Dearomative oxyphosphorylation of indoles enables facile access to 2,2-disubstituted indolin-3-ones

Ting Xiong, Xingcui Zhou, and Jun Jiang*

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China. E-mail: jiangjun@gxu.edu.cn

Contents

1. General Information	2
2. Experiment Section	2
2.1 Experimental procedure for optimization of reaction conditions (Table 1):	2
2.2 Experimental procedure for gram-scale reaction (Scheme 4):	3
2.3 Mechanism studies (Scheme 5):	3
3. Reference	5
4. Characterization data of the compounds	6
5. Single Crystal X-ray Structure Determinations of Compounds	16
6. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and ¹⁹ F NMR spectra for compounds	18

1. General Information

NMR spectra were recorded with BrukerAvance III HD500 and BrukerAvance III HD400 spectrometer at 500 MHz or 400 MHz. All ¹H, ¹⁹F, ³¹P and ¹³C NMR spectra were recorded using CDCl₃ or [D₆] DMSO as solvent. Tetramethylsilane (TMS) signals or residual solvent signals were used [TMS $\delta = 0.00$ (¹H NMR), CDCl₃ $\delta = 77.16$ (¹³C NMR), DMSO-d₆ $\delta = 2.50$ (¹H NMR), 39.52 (¹³C NMR)] as internal standards. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet, qd = quartet doublet. HRMS (ESI) Mass spectra were recorded on Thermo Fisher Scientific LTQ FT Ultra. All the reactions were monitored by thin layer chromatography (TLC), carried out on 0.25 mm silica gel plates using UV light as visualizing agent. Column chromatography was carried out on silica gel (particle size 300-400 mesh). The C2 substituted indoles and TEMPO oxoammonium salts were synthesized according to procedures described in the literature. ^[1,2] Substrates **2** were prepared according to the literature method.^[3]

2. Experiment Section

2.1 Experimental procedure for optimization of reaction conditions

(Table 1):

To a solution of 2-phenyl-1*H*-indole **1a** (0.1 mmol) in 1.5 mL solvent was added oxidant (0.1 mmol) at rt and stirred for 5 min. Then *H*-phosphine oxides **2a** (1.5 mmol) in ethyl acetate (0.5 mL) were added to the mixture. The mixture was stirred at room temperature for 1 h. After reaction, the solution was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the product **3a**.

2.2 Experimental procedure for gram-scale reaction (Scheme 4):

A solution of 2-phenyl-1*H*-indole **1a** (1.0 g, 5.2 mmol) and TEMPO⁺OTf⁻ (1.6 g, 5.2 mmol) in 80 mL ethyl acetate were added to 250 mL round bottom flask at rt until the disappearance of **1a**. *H*-phosphorus oxide **2a** (1.6 g, 7.8 mmol) in ethyl acetate (10 mL) were added to the mixture for 1h. After reaction, the solution was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate =2:1 to 1:1) to give the product **3a** (1.6 g) in 75% yield.

2.3 Mechanism studies (Scheme 5):

A solution of 2-phenyl-1*H*-indole **1a** (0.1 mmol) in 2 mL ethyl acetate was added TEMPO⁺OTf⁻ (0.1 mmol) at rt. The mixture was stirred until the disappearance of **1a**. Then, the solution was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate =50:1) to afford the red solid product **4**. The ¹H NMR of **4** was consistent with that reported previously.^[4] ESI-MS analysis was performed with 2,2,6,6- tetramethylpiperidine **5**.

2-phenyl-3*H***-indol-3-one (4)**, ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.40–8.34 (m, 2H), 7.57–7.51 (m, 3H), 7.50–7.45 (m, 2H), 7.41 (d, *J* = 7.4 Hz, 1H), 7.25–7.22 (m, 1H). **HRMS** (ESI) m/z calcd for: C₁₄H₉NO [M+H]⁺: 208.0757, found: 208.0759.

2,2,6,6-tetramethylpiperidine (5), HRMS (ESI) m/z calcd for: $C_9H_{19}N$ $[M+H]^+$: 142.1590, found:142.1593.

A solution of ketimines 4 (0.0207 g, 0.1 mmol) and *H*-phosphorus oxide 2a (0.0303 g, 0.15 mmol) in ethyl acetate (2 mL) were added to cntrifugal tube. The reaction mixture was stirred at room temperature for 1 h. After reaction, the solution was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give the product 3a (0.0371 g) in 91% yield.

