrm{dd}, J 9.7,6.0, \mathrm{H}-5 \mathrm{~b}$), 2.79 (1H, dd, J 17.0, $9.1, \mathrm{H}-2 \mathrm{a}$) and 2.53 (1 H , dd, J 17.0, 7.3, H-2b) ppm. δ_{C} ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 177.5 (C-2), 139.3 (C-1'), 133.8 (C-6'), 130.0 (C-5'), 128.4 (C-4'), 127.4 (C-3'), 127.2 (C-2'), 48.3 (C-5), 36.68 (C-4) and 36.66 (C-3) ppm.

2.5.2.8 (S)-4-((tert-Butyldimethylsilyl)oxy)pyrrolidin-2-one (41)

Prepared according to Gen A2 using $\mathbf{S 8}$ ($60.0 \mathrm{mg}, 0.246 \mathrm{mmol}$), to give a crude residue, which was purified by flash column chromatography ($1: 1 \mathrm{Hex} / \mathrm{EtOAc}$) to give the title product as a white powger $\left(42.4 \mathrm{mg}, 80 \%, 56 \%\right.$ ee), m.p. $78-80{ }_{2}^{2} \mathcal{2}$ (Lit., ${ }^{[15]} \mathrm{m} . \mathrm{p}$. (from PE/EtOAc) $84-86^{\circ} \mathrm{C}$). TLC (1:1 Hex/EtOAc, Ninhydrin): $\left.\mathrm{R}_{f}=0.19 .{ }^{\alpha}\right]_{D}=-2.4$ (c $=0.15, \mathrm{CHCl}_{3}$), (Lit., ${ }^{[16]}[\alpha]_{D}^{2}=-7.4$ (c $=1.30$, $\left.\mathrm{CHCl}_{3}\right)$). Product spectroscopic data correlates well to that in the literature. ${ }^{[15]}$ CSP-SFC analysis: Step 3 was employed with UV detection at $212 \mathrm{~nm} ; \mathrm{R}_{\mathrm{T}}: 2.61 \mathrm{~min}$ (minor enantiomer) and 2.73 min (major enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 5.98 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-4$), 4.53-4.58 (1H, m, H-3), $3.58(1 \mathrm{H}, \mathrm{dd}, J 10.0,6.0, \mathrm{H}-4 \mathrm{a}), 3.24(1 \mathrm{H}, \mathrm{dd}, J 10.0,3.4, \mathrm{H}-4 \mathrm{~b}), 2.54(1 \mathrm{H}, \mathrm{dd}, J 17.0,6.8, \mathrm{H}-2 \mathrm{a}$) and $2.26(1 \mathrm{H}$, dd, J 17.0, 4.2, H-2b) ppm. $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 176.2 (C-1), 68.0 (C-3), 51.6 (C-4), 40.5 (C-2), 25.8 (C-9), 18.0 (C-8), -4.7 (C-6) and -4.8 (C-7) ppm.

Prepared according to Gen A2 using S9 ($31.5 \mathrm{mg}, 0.246 \mathrm{mmol}$) and the crude residue purified by flash column chromatography ($98: 2$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to give the product as a whitezpowder ($22.2 \mathrm{mg}, 91 \%, 70 \%$ ee), m. p2 $254-55^{\circ} \mathrm{C}$ (Lit., ${ }^{[17]}$ m.p. (from Hex) $53-55^{\circ} \mathrm{C}$). TLC (95:5 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, \mathrm{KMnO}_{4}$): $\left.\mathrm{R}_{f}=0.50 . ~ \alpha\right]_{D}=-4.0\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right.$), (Lit ., ${ }^{[18]}[\alpha]_{D}=-20.3$ ($\mathrm{c}=1.20, \mathrm{CHCl}_{3}$) for 99% ee). Product spectroscopic data correlated well to that in the literature. ${ }^{[19]}$ CSP-SFC analysis: Step 5 was employed with UV detection at 212 nm ; $\mathrm{R}_{\mathrm{T}}: 5.26 \mathrm{~min}$ (minor enantiomer) and 5.43 min (major enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $6.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5), 3.53(1 \mathrm{H}, \mathrm{dd}, J 9.4,7.6$, $\mathrm{H}-4 \mathrm{a}), 2.99$ ($1 \mathrm{H}, \mathrm{dd}, J 9.4,6.1$), 2.51-2.64 (1H, m, H-3), 2.48 ($1 \mathrm{H}, \mathrm{dd}, J 16.5,8.5, \mathrm{H}-2 \mathrm{a}$), 1.97 ($1 \mathrm{H}, \mathrm{dd}, J 16.5,7.1, \mathrm{H}-2 \mathrm{~b}$) and $1.16(3 \mathrm{H}$, d, J 6.7, H-6) ppm. $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 178.6 (C-1), 49.6 (C-4), 38.5 (C-2), 29.6 (C-3) and 19.7 (C-6) ppm.

2.5.2.10 (R)-4-Isopropylpyrrolidin-2-one (43)

Prepared according to Gen A2 using $\mathbf{S 1 0} \mathbf{(3 8 . 4 \mathrm { mg } , 0 . 2 4 6 \mathrm { mmol }) \text { and the crude residue purified by flash column chromatography (} 9 8 : 2}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to give the product as azerhite powder ($29.0 \mathrm{mg}, 92 \%, 70 \%$ ee $)_{25 \mathrm{~m}} \mathrm{~m} . \mathrm{p} .90-92^{\circ} \mathrm{C}$ (Lit., ${ }^{[20]}$ m.p. $96-97{ }^{\circ} \mathrm{C}$). TLC (97:3
 spectroscopic data correlated well to that in the literature. ${ }^{[20]}$ CSP-SFC analysis: Step 5 was employed with UV detection at 212 nm ; $\mathrm{R}_{\mathrm{T}}: 5.12 \mathrm{~min}$ (minor enantiomer) and 5.30 min (major enantiomer). $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.89(1 \mathrm{H} \mathrm{br} . \mathrm{s}, \mathrm{H}-5), 3.46(1 \mathrm{H}, \mathrm{dd}, J 9.3,8.3$, H-4a), 3.09 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2,8.3, \mathrm{H}-4 \mathrm{~b}$), 2.39 (1 H , dd, J 16.7, 8.7, H-2a), 2.17-2.26 (1H, m, H-3), 2.07 ($1 \mathrm{H}, \mathrm{dd}, J 16.7,9.6, \mathrm{H}-2 \mathrm{~b}$), 1.56$1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 0.93(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{H}-7)$ and $0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{H}-8) \mathrm{ppm} . \delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 178.3(\mathrm{C}-1), 46.2(\mathrm{C}-4), 42.3(\mathrm{C}-6)$, 35.2 (C-2), 32.5 (C-3), 20.6 (C-7) and 20.0 (C-8) ppm.
2.5.2.11 (S)-Pregabalin lactam (44)

Prepared according to Gen A2 using $\mathbf{S 1 1}$ ($41.8 \mathrm{mg}, 0.246 \mathrm{mmol}$) and purified byyflash chromatography ($\mathrm{Et}_{2} \mathrm{O}$) to give the ${ }^{2}$ product as a colourless oil ($32.6 \mathrm{mg}, 94 \%, 64 \% \mathrm{ee}$). $\operatorname{TLC}\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right): \mathrm{R}_{f}=0.8$. $[\alpha]_{D}^{] 2}=-0.81\left(\mathrm{c}=0.16, \mathrm{CHCl}_{3}\right)$, (Lit., ${ }^{[21]}[\alpha]_{D}^{2}=-2.42(\mathrm{c}=$ $1.00, \mathrm{CHCl}_{3}$) for 99% ee). Product spectroscopic data correlated well to that in the literature. ${ }^{[21]}$ CSP-SFC analysis: Step 6 was employed with UV detection at 212 nm ; $\mathrm{R}_{\mathrm{T}}: 1.88 \mathrm{~min}$ (minor enantiomer) and 2.00 min (major enantiomer). $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 6.28 (1 H , br s, $\mathrm{H}-1$), 3.47 (1 H , dd, J 9.3, 7.9, H-5a), 2.98 (1 H , dd, J $9.3,7.1, \mathrm{H}-5 \mathrm{~b}$), 2.53 (1 H , app. sept., H-4), 2.40 (1 H , dd, J 16.7, 8.6, H-3a), 1.97 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.7,8.5, \mathrm{H}-3 \mathrm{~b}), 1.52-1.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.30-1.37(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$ and $0.89\left(6 \mathrm{H}\right.$, app. t, J 6.5, H-8a, H-8b) ppm. $\delta_{\mathrm{C}}(151 \mathrm{MHz}$, CDCl_{3}): 178.5 (C-2), 48.3 (C-5), 43.9 (C-6), 37.1 (C-3), 33.0 (C-4), 26.2 (C-7), 22.7 (C-8a) and 22.5 (C-8b) ppm. HRMS (ESI+) m/z: Found: 164.1047 ($\left[\mathrm{M}+\mathrm{Na}^{+} ; \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NNaO}\right.$ requires: 164.1046).
2.5.2.12 (1S, 4R)-2-Azabicyclo[2.2.1]heptan-3-one (45)

Prepared according to Gen A2 using $\mathbf{S 1 2}$ ($34.5 \mathrm{mg}, 0.246 \mathrm{mmol}$) to give a crude residue which was purified by flash column chromatography ($98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to give title compound as a white poyyder ($21.8 \mathrm{mg}, 80 \%, 72 \%$ ee), m.p. $79-812^{\circ} \mathrm{C}$ (Lit., ${ }^{[22]}$ m.p. (from PrOH) $78-81^{\circ} \mathrm{C}$. TLC $\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, Ninhydrin): $\mathrm{R}_{\mathrm{f}}=0.26 . \alpha_{D}^{22}=-48.6\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$, $\left(\right.$ Lit. ${ }^{[23]}[\alpha]_{D}^{22}=-160.0 \quad$ ($\mathrm{c}=$
1.00, $\left.\mathrm{CHCl}_{3}\right)$). Product spectroscopic data correlated well to that in the literature. ${ }^{[22]}$ CSP-SFC analysis: Step 2 was employed with UV detection at 212 nm ; $\mathrm{R}_{\mathrm{T}}: 2.67 \mathrm{~min}$ (major enantiomer) and 2.78 min (minor enantiomer). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 6.02 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2$), 3.86-3.89 (1H, m, H-3), 2.71-2.74 (1H, m, H-6), 1.77-1.93 (3H, m, H-4b, H-5a, H-7a), 1.54-1.66 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-5 \mathrm{~b}$) and 1.41 (1 H , dt, J 9.3, 1.4, H-7b) ppm. $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 181.2 (C-1), 55.4 (C-3), 45.1 (C-6), 41.3 (C-7), 30.2 (C-4) and 23.7 (C-5) ppm.

2.6 Compounds used in mechanistic studies

2.6.1 Racemic sulfamide hydrogen bond donor

2.6.1.1 N-(1-Phenylethyl)piperidine-1-sulfonamide (S19)

To an oven-dried 25 mL RBF containing a magnetic stirrer bar and piperidine-1-sulfonyl chloride ($458 \mu \mathrm{~L}, 3.27 \mathrm{mmol}$), under inert (Ar) atmosphere, anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added by syringe and cooled to $0^{\circ} \mathrm{C}$. A solution of $(\pm)-1$-phenylethanamine ($500 \mu \mathrm{~L}, 3.91$ $\mathrm{mmol})$ and $\mathrm{NEt}_{3}(455 \mu \mathrm{~L}, 3.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}, 0.18 \mathrm{M})$ was added dropwise and the resulting solution warmed to room temperature and stirred for $24 \mathrm{~h} . \mathrm{NaOH}(10 \mathrm{~mL}, 1 \mathrm{M})$ was added and the organic layer removed, washed successively with 1 M HCl and brine ($2 \times 10 \mathrm{~mL}$ each) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the filtrate concentrated in vacuo to give a brown oil, which was purified by flash chromatography (EtOAc). Product containing fractions were combined and solvent removed in vacuo to give a pale yellow oil which crystallised upon standing. Trituration with hexanes afforded the product as a white, crystalline solid after filtration ($650 \mathrm{mg}, 74 \%$), m.p. $54-56{ }^{\circ} \mathrm{C}$ (from EtOAc). TLC ($10 \% \mathrm{MeOH}$ in EtOAc): $\mathrm{R}_{\mathrm{f}}=0.8 . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.27-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $\left.2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right), 4.51(1 \mathrm{H}$, app. quin, $\mathrm{H}-2), 4.31(1 \mathrm{H}$, app. d, H-1), $3.00(4 \mathrm{H}$, app. t, H-4), $1.52(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{H}-3)$ and 1.35-1.48 ($6 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5, \mathrm{H}-6) \mathrm{ppm} . \mathrm{\delta}_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 143.3$ (C-1'), 128.7 (C-3'), 127.6 (C-4'), 126.3 (C-2'), 53.8 (C-2), 46.6 (C-4), 25.1 (C-5), 24.0 (C3) and 23.6 (C-6) ppm. $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1}: 3262(\mathrm{~s}, \mathrm{~N}-\mathrm{H}$ st.), 2975 (m), 2932 (m), 2847 (m), 1455 (s$), 1430(\mathrm{~m}), 1320(\mathrm{~s}, \mathrm{~S}=\mathrm{O}), 1309(\mathrm{~s}$, $\mathrm{S}=\mathrm{O}$), 1143 (s), 1106 (s), 1086 (s), 1066 (s), 928 (s), 768 (s), and 712 (s) cm^{-1}. HRMS (ESI ${ }^{+}$) m/z: Found: 291.1140 ([M + Na] ${ }^{+}$ $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}$; requires: 291.1138).