3. Reference

[1] (a) S. K. Bhunia, A. Polley, R. Natarajan, R. Jana, *Chem.Eur.J.*, 2015, **21**,16786–16791; (b) N. Jacob, L. Guillemard, J. Wencel-Delord, *Synthesis*, 2020, **52**, 574-580.

[2] X. Liu, X. Yan, Y. Tang, C. S. Jiang, J. H. Yu, K. Wang, H. Zhang, *Chem. Commun.*, 2019, **55**, 6535-6538.

[3] C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei, C. H. Senanayake, *Org. Lett.*, 2005, **7**, 4277.

[4] (a) K. Q. Ling, Synth. Commun., 1995, 25, 3831; (b) J.-X. Liu, Q. Q. Zhou, J. G. Deng, Y. C. Chen, Org. Biomol. Chem., 2013, 11, 8175; (c) E. Najahi, A. Valentin, P.-L. Fabre, K. Reybier, F. Nepveu, Eur. J. Med. Chem., 2014, 78, 269.

4. Characterization data of the compounds

2-(diphenylphosphoryl)-2-phenylindolin-3-one (3a). Yellow solid, 33.0 mg, 81% yield. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.65 (s, 1H), 7.83–7.74 (m, 4H), 7.65–7.58 (m, 2H), 7.51 (t, *J* = 7.0 Hz, 2H), 7.43–7.35 (m, 5H), 7.34–7.28 (m, 3H), 7.22 (d, *J* = 7.7 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 1H), 6.61 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 195.50, 160.82 (d, *J* = 4.9 Hz), 137.83, 133.85, 133.03 (d, *J* = 8.3 Hz), 132.72 (d, *J* = 2.2 Hz), 132.61 (d, *J* = 2.4 Hz), 132.09 (d, *J* = 8.7 Hz), 130.64 (d, *J* = 97.4 Hz), 129.31 (d, *J* = 97.0 Hz), 128.72 (d, *J* = 11.5 Hz), 128.48 (d, *J* = 11.4 Hz), 128.41, 128.33 (d, *J* = 1.4 Hz), 127.14 (d, *J* = 3.5 Hz), 124.32, 119.80, 118.73, 112.83, 74.32 (d, *J* = 68.2 Hz); ³¹P NMR (202 MHz, DMSO-*d*₆) δ 25.82; HRMS (ESI) m/z calcd for: C₂₆H₂₀NO₂PNa [M+Na]⁺: 432.1124, found: 432.1124.

2-(diphenylphosphoryl)-6-methyl-2-phenylindolin-3-one (3b). Yellow solid, 35.9 mg, 85% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.07–7.98 (m, 2H), 7.89 (dd, *J* = 11.0, 7.8 Hz, 2H), 7.77 (d, *J* = 7.8 Hz, 2H), 7.58–7.51 (m, 2H), 7.46 – 7.36 (m, 3H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.28–7.23 (m, 2H), 7.23–7.14 (m, 3H), 6.64 (s, 1H), 6.49 (d, *J* =

7.9 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.07 (d, *J* = 1.2 Hz), 160.70 (d, *J* = 4.0 Hz), 149.04, 133.35 (d, *J* = 1.8 Hz), 133.10 (d, *J* = 9.2 Hz), 132.28 (d, *J* = 2.8 Hz), 132.19 (d, *J* = 9.1 Hz), 132.12 (d, *J* = 2.9 Hz), 129.23 (d, *J* = 96.6 Hz),128.86 (d, *J* = 98.6 Hz) 128.13 – 128.05 (m), 127.99 (d, *J* = 1.5 Hz), 127.89 (d, *J* = 2.0 Hz), 127.57 (d, *J* = 4.0 Hz), 124.22, 120.72, 119.11, 112.22, 75.13 (d, *J* = 63.0 Hz), 22.44; ³¹P NMR (202 MHz, Chloroform-d) δ 29.65; HRMS (ESI) m/z calcd for: C₂₇H₂₂NO₂PNa [M+Na]⁺: 446.1280, found: 446.1280.

2-(diphenylphosphoryl)-5-methyl-2-phenylindolin-3-one (3c). Yellow solid, 37.3 mg, 88% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.07– 7.97 (m, 2H), 7.92–7.84 (m, 2H), 7.82–7.76 (m, 2H), 7.57 (s, 1H), 7.54–7.50 (m, 1H), 7.45–7.39 (m, 2H), 7.39–7.34 (m, 1H),

1H), 7.54–7.50 (m, 1H), 7.45–7.39 (m, 2H), 7.39–7.34 (m, 1H), 7.28–7.16 (m, 6H), 7.12 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.78 (d, *J* =

8.4 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.82, 158.74 (d, *J* = 4.0 Hz), 138.93, 133.36 (d, *J* = 2.0 Hz), 133.08 (d, *J* = 9.1 Hz), 132.27 (d, *J* = 2.9 Hz), 132.18 (d, *J* = 9.1 Hz), 132.07 (d, *J* = 2.8 Hz), 129.23 (d, *J* = 96.5 Hz), 128.84 (d, *J* = 98.5 Hz), 128.29, 128.09 (d, *J* = 1.8 Hz), 127.99 (d, *J* = 1.5 Hz), 127.95, 127.91 (d, *J* = 2.3 Hz), 127.58 (d, *J* = 3.9 Hz), 123.72, 121.44, 112.23, 75.26 (d, *J* = 62.6 Hz), 20.48; ³¹P NMR (202 MHz, Chloroform-*d*) δ 29.44; HRMS (ESI) m/z calcd for: C₂₇H₂₂NO₂PNa [M+Na]⁺: 446.1280, found: 446.1280.

mg, 82% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.03–7.95 (m, 2H), 7.84–7.77 (m, 2H), 7.77–7.71 (m, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.44–7.38 (m, 2H), 7.30-7.35 (m, 2H), 7.24–7.18 (m, 5H), 7.09 (d, *J* = 7.1 Hz, 1H), 6.60 (t, *J* = 7.5 Hz, 1H), 6.39 (s, 1H), 2.19 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.83, 158.81 (d,

J = 2.4 Hz), 137.20, 133.14, 133.04 (d, J = 9.1 Hz), 132.46 (d, J = 2.2 Hz), 132.23 (d, J = 2.1 Hz), 131.92 (d, J = 8.8 Hz), 128.13 (d, J = 12.2 Hz), 128.12 (d, J = 1.4Hz), 128.05 (d, J = 0.64 Hz), 128.37 (d, J = 91.50 Hz), 127.90 (d, J = 11.8 Hz),127.56 (d, J = 91.09 Hz), 127.53 (d, J = 3.6 Hz), 121.92, 121.39, 121.37, 119.56, 74.98 (d, J = 60.0 Hz), 15.79; ³¹P NMR (202 MHz, Chloroform-d) δ 29.68; HRMS (ESI) m/z calcd for: C₂₇H₂₂NO₂PNa [M+Na]⁺: 446.1280, found: 446.1280.

5-bromo-2-(diphenylphosphoryl)-2-phenylindolin-3-one (3e). Yellow solid, 22.1 mg, 45% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.21 (s, 1H), 7.97 (dd, J = 10.7, 8.1 Hz, 2H), 7.91–7.82 (m, 2H), 7.72 (d, J = 7.8 Hz, 2H), 7.58 – 7.50 (m, 2H), 7.46–7.38 (m, 3H), 7.31 (dd, J = 8.7, 2.0 Hz, 1H), 7.29–7.27 (m, 2H), 7.21 (t, J =7.2 Hz, 1H), 7.15 (t, J = 7.5 Hz, 2H), 6.76 (d, J = 8.7 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 195.66, 158.88 (d, J = 3.4 Hz), 139.84, 133.03 (d, J = 9.2 Hz), 132.57, 132.54 (d, J = 2.6 Hz), 132.46 (d, J = 1.9 Hz), 132.11 (d, J = 9.0 Hz), 130.54 (d, J =93.6 Hz), 129.24 (d, J = 93.0 Hz), 128.26 (d, J = 9.0 Hz), 128.18, 128.17 (d, J = 9.1

Hz), 128.02 (d, J = 1.4 Hz), 127.47 (d, J = 3.5 Hz), 126.83, 122.58, 113.95, 110.77, 75.80 (d, J = 62.2 Hz); ³¹**P** NMR (202 MHz, Chloroform-*d*) δ 29.27; HRMS (ESI) m/z calcd for: C₂₆H₁₉NO₂PBrNa [M+Na]⁺: 510.0229 (⁷⁹Br), found: 510.0229.