2.7 Computational methods

All calculations reported in the manuscript were carried out using standard DFT methods as implemented in Gaussian $16 .{ }^{[24]}$ All initial
 (chloroform) at 298 K and 223 K in order to mimic experimental conditions. All structures were confirmed to be minima (no imaginary frequency).

The characteristics of the intermolecular interactions were analysed by means of the Atoms in Molecules (QTAIM) theory. [4] For this purpose we have located the most relevant bond critical points (BCP), and evaluated the electron density at each of them, by using the QTAIMAll program. ${ }^{[27]}$ Coordinates and energetic paths for all SMD (chloroform) structures are included in this supporting information (Section 7).

3. Results and Discussion

3.1. Development of suitable conditions for initial UPC analysis of enantioenriched pyrrolidinamides

3.1.1. Obviating reversibility of the reaction: Amidation with pyrrolidine

In order to evaluate the 'true' enantioselectivity of the desymmetrisation reaction facilitated by bifunctional catalysts, and mitigate against confounding factors that may alter the enantioselectivity on workup, the reversibility of the reaction upon warming observed here and in our previous work had to be first overcome. To this end, the ring opening of anhydride 1 with TMSN_{3} in the presence of alkaloid sulfonamide 11 to provide the intermediate acyl azide $\mathbf{2}$ was examined. Alcoholysis of the silyl ester group was unsuccessful at low temperature, and it was decided that the most robust solution was to instead subject the acyl azide moiety of $\mathbf{2}$ to amidation with excess pyrrolidine. The addition of pyrrolidine was observed by NMR spectroscopy to displace azide fully at $-50^{\circ} \mathrm{C}$ within 1 h (Scheme S2).

The resulting amido acid S1 was isolated by back-extraction in excellent yield and purity and subsequent methylation of the carboxylic acid moiety was affected by treatment of $\mathbf{S} \mathbf{1}$ with TMSCHN_{2} to yield scalemic esters $\mathbf{3}$ in quantitative yields. As the steps of
this protocol that proceed desymmetrisation were not expected to influence the enantioselectivity of the overall process, the amido esters $\mathbf{3}$ could be used as a proxy for the ee observed during desymmetrisation. Separation of the enantiomeric esters $\mathbf{3}$ was achieved by analytical CSP-SFC, demonstrating reproducibly that the acyl azide $\mathbf{2}$ was formed in 24% ee when the reaction was catalysed with sulfonamide 11.

Scheme S2: Amidation of acyl azide intermediate $\mathbf{2}$ and methylation of the resulting amido acid $\mathbf{S 1}$.

3.1.2. Reaction optimisation: Solvent, temperature and concentration

Piperidine sulfamide 13 was examined in the desymmetrisation of anhydride 1 with TMSN_{3} in order to determine the effect of solvent polarity, temperature and concentration on both conversion and enantioselectivity (Table S 1). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided acyl azide 2 more efficiently than CHCl_{3}, but proved inferior with regards to enantioselectivity (entries 1 and 2). MeCN furnished almost racemic product (entry $3,4 \% e e$) and with poorer conversion to $\mathbf{2}$. The use of ethereal solvents improved the conversion to acyl azide intermediate 2, but proceeded with significantly diminished enantioselectivities (entry 4 and 5). Further decrease of the reaction temperature to $-78^{\circ} \mathrm{C}$ in THF proffered a 9% increase in enantioselectivity, but did not outcompete selectivities observed in CHCl_{3} at $-50^{\circ} \mathrm{C}$. EtOAc was observed to be marginally more selective than all other solvent substitutions (entry $6,40 \% e e$) at the same temperature, but also failed to yield products with higher enantioselectivities than CHCl_{3}.

Table S1: Optimisation of reaction conditions for the enantioselective desymmetrisation of 167 with TMSN $_{3}$.

Entry	Solvent	Concentration (M)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Yield 201 (\%) ${ }^{[a]}$	ee 384 (\%) ${ }^{[b]}$
1	CHCl_{3}	0.12	-50	16	89	55
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.12	-50	16	93	38
3	MeCN	0.12	-35	16	82	4
4	MTBE	0.12	-50	16	97	32
$5^{[c]}$	THF	0.12	-50	16	97 (74)	36 (45)
6	EtOAc	0.12	-50	16	90	40
7	CHCl_{3}	0.50	-50	3	90	44
$8{ }^{[d]}$	CHCl_{3}	0.01	-50	48	90	35
$9^{[e]}$	CHCl_{3}	0.12	-25	1.5	90	47
$10^{[\text {[e] }}$	CHCl_{3}	0.12	0	0.5	90	40
$11^{1 / 7}$	CHCl_{3}	0.12	-50	16	98	55

${ }^{[a]}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy relative to 4-iodoanisole as internal standard. ${ }^{[b]}$ Determined by CSP-SFC. ${ }^{[c]}$ Values in parentheses refer to results obtained when the reaction is performed at $-78{ }^{\circ} \mathrm{C}$. ${ }^{[d]}$ Extended reaction time (3 h) allotted in the formation of S1. ${ }^{[e]}$ Acyl azide 2 was cooled to $-50^{\circ} \mathrm{C}$ prior to the addition of pyrrolidine. [f) Reaction performed in the presence of BzOH ($5 \mathrm{~mol} \%$ loading).

The exact explanation for its superior performance as a solvent is unclear at this time, but based on a recent report examining the properties of liquid $\mathrm{CHCl}_{3},{ }^{[28]}$ it is speculated that this observation can be attributed to the functional role of CHCl_{3} as a non-nucleophilic polar, protic solvent which is anticipated to stabilise charged intermediates. CHCl_{3} was subsequently chosen as the optimal reaction solvent for the transformation and examined at different concentrations and temperatures in an attempt to improve ee as far as possible.

Increasing the reaction concentration to 0.5 M resulted in shorter reaction times, but negatively impacted selectivity (entry $7,44 \%$ ee). Interestingly, diluting the reaction to 0.01 M did not ameliorate enantioselectivity, but nonetheless provided the desymmetrisation product in comparable yields within 48 h (entry $8,35 \%$ ee). Higher reaction temperatures reduced the overall reaction times, but resulted in lower observed enantioselectivities, as expected (entries 9 and 10). Lastly, the addition of BzOH (5 mol\%) as a co-catalyst did not affect the rate of the reaction or enantioselectivity, but provided marginally enhanced conversions relative to the acid-free reaction with concurrent formation of $5 \mathrm{~mol} \% \mathrm{TMSOBz}$ in the initial stages of the reaction, implicating the required generation of aminium azide 13a (see Figure 4).