6-chloro-2-(diphenylphosphoryl)-2-phenylindolin-3-one (3f). Yellow solid, 21.0 mg, 47% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 8.92 (s, 1H), 7.84–7.77 (m, 2H), 7.73 (d, J = 5.5 Hz, 2H), 7.66–7.59 (m, 2H), 7.53 (q, J = 6.7 Hz, 2H), 7.48–7.39 (m, 4H), 7.38–7.28 (m, 3H), 7.24 (d, J = 8.3 Hz, 1H), 6.96 (s, 1H), 6.65–6.58 (m,

1H); ¹³**C NMR** (126 MHz, DMSO-*d*₆) δ 194.33, 160.96 (d, *J* = 4.5 Hz), 142.61, 133.47, 133.05 (d, *J* = 8.4 Hz), 132.91 (d, *J* = 2.3 Hz), 132.79 (d, *J* = 2.7 Hz), 132.09 (d, *J* = 8.7 Hz), 130.31 (d, *J* = 97.6 Hz), 128.99 (d, *J* = 96.8 Hz), 128.81 (d, *J* = 11.7 Hz), 128.60 (d, *J* = 11.2 Hz), 128.57, 128.44 (d, *J* = 1.5 Hz), 127.05 (d, *J* = 3.6 Hz), 126.05, 119.11, 118.65, 112.03, 74.98 (d, *J* = 66.6 Hz); ³¹**P NMR** (202 MHz, DMSO-*d*₆) δ 25.73; **HRMS** (ESI) m/z calcd for: C₂₆H₁₉NO₂PCINa [M+Na]⁺: 466.0734, found: 466.0734.

2-(diphenylphosphoryl)-3-oxo-2-phenylindoline-5-carbonitrile (3g). Yellow solid,

3H), 7.16 (t, J = 7.3 Hz, 2H), 6.84 (d, J = 8.3 Hz, 1H), 6.63 (t, J = 7.3 Hz, 1H); ¹³C

NMR (126 MHz, Chloroform-*d*) δ 196.88, 160.18 (d, J = 3.7 Hz), 137.36, 133.10 (d, J = 2.2 Hz), 133.08 (d, J = 9.2 Hz), 132.37 (d, J = 2.8 Hz), 132.18 (d, J = 3.3 Hz), 132.17 (d, J = 9.0 Hz), 128.99 (d, J = 96.7 Hz), 128.62 (d, J = 98.6Hz), 128.12 (d, J = 7.5 Hz), 128.02, 128.02 (d, J = 7.1 Hz), 127.97 (d, J = 2.1 Hz), 127.56 (d, J = 3.9 Hz), 124.53, 121.29, 118.83, 112.31, 112.21, 75.01 (d, J = 62.0 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 29.50; **HRMS** (APCI) m/z calcd for: C₂₇H₁₉N₂O₂P [M+H]⁺: 435.1257, found: 435.1272.

2-(diphenylphosphoryl)-2-(4-methoxyphenyl)indolin-3-one (3h). Yellow solid, 35.2

mg, 80% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.04–7.95 (m, 2H), 7.88–7.80 (m, 2H), 7.68 (d, J = 7.5 Hz, 2H), 7.60 (s, 1H), 7.51 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 6.8 Hz, 3H), 7.34 (t, J = 7.3 Hz, 1H), 7.28–7.18 (m, 3H), 6.84 (d, J = 8.3 Hz, 1H), 6.69 (d, J = 8.8 Hz, 2H), 6.63 (t, J = 7.4 Hz, 1H),

3.71 (s, 3H); ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 197.16, 160.11 (d, J = 2.7 Hz), 159.35, 137.33, 133.08 (d, J = 8.6 Hz), 132.34, 132.15 (d, J = 5.7 Hz), 132.11, 129.04 (d, J = 94.2 Hz), 128.82 (d, J = 3.0 Hz), 128.11 (d, J = 10.4 Hz), 128.02 (d, J = 10.0 Hz), 127.92 (d, J = 94.6 Hz), 125.02, 124.51, 121.30, 118.81, 113.46 – 113.36 (m), 112.36, 74.54 (d, J = 63.9 Hz), 55.18; ³¹P NMR (202 MHz, Chloroform-*d*) δ 29.74; **HRMS** (ESI) m/z calcd for: C₂₇H₂₂NO₃PNa [M+Na]⁺: 462.1230, found: 462.1230.

2-(diphenylphosphoryl)-2-(4-fluorophenyl)indolin-3-one (3i). Yellow solid, 32.1

mg, 75% yield. 1H NMR (500 MHz, Chloroform-d) δ 8.12 (s, 1H), 8.00 (dd, J = 11.2, 7.7 Hz, 2H), 7.94–7.82 (m, 2H), 7.83–7.73 (m, 2H), 7.58–7.50 (m, 1H), 7.49–7.40 (m, 3H), 7.39–7.33 (m, 1H), 7.30–7.20 (m, 3H), 6.88–6.77 (m, 3H), 6.64 (t, J = 7.4 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.89, ,

162.54 (dd, J = 247.2, 2.3 Hz), 160.28 (d, J = 3.7 Hz), 137.53, 133.04 (d, J = 9.1 Hz), 132.54 (d, J = 2.8 Hz), 132.31 (d, J = 2.7 Hz), 132.09 (d, J = 9.1 Hz), 129.45 (dd, J =8.2, 3.7 Hz), 128.86 (d, J = 3.0 Hz), 128.78 (d, J = 96.5 Hz), 128.47 (d, J = 95.4 Hz), 128.21 (d, J = 9.8 Hz), 128.11 (d, J = 9.5 Hz), 124.55, 121.11, 118.87, 114.73 (dd, J =21.3, 2.1 Hz), 112.32, 74.52 (d, J = 61.6 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 29.53; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -114.10; HRMS (ESI) m/z calcd for: C₂₆H₁₉NO₂PFNa [M+Na]⁺: 450.1030 found: 450.1031.

2-(4-bromophenyl)-2-(diphenylphosphoryl)indolin-3-one (3j). Yellow solid, 33.9

mg, 70% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.05– 7.98 (m, 2H), 7.95 (s, 1H), 7.90–7.84 (m, 2H), 7.63 (dd, J =8.7, 1.9 Hz, 2H), 7.59–7.53 (m, 1H), 7.49–7.44 (m, 2H), 7.42 (d, J = 7.8 Hz, 1H), 7.40–7.34 (m, 1H), 7.29–7.26 (m, 2H), 7.26–7.22 (m, 3H), 6.80 (d, J = 8.3 Hz, 1H), 6.65 (t, J = 7.4 Hz,

1H); ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 196.52 (d, J = 1.0 Hz), 160.22 (d, J = 3.6 Hz), 137.57, 133.04 (d, J = 9.2 Hz), 132.63 (d, J = 2.9 Hz), 132.36 (d, J = 2.8 Hz), 132.24 (d, J = 2.15Hz), 132.06 (d, J = 9.1 Hz), 130.97 (d, J = 2.1 Hz), 129.29 (d, J = 2.1 Hz)

3.8 Hz), 128.71 (d, J = 99.9 Hz), 128.36 (d, J = 98.4 Hz), 128.28 (d, J = 12.2 Hz), 128.14 (d, J = 11.9 Hz), 124.58, 122.48 (d, J = 3.2 Hz), 121.08, 118.98, 112.29, 74.64 (d, J = 61.0 Hz); ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 29.27; **HRMS** (ESI) m/z calcd for: C₂₆H₁₉NO₂PBrNa [M+Na]⁺:510.0229 (⁷⁹Br), found: 510.0229.

2-(diphenylphosphoryl)-2-(naphthalen-2-yl)indolin-3-one (3k). Yellow solid, 33.1 mg, 72% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.19 (s, 1H), 8.05–7.99 (m, 2H), 7.93–7.86 (m, 3H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.59 (dd, *J* = 23.7, 8.5 Hz, 3H), 7.52–7.46 (m, 1H), 7.46–7.40 (m, 2H), 7.40–7.31 (m, 4H), 7.26–7.21 (m, 3H),

6.85 (d, J = 8.3 Hz, 1H), 6.68–6.63 (m, 1H); ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 196.79, 160.13 (d, J = 3.9 Hz), 137.45, 133.10 (d, J = 9.2 Hz), 132.81 (d, J = 1.5 Hz), 132.75 (d, J = 2.1 Hz), 132.48 (d, J = 2.9 Hz), 132.30 (d, J = 2.7 Hz), 132.22 (d, J = 9.1 Hz), 130.53 (d, J = 2.2 Hz), 128.83 (d, J = 96.5 Hz), 128.58, 128.35 (d, J = 99.0 Hz), 128.19 (d, J = 5.3 Hz), 128.09 (d, J = 5.0 Hz), 127.62 (d, J = 1.2 Hz), 127.31, 127.09 (d, J = 5.1 Hz), 126.28, 125.89, 125.05 (d, J = 2.8 Hz), 124.60, 121.33, 119.04, 112.41, 75.17 (d, J = 61.9 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 29.92; HRMS (ESI) m/z calcd for: C₃₀H₂₂NO₂PNa [M+Na]⁺: 482.1280, found: 482.1281.