3.2. Mechanistic investigation involving compartmentalisation of catalyst functionality

3.2.1. Racemic model of bifunctional catalysis by Cinchona alkaloid sulfamides

In an attempt to ascertain which components of bifunctional sulfamides (such as 13) are involved in catalysis, a series of investigations involving 6-methoxyquinoline (S23), DABCO and a model racemic sulfamide $\mathbf{S} 19$ were performed (Figure S1). This compartmentalised approach was chosen in order to test each component of the bifunctional sulfamides in isolation to gain mechanistic insight and inform rational catalyst design.

Figure S2: Modelling of the functional components of sulfamide 13 .
As both DABCO and quinoline S23 were commercially available, after facile preparation of S19 (Section 2.6.2.1) the components required to emulate catalysis of the desymmetrisation reaction between anhydride 1 and TMSN_{3} were examined in a modular fashion (Table S2). Relative to chiral piperidine sulfamide 13, which provided acyl azide $\mathbf{2}$ in 90% yield (entry 1), DABCO performed similarly well (entry 2, 86% yield). Quinoline S23 catalysed the reaction to an even greater extent than stronger Brønsted bases after the allotted reaction time (97% yield, entry 3), but was a less efficient catalyst in the early stages of the reaction relative (44% conversion at 0.5 h) than either DABCO or chiral sulfamide 13. Interestingly, the sulfamide hydrogen-bond donor S19 did not catalyse the reaction in isolation, but did marginally enhance the efficiency of DABCO as a catalyst (88% yield, entry 5). From an enantioselectivity standpoint, although the difference in catalytic efficiencies observed between DABCO and quinoline $\mathbf{S 2 3}$ was encouraging, it was conceivable that the quinoline moiety -situated far from stereochemical information in chiral sulfamide catalysts- could negatively impact ee by competing with catalysis at the quinuclidine centre.

Table S2: Mechanistic investigation of the organocatalytic desymmetrisation of anhydride 167 with TMSN $_{3}$.

1
rac-2

Entry	cat.	Conversion $(\mathrm{t}=0.5 \mathrm{~h}, \%)$	Yield azide rac-2(\%) ${ }^{[\mathrm{ab}]}$
	$\mathbf{1 3}$	80	90
2	DABCO	78	86
3	$\mathbf{S 1 9}$	44	97
4	$\mathbf{S 2 0}$	0	0
5	DABCO/S20	81	88
[a] Yield			

${ }^{[a]}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy relative to 4-iodoanisole as internal standard.

Given this observation, it was anticipated that the attenuation of the Brønsted base activity at the quinoline nitrogen in the model system could be achieved through the installation of a deactivating group adjacent to the Brønsted base. If the catalytic activity of the quinoline in the model system could be suppressed by such a modification, then by translation of the same rationale to chiral systems, improvement of the observed selectivities on alkaloid-derived sulfamides (such as 13) would be expected. In order to test this hypothesis, the quinoline derivatives $\mathbf{S 2 0} \mathbf{- S 2 2}$ were first prepared from $\mathbf{S 2 3}$ via known methods ${ }^{[29-31]}$ and their ability to promote the reaction of 1 with TMSN_{3} was evaluated under the standard reaction conditions (Table S3).

Table S3: Catalyst screen: 6-Methoxyquinoline derivatives.

Entry
[a] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 4-iodoanisole as internal standard. ${ }^{[b]} \mathrm{pK}_{\mathrm{a}}$ calculated using Marvin (ChemAxon).
${ }^{[c]}$ No further reaction observed at $\mathrm{t}=96 \mathrm{~h}$, or upon warming to $0^{\circ} \mathrm{C}$.
Relative to the unsubstituted quinoline $\mathbf{S 2 3}$ (97% yield, entry 1), although species such as $\mathbf{S 2 0}$ and $\mathbf{S 2 1}$ are known to be powerful Lewis base catalysts of a variety of transformations involving organosilicon reagents, almost complete diminution of catalyst activity was observed (entry 2 and 3). Pleasingly, absence of catalytic activity accompanied the installation of a chlorine atom at the 2-position of the quinoline (0% yield, entry 4), illustrating that complete suppression of catalytic activity is possible in the model system under the proposed hypothesis.

With the above results in mind, translation of the same concept to chiral sulfamide catalysts was next approached. Following the preparation of C-2'-modified alkaloids 28-31 and their evaluation as promoters of enantioselective desymmetrisation of anhydride 1 with TMSN_{3} (see Table 2), 2'-modified alkaloids were found to be superior to with regards to both conversion and enantioselectivity than quinine and cinchonidine-derived sulfamides (13 and 27 , respectively) under the same conditions. Notably, no significant difference in enantioselectivity was observed between C2'-phenyl and C2'-chloro derivatives, illustrating that the enhanced selectivities are owing primarily to electronic deactivation of the quinoline nitrogen and cannot be readily attributed to additional steric interactions in the TS.

3.3. NMR spectroscopic- and DFT studies of Cinchona alkaloid sulfamides: general summary and catalytic cycle

As is the case in related studies involving sulfonamide-containing alkaloids, ${ }^{[33]}$ sulfamide 13 was found to exist as a pair of two main rotamers in a $68: 32$ ratio in CDCl_{3} at $25^{\circ} \mathrm{C}$; the presence of a strong intramolecular hydrogen bond between the quinuclidine nitrogen and the sulfamide donor conformationally 'locks' this portion of the molecule. The two forms, 13-I and 13-II, found to interconvert in solution by rotation about the C4'-C9 bond axis (highlighted in red, Figure S3), were investigated via NMR spectroscopy in CDCl_{3}.

Figure S3: Major and minor rotamers of piperidine sulfamide 13, as observed by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis in CDCl_{3}. Double-ended curly arrows denote NOE contacts.

In all substitution patterns examined in this study, Cinchona alkaloid-derived sulfamides such as 13 show a strong preference for an anti- relationship between H_{8} and H_{9}, with strong dipolar coupling observed in both rotamers $\left({ }^{3} J_{(H 8-H 9)}=10.7-11.9 \mathrm{~Hz}\right)$. The interconversion between states can be directly verified by a typical 2 D NOESY experiment, or more recently by 1D-selective NOE experiments, ${ }^{[34]}$ by the observation of cross-peaks between the two species in exchange (Figure S4).

Figure S4: Extracted ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ NOESY illustrating NOE correlations (blue) and EXSY cross-peaks (green) between rotameric species $13-\mathrm{I}$ and 13 -II.

No substantial differences in the population of each rotameric state were observed between 13 and other alkaloid sulfamides in CDCl_{3}. Furthermore, no meaningful correlation could be made between rotamer populations and enantioselectivity. Interestingly, disruption of the intramolecular hydrogen bond, which can be achieved by alkylation or acylation of the sulfamide HBD, results in the observation of conformer 13-II only. By contrast, when observed in solution, protonation with an excess of organic acid (AcOH or BzOH) or substitution of CDCl_{3} for more polar NMR solvents $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$ or $\left.\mathrm{DMSO}-d_{6}\right)$ favours conformation 13-I while $\mathrm{CD}_{3} \mathrm{COOD}$ favours 13-I exclusively. Previous solution-phase studies have also found that the addition of polar, protic additives to native Cinchona alkaloids influenced conformation in $\mathrm{CDCl}_{3}{ }^{[35,36]}$

Following conformational analysis of sulfamide 13 at room temperature, we were intrigued by the possibility of determining the active conformation of the catalyst in situ in order to influence future catalyst design. Unfortunately, upon cooling a solution of sulfamide 13 in CDCl_{3} to $-20^{\circ} \mathrm{C}$, no significant change in the conformation or occupation of rotameric states of sulfamide 13 occurred (Figure S5), but the appearance of a broad singlet corresponding to the sulfamide NH could be observed at $-20^{\circ} \mathrm{C}$ with $\delta_{H}=5.26 \mathrm{ppm}$.

Figure S5: Variable-temperature ${ }^{1} \mathrm{H}$ NMR of catalyst 13 in CDCl_{3} at $25^{\circ} \mathrm{C}$ (bottom), $0^{\circ} \mathrm{C}$ (middle) and $-20^{\circ} \mathrm{C}$ (top).
A DFT conformational analysis exploring the low-energy chemical space associated with 13 was performed in order to corroborate the above observations in silico. Two predominant conformers differing by the rotation of the C9-C4' bond were identified (Figure S6). The Boltzmann population ratio ($66: 34$) predicted by the calculation in CHCl_{3} is in good agreement with those obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. In addition, a repeat of the calculations at 223 K yielded a very similar population ratio of 61:39.

Rotamer 13-I

$\Delta \mathbf{G}=0.0 \mathrm{kcal} \mathrm{mol}^{-1}$

Rotamer B 13-II

$\Delta \mathbf{G}=0.4 \mathrm{kcal} \mathrm{mol}^{-1}$

Figure S6. DFT calculations: structures, relative stabilities and QTAIM analysis of the major rotamers of catalyst 13
A characterisation of the different intramolecular non-covalent interactions was also performed by means of the Quantum Theory of Atoms in Molecules (QTAIM) methodology (Figure S6). An intramolecular hydrogen-bond between the quinuclidine N-atom and the sulfamide unit is a discernible rigidifying feature of both conformations. The other interactions identified appear to be weak in nature.

It occurred to us that the true structure of the active catalytic species may be different from the free base sulfamide 13 when the catalyst is observed in the presence of the anhydride substrate and organosilyl reagent. Although no changes in catalyst resonances were observed in CDCl_{3} in the presence of a stoichiometric amount of anhydride 1, sulfamide 13 catalysed the rapid hydrolysis of TMSN_{3} to HN_{3} and silanol (TMSOH) in the presence of adventitious water at room temperature. This process was accompanied by concurrent dimerisation of TMSOH to $\mathrm{TMS}_{2} \mathrm{O}$. Notably, this behaviour was not observed when sulfamide 13 was substituted for bifunctional urea 9, even upon addition of $\mathrm{H}_{2} \mathrm{O}$ to the solution. This observation suggests that a catalyst functionality other than Brønsted base activity is important in this process. Silanol dimerisation has been noted previously in the context of aldehyde cyanosilylation with TMSCN when catalysed by disulfonimide Lewis acid catalysts. ${ }^{[37]}$ Separately, the production of TMSOH and $\mathrm{TMS}_{2} \mathrm{O}$ from TMSN_{3} in the presence of a Cinchona alkaloid has also been noted by Aléman and co-workers. ${ }^{[38]}$

Although it could be postulated that one rotameric form of Cinchona alkaloid-derived sulfamides could be contributing negatively to stereoselection, variable temperature-NMR spectroscopy of piperidine sulfamide 13 revealed temperature-dependent convergence of rotamer populations. By performing the reaction in basified, anhydrous CDCl_{3} as the reaction solvent, the reaction could be initiated under standard conditions at $-50^{\circ} \mathrm{C}$ by the addition of TMSN_{3}. Immediately, an aliquot of the resulting reaction mixture was removed and transferred to a pre-cooled Young's tube under inert atmosphere for NMR spectroscopic analysis at low temperature. Following this, we were surprised to observe a substantial shift in rotamer populations and catalyst ${ }^{1} \mathrm{H}$ NMR resonances favouring major rotamer 13-I in situ ($94: 6$ major/minor) relative to the free-base rotamer distribution ($68: 32$ major/minor) at $-20^{\circ} \mathrm{C}$ (Figure S7) under otherwise identical conditions.

Figure S7: Extracted variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra (aromatic region) of sulfamide catalyst 13 (blue) and species observed in situ (red) at $-20^{\circ} \mathrm{C}$.

Although the isolated catalyst does not display this temperature-dependent behaviour as the free base form, the monoprotic acetate salt of 13 exhibited similar behaviour to that observed in situ (Figure S8). Attempts to isolate the analogous hydrogen azide salt by several methods were unsuccessful, though this can be adequately rationalised in the context of similar studies; ${ }^{[32]}$ poor room temperature association has been observed in other amine complexes with HN_{3}, resulting in its dissociation on irreversible loss of $\mathrm{HN}_{3(g)}$ by evaporation. Furthermore, 13• HOAc catalysed the desymmetrisation of anhydride 1 with TMSN_{3} with the same observed enantioselectivity to that of the free base 13. Given the similarities regarding the temperature-dependent behaviour (with respect to rotamer ratios and ${ }^{1} \mathrm{H}$ NMR spectroscopic chemical shifts) displayed by the species observed in situ and the isolated AcOH salt of 13 were found, the evidence suggests that the catalytically-active species in solution is the structurally-related HN_{3} complex $13 \cdot \mathrm{HN}_{3}$.

Figure S8:
Acetic acid and HN_{3} complexes of sulfamide 13 and the variation in the population of rotameric state 13-1 (\%) with temperature $\left({ }^{\circ} \mathrm{C}\right)$, as observed by variable-temperature ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3}.

Following the above, the following mechanistic rationale can be proposed: the free base form of the model sulfamide catalyst $\mathbf{1 3}$ is first converted to the active hydrazoate complex 13a by trapping of adventitious HN_{3}, which is present in small amounts in commercial samples of TMSN_{3} (Figure S5). This nucleophilic species then facilitates transfer of azide to the anhydride via a stereodetermining addition-elimination reaction at the prochiral carbonyl centre of $\mathbf{1}$. The resulting carboxylate $\mathbf{1 3 b}$ is then silylated by TMSN_{3} to liberate the product $\mathbf{2 5}$ and regenerate the active catalyst 13a (Figure S9).

4. Figure S9. Proposed catalytic cycle for the desymmetrisation of cyclic anhydrides with equimolar TMSN ${ }_{3}$ promoted by Cinchona alkaloid sulfamide organocatalysts.References

[1] F. González-Bobes, N. Kopp, L. Li, J. Deerberg, P. Sharma, S. Leung, M. Davies, J. Bush, J. Hamm, M. Hrytsak, Org. Proc. Res. Dev. 2012, 16, 20512057.
[2] S. N. Smith, R. Craig, S. J. Connon, Chem. Eur. J. 2020, 26, 13378-13382.
[3] S. Pei, S. Xia, F. Yang, J. Chen, M. Wang, W. Sun, Z. Li, K. Yuan, J. Chen, RSC Adv. 2020, 10, 4446-4454.
[4] A. Leonardi, D. Barlocco, F. Montesano, G. Cignarella, G. Motta, R. Testa, E. Poggesi, M. Seeber, P. G. De Benedetti, F. Fanelli, J. Med. Chem. 2004, 47, 1900-1918.
[5] S. J. Shaw, D. A. Goff, L. A. Boralsky, M. Irving, R. Singh, J. Org. Chem. 2013, 78, 8892-8897.

[^0] I. J. Montoya-Balbás, B. Valentín-Guevara, E. López-Mendoza, I. Linzaga-Elizalde, M. Ordoñez, P. Román-Bravo, Molecules 2015, 20, $22028-22043$.
P. L. Feldman, M. F. Brackeen, D. J. Cowan, B. E. Marron, F. J. Schoenen, J. A. Stafford, E. M. Suh, P. L. Domanico, D. Rose, M. A. Leesnitzer, E. S. Brawley, A. B. Strickland, M. W. Verghese, K. M. Connolly, R. Bateman-Fite, L. S. Noel, L. Sekut, S. A. Stimpson, J. Med. Chem. 1995, 38, 1505-1510. K. Hyodo, G. Hasegawa, H. Maki, K. Uchida, Org. Lett. 2019, 21, 2818-2822.
A. S. Paraskar, A. Sudalai, Tetrahedron 2006, 62, 4907-4916.
Q. Lang, G. Gu, Y. Cheng, Q. Yin, X. Zhang, ACS Catal. 2018, 8, 4824-4828. M. Yar, M. G. Unthank, E. M. McGarrigle, V. K. Aggarwal, Chem. Asian J. 2011, 6, 372-375. A. G. H. Wee, G. J. Fan, H. M. Bayirinoba, J. Org. Chem. 2009, 74, 8261-8271. R. M. Wiedhopf, E. R. Trumbull, J. R. Cole, J. Pharm. Sci. 1973, 62, 1206-1207. V. Rodríguez, M. Sánchez, L. Quintero, F. Sartillo-Piscil, Tetrahedron 2004, 60, 10809-10815. P. L. Wang, Y. Li, Y. Wu, C. Li, Q. Lan, X. S. Wang, Org. Lett. 2015, 17, 3698-3701. D. Enders, O. Niemier, Heterocycles 2005, 66, 385-403. J. Sietmann, M. Ong, C. Mück-Lichtenfeld, C. G. Daniliuc, J. M. Wiest, Angew. Chem. Int. Ed. 2021, 60, 9719-9723. Z. Galla, E. Forró, F. Fülöp, Tetrahedron Asymmetry 2016, 27, 729-731. M. L. Cardoso do Vale, J. E. Rodríguez-Borges, O. Caamaño, F. Fernández, X. García-Mera, Tetrahedron 2006, 62, 9475-9482. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. a. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, X. Li, M. Caricato, a. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, a. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. a. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. a. Keith, R. Kobayashi, J. Normand, K. Raghavachari, a. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, 2016, Gaussian 16, Revision C.01, Gaussian, Inc., Wallin. J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. T. A. Keith in AIMAll, TK Gristmill Software (aim.tkgristmill.com), Vol. 2011, TK Gristmill Software, (aim.tkgristmill.com) J. J. Shephard, A. K. Soper, S. K. Callear, S. Imberti, J. S. O. Evans, C. G. Salzmann, Chem. Commun. 2015, 51, 4770-4773. M. Puthanveedu, V. Polychronidou, A. P. Antonchick, Org. Lett. 2019, 21, 3407-3411. J. DeRuiter, A. N. Brubaker, W. L. Whitmer, J. L. Stein, J. Med. Chem. 1986, 29, 2024-2028. S. E. Wengryniuk, A. Weickgenannt, C. Reiher, N. A. Strotman, K. Chen, M. D. Eastgate, P. S. Baran, Org. Lett. 2013, 15, 792-795. J. Nelson, Spectrochim. Acta Part A Mol. Spectrosc. 1970, 26, 235-247 K. Blise, M. W. Cvitkovic, N. J. Gibbs, S. F. Roberts, R. M. Whitaker, G. E. Hofmeister, D. Kohen, J. Org. Chem. 2017, 82, 1347-1355. D. X. Hu, P. Grice, S. V. Ley, J. Org. Chem. 2012, 77, 5198-5202. D. Ferri, T. Bürgi, A. Baiker, J. Chem. Soc. Perkin Trans. 2 1999, 1305-1311. R. A. Olsen, D. Borchardt, L. Mink, A. Agarwal, L. J. Mueller, F. Zaera, J. Am. Chem. Soc. 2006, 128, 15594-15595. Z. Zhang, H. Y. Bae, J. Guin, C. Rabalakos, M. Van Gemmeren, M. Leutzsch, M. Klussmann, B. List, Nat. Commun. 2016, 7, 1-8. J. Humbrías-Martín, M. C. Pérez-Aguilar, R. Mas-Ballesté, A. Dentoni Litta, A. Lattanzi, G. Della Sala, J. A. Fernández-Salas, J. Alemán, Adv. Synth. Catal. 2019, 361, 4790-4796.
Y. H. Joo, H. Gao, Y. Zhang, J. N. N. M. Shreeve, Inorg. Chem. 2010, 49, 3282-3288.

5. CSP-SFC analysis

5.1 Gradient tables and methods

Values obtained for enantiomeric excess were determined by integration of the chromatographic peaks obtained upon separation of the stereoisomers on a Waters' ACQUITY UPC² system using Trefoil AMY1, CEL1, CEL2 ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$) as chiral stationary phase. The standard method sets 'Steps $1-4^{\prime}$ (below) were employed with the following parameters: Column temperature $30^{\circ} \mathrm{C}$; inlet pressure 1500 bar; flow rate $1.20 \mathrm{~mL} / \mathrm{min}$, unless otherwise stated. Racemic samples of chiral products were prepared in order to screen adequate conditions for separation of stereoisomers prior to analysis of enantioenriched samples. Results were obtained in duplicate or triplicate, and \% ee values are reported as an average of these runs.

Step 1.

Mobile phase: $\mathrm{A}=\mathrm{CO}_{2}, \mathrm{~B}=\mathrm{EtOH} / \mathrm{iPrOH} / \mathrm{CH}_{3} \mathrm{CN}(1: 1: 1, v: v)$
Chiral stationary phase: Trefoil AMY1 ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$)

Time (min)	\% A	\% B	Curve
0.00	97.0	3.0	Initial
4.50	40.0	60.0	6
-6.00	40.0	60.0	6
$-a .00$	97.0	3.0	6
$-a)$			

Step 2.

Mobile phase: $\mathrm{A}=\mathrm{CO} 2, \mathrm{~B}=\mathrm{MeOH} / \mathrm{iPrOH}(1: 1, v: v)$
Chiral stationary phase: Trefoil CEL1 ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$)

Time (min)	\% A	\% B	Curve
0.00	97.0	3.0	Initial
8.50	40.0	60.0	6
10.00	40.0	60.0	6
10.10	97.0	3.0	6

Step 3.

Mobile phase: $\mathrm{A}=\mathrm{CO} 2, \mathrm{~B}=\mathrm{EtOH} / \mathrm{MeCN}(1: 1, v: v)$
Chiral stationary phase: Trefoil CEL2 ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$)

Time (min)	\% A	\% B	Curve
0.00	99.0	1.0	Initial
8.50	92.0	8.0	6
10.00	40.0	60.0	6
10.10	97.0	3.0	6

Step 4.
Mobile phase: $\mathrm{A}=\mathrm{CO} 2, \mathrm{~B}=\mathrm{EtOH} / \mathrm{PrOH}(1: 1, v: v)$
Chiral stationary phase: Trefoil AMY1 ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$)

Time (min)	\% A	\% B	Curve
0.00	99.0	1.0	Initial
4.50	40.0	60.0	6
8.10	40.0	60.0	6
8.20	97.0	3.0	6

Step 5.

Mobile phase: $\mathrm{A}=\mathrm{CO}_{2}, \mathrm{~B}=\mathrm{MeOH} / \mathrm{PrOH}(1: 1, v: v)$
Chiral stationary phase: Trefoil CEL1 ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$)

Time (min)	\% A	\% B	Curve
0.00	98.0	2.0	Initial
4.50	90.0	10.0	6
6.00	80.0	20.0	6
7.00	60.0	40.0	6

Step 6.
Mobile phase: $\mathrm{A}=\mathrm{CO}_{2}, \mathrm{~B}=\mathrm{MeOH} / \mathrm{PrOH}(1: 1, \mathrm{v}: \mathrm{v})$, isocratic ($96: 4 \mathrm{~A} / \mathrm{B}$)
Chiral stationary phase: Trefoil CEL1 ($2.5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$)
Flow rate: $2.00 \mathrm{~mL} / \mathrm{min}$
Column temperature: $35^{\circ} \mathrm{C}$
Pressure: 2000 psi

5.2 Chromatograms

Compound 3 (Step 3, 254 nm)

Racemic:

Enantioselective (58\% ee):

Compound 26 (Step 3, 254 nm)

Racemic:

Enantioselective (recrystallised, >99\% ee):

Compound 35 (Step 6, 230 nm)

Racemic:

Enantioselective (65\% ee):

Compound 36 (Step 4, 254 nm)

Racemic:

Enantioselective (64\% ee):

Entry	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)
1	3.33	49.61	3.47	18.12
2	3.50	50.39	3.70	81.88
Total	(Racemate)	100	(Enantioselective)	100

Compound 37 (Step 3, 230 nm)

Racemic:

Enantioselective (70% ee):

Entry	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)
1	4.04	49.83	4.01	15.10
2	4.26	50.17	4.22	84.90
Total	(Racemate)	100	(Enantioselective)	100

Compound 38 (Step 3, 254 nm)

Racemic:

Enantioselective (65\% ee):

Compound 39 (Step 1, 254 nm)

Enantioselective (66% ee):

Compound 40 (Step 6, 254 nm)

Racemic:

Enantioselective (65\% ee):

Compound 41 (Step 3, 212 nm)

Racemic:

Enantioselective (56\% ee):

Entry	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)
1	2.60	48.74	2.66	22.00
2	2.73	51.26	2.88	77.97
Total	(Racemate)	100	(Enantioselective)	100

Racemic:

Enantioselective (70\% ee):

Compound 43 (Step 5, 212 nm)

Racemic:

Enantioselective (70\% ee):

Entry	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)
1	5.10	49.65	5.12	15.04
2	5.33	50.35	5.30	84.96
Total	(Racemate)	100	(Enantioselective)	100

Racemic:

Enantioselective (64\% ee):

Compound 45 (Step 2, 212 nm)

Racemic:

Enantioselective (72\% ee):

Entry	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)	$\mathbf{R}_{\mathbf{T}}$ (mins)	Area (\%)
1	2.60	49.42	2.68	14.17
2	2.71	50.58	2.77	85.83
Total	(Racemate)	100	(Enantioselective)	100

7. NMR spectroscopic data

Compound S7 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound S7 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound S16 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound S17 ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

Compound S18 ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

Compound S18 ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6})

$\cdot 3 \mathrm{HCl}$

Compound S18 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (400 MHz , DMSO- d_{6}) depicting cross-peaks (green) between species in exchange

Piperidine sulfamide $13{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COOD}$)

Piperidine sulfamide $13 \cdot \mathrm{HOAc}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

C2'-chloroazepane sulfamide $31{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound S1 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound S1 ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]

Compound $37{ }^{1} \mathrm{H}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound $38{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | ppm |
| :--- |

Compound $39{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound $40{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound $41{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- |

Compound $42{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\tilde{N}
$\stackrel{0}{0}$

Compound $42{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound $44{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound $45{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound $45{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound S19 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound S19 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8. Coordinates

conformer_A (13-I)

01
N 0.0298542904 -1.8211473993 0.2226148701 H -0.7040956073-2.4866977626 0.4603665868 C - $0.5482097341-0.48451342050 .0939111022$ C $0.21213660480 .3638842833-0.9036682235$ C $0.6313028471 .6912610634-0.6185699645$ C $0.5160195638-0.1562569795-2.1333096937$ C 0.40557525342 .3412815020 .6229171269 C 1.3379361228 2.3817961276-1.6362066822 C $1.22181128730 .6120912185-3.0696705028$ H 0.231470137-1.1703672167-2.3825340561 С 0.85712575563 .61658211660 .8308150802 H-0.1163862463 1.82269709251 .4106638006 C $1.78482954933 .7047029326-1.3858090078$ С 1.55328756484 .3074965281 -0.1923580132 H 2.31949195374 .2162424961 -2.1761638535 H 1.89457525685 .31575862760 .005790786 O 0.69605737154 .31132283771 .9746949628 N 1.62415460521 .8367595063 -2.8430983128 C 0.01880678653 .68531267283 .0471911305 H 0.00656373744 .40828785653 .8599706981 H 0.54180957472 .78200654473 .374594182 H -1.010252653 3.43353506572 .7731282888 C - 2.954702988 -1.1169149016 1.8347993066 C - 3.86255389120 .1357793341 .776573598 H -3.4209271573-1.9145705676 2.4140539353 C - $2.0089618634-0.6597943566-0.3512483493$ C - $3.9632969189-1.9924615952-0.1401562721$ C - 4.13532873750 .45530560970 .3049228436 H -3.3772811412 0.98946464252 .2549907023 H -4.8027895588-0.0402363742 2.3029896402 H -1.9882156733 -1.0952975198-1.353608997 C - $2.7864218410 .6757097962-0.3854906487$ C - $4.8830605083-0.7440636637-0.3163911144$ H - 3.7496254222 -2.4513793786-1.1077371329 H -4.4575480046-2.7454753046 0.4751376594 H-4.7505980233 1.35146195850 .2183034411 H -2.9108179505 1.0212966396 -1.4118264864 H-2.2457642546 1.46168193530 .1467829548 H -5.8026843525-0.8892648342 0.2558147784 H -0.5434435272 0.00445326661 .0674934725 N - 2.693115186 -1.6466244162 0.4928876898 C -5.2590192151-0.5221310902-1.7476985297 C -6.5013875298-0.4376942726-2.2017186715 H -4.4353159597-0.4358280276-2.4539617044 H -6.7118239935-0.2784029688-3.2530334901 H -7.3546181691-0.5254917477-1.5357833528 H -2.0024105867-0.8963927565 2.3178472948 H 1.4615804741 0.189178632-4.0405041928

S 1.3253458604-2.04093879131.2140107886
O $1.2886356875-1.10504299622 .3006698246$
O $1.3100535779-3.44531794411 .4918117823$
C $3.2942463469-0.39171168040 .372191192$
C $2.9397382959-2.5124214721-0.8299426328$
C $4.8026815173-0.57639128620 .3004263217$ H 3.00317713960 .13160610991 .278308162
C $4.4422595859-2.7280231399-0.941155131$
H $2.5663719404-1.9960360767$-1.7227947597
C 5.1906700138-1.3988980045-0.9244088522
H 5.1448957315 -1.0772193732 1.210610344
H $4.6514463859-3.2773615704-1.8614698876$
H 6.2685088722-1.571115051-0.9418811301
H 2.4192015818 -3.4639446908-0.7458223793
H 4.771077492 -3.3500796885-0.1037816708
H $4.9416688424-0.8328336794-1.8290760631$
H 5.27313046870 .40850674940 .2673587406
H 2.95928522770 .1974939478 -0.4889358579
N 2.642452391-1.7015300944 0.349576529
conformer_B (13-II)

01
N $0.0347379247-1.2687238004-0.6967395233$ H - $0.6478544513-1.5896282755-1.3813013709$ C - $0.6552791124-0.83735860770 .5167636791$ C 0.11550718980 .19251527981 .3137720055 C 0.61963673661 .40703117960 .7658671108 C $0.3292180551-0.04443558492 .6443288359$ C $0.47790219231 .7787878693-0.5956195462$ C 1.31264941142 .27666925761 .6443961349 C 1.02531154570 .88827783163 .4307237188 H-0.0226937348-0.9623683967 3.0982497777 C $0.99275412852 .9630103193-1.0499247477$ H $0.00027293131 .0967723549-1.2777179652$ C 1.83664363073 .49262604971 .1366932232
C $1.68109526013 .8319708133-0.1688648508$ H 2.36326010534 .14263883021 .8240013637 H 2.07922440474 .7590699498 -0.5616961745 O $0.91381166753 .3911409793-2.3265129467$ N 1.50696893042 .00812020122 .9606428875 C 0.2386013845 2.5732675268-3.2625321806 H 0.2832745359 3.1011701821-4.2126810015 H -0.8083903846 2.4272790824 -2.9796702074 H $0.72665942971 .5999000463-3.3669655419$ C - $3.1859641267-2.4369819392-0.1611354047$ C - $4.2907935657-2.08661579870 .8641424836$ H -3.5585668254-3.1176270701-0.9273533739 C - $2.0462731978-0.31653379640 .1107876241$ C - $3.8165533075-0.5323651508-1.4528245935$ C - $4.3593428199-0.5618404390 .9795506198$ H -4.0670965259-2.5249104258 1.8386622941 H -5.25806635-2.4800693026 0.5442839671

H -1.9097332434 0.6169571491 -0.4364163874
C - $2.9564758373-0.05396554031 .328343874$
C - $4.8219717748-0.0017764615-0.3835277369$
H -3.4238636791 0.2921435211 -2.0517296827
H - 4.3144011758 -1.2229004474-2.1349515734
H -5.0692980871-0.2684608557 1.753326804
H-2.9607445883 1.00601875021 .5834848678
H -2.594952152 -0.5903692003 2.2097273382
H -5.8145724294-0.4103357485-0.5877584657
H -0.8012976237-1.6965342802 1.1775248167
N -2.6912512505-1.232890099 -0.8373645487
C - $4.9227996361 .4918442209-0.3989058719$
C -6.0499415954 $2.1751588297-0.5374017451$
H-3.9875043758 $2.0391462866-0.295712242$
H -6.0591575275 $3.2590527151-0.5432184712$
H -7.0061882656 $1.6732636604-0.650605391$
H -2.3438881029-2.9357311681 0.3199732221
H 1.18991041090 .68593812334 .4845666136
S 1.2868780179-2.3286260659-0.5912995066
O $1.1292780563-3.1710065280 .5585865247$
O $1.3472533862-2.9143647747-1.8968460203$
C $3.2034360364-1.22744021520 .9662458889$
C $3.0649345997-0.5320522839-1.3940491153$
C $4.7209953519-1.29651129210 .8776807911$
H 2.815525382 -1.9701066049 1.6571479666
C $4.5804130709-0.5787880912$-1.5230112179
H 2.74203471110 .4800735012 -1.1248482404
C 5.2500470332-0.3281493526-0.1756549722
H 5.0169288426 -2.3191354759 0.6263060775
H $4.89378401010 .1689437349-2.2546204813$
H $6.3338963989-0.4208252161-0.267521831$
H 2.5890635271 -0.8006728693-2.3348391457
H 4.8729612261 -1.560282899-1.9071020095
H 5.04165346670 .69905276460 .1442919705
H 5.1386515585-1.0631610593 1.859345866
H $2.9033717354-0.23517375791 .3224852378$
N 2.6266514606 -1.4651921355-0.3565745005

[^0]: M. Litvajova, E. Sorrentino, B. Twamley, S. J. Connon, Beilstein J. Org. Chem. 2021, 17, 2287-2294.
 [7] C. Shao, H. J. Yu, N. Y. Wu, P. Tian, R. Wang, C. G. Feng, G. Q. Lin, Org. Lett. 2011, 13, 788-791.
 [8] J. P. Hilton-Proctor, O. Ilyichova, Z. Zheng, I. G. Jennings, R. W. Johnstone, J. Shortt, S. J. Mountford, M. J. Scanlon, P. E. Thompson, Eur. J. Med. Chem. 2020, 191, 112120.

[^1]: Compound $\mathbf{3 ~}^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