2-(tert-butyl)-2-(diphenylphosphoryl)indolin-3-one (3l). Yellow solid, 25.1 mg, 65%

yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.50–8.44 (m, 2H), 7.82–7.75 (m, 2H), 7.60–7.50 (m, 3H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.20–7.12 (m, 2H), 7.11–7.06 (m, 2H), 6.67 (d, *J* = 8.3 Hz, 1H), 6.52 (t, *J* = 7.3 Hz, 1H), 6.44 (s, 1H), 1.10 (s, 9H); ¹³**C NMR** (126)

MHz, Chloroform-*d*) δ 200.00 (d, J = 2.4 Hz), 160.45 (d, J = 3.2 Hz), 136.83, 133.01 (d, J = 9.1 Hz), 132.66 (d, J = 91.5 Hz), 132.18 (d, J = 3.0 Hz), 131.90 (d, J = 8.6 Hz), 131.39 (d, J = 2.8 Hz), 130.52 (d, J = 97.3 Hz), 128.42 (d, J = 12.0 Hz), 127.48 (d, J = 11.7 Hz), 123.93, 122.81, 118.40, 111.43, 78.48 (d, J = 60.5 Hz), 40.72 (d, J = 1.6 Hz), 27.00 (d, J = 4.2 Hz); ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 22.82; **HRMS** (ESI) m/z calcd for: C₂₄H₂₄NO₃PNa [M+Na]⁺: 412.1437, found: 412.1437.

2-(bis(4-methoxyphenyl)phosphoryl)-2-phenylindolin-3-one (3m). Yellow solid, 36.6 mg, 78% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 (t, J = 9.3 Hz, 2H), 7.72 (d, J = 7.7 Hz, 3H), 7.70 (s, 1H), 7.42 (dd, J = 7.9, 1.2 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.19 (d, J = 6.8 Hz, 4H), 6.90 (d, J = 7.8 Hz, 2H), 6.85 (d, J = 8.2 Hz, 1H), 6.71 (d, J = 7.6 Hz, 2H), 6.65 (t, J = 7.4 Hz, 1H), 3.82 (s, 3H), 3.71 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.06, 162.74, 162.50, 160.07,

137.27, 134.93 (d, J = 10.2 Hz), 134.05 (d, J = 9.1 Hz), 133.37, 127.93, 127.92, 127.50 (d, J = 1.8 Hz), 124.54, 124.09 (d, J = 98.2 Hz), 122.71 (d, J = 99.3 Hz), 121.49, 118.90, 113.70 (d, J = 9.5 Hz), 113.60 (d, J = 9.6 Hz), 112.34, 75.07 (d, J = 41.2 Hz),55.30, 55.25; ³¹P NMR (202 MHz, Chloroform-*d*) δ 30.32; HRMS (ESI) m/z calcd for: C₂₈H₂₅NO₄P [M+H]⁺: 470.1516, found: 470.1516.

2-(bis(benzo[d][1,3]dioxol-4-yl)phosphoryl)-2-phenylindolin-3-one (3n). Yellow

solid 27.2 mg, 55% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80–7.73 (m, 2H), 7.48 (dd, J = 11.6, 8.3 Hz, 1H), 7.46–7.40 (m, 2H), 7.32 (q, J = 6.4, 5.6 Hz, 2H), 7.25–7.17 (m, 4H), 6.88 (d, J = 8.3 Hz, 1H), 6.82 (dd, J = 8.0, 2.3 Hz, 1H), 6.69 (t, J = 7.4 Hz, 1H), 6.66–6.61 (m, 1H), 6.03–5.97 (m, 2H), 5.91–5.84 (m, 2H), ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.90, 160.04 (d, J = 3.3 Hz), 151.17 (d, J = 2.6 Hz), 150.94 (d, J = 2.7 Hz),

147.65 (d, J = 9.6 Hz), 147.50 (d, J = 8.9 Hz), 137.44, 133.24, 128.83 (d, J = 9.8 Hz), 128.11 (d, J = 1.9 Hz), 128.08, 127.84 (d, J = 10.1 Hz), 127.48 (d, J = 3.8 Hz), 124.64, 121.96 (d, J = 98.1 Hz), 121.41, 121.13 (d, J = 99.0 Hz), 119.05, 112.36 (d, J = 12.2Hz), 112.34, 111.67 (d, J = 12.2 Hz), 108.46 (d, J = 15.4 Hz), 108.29 (d, J = 15.0 Hz), 101.58, 101.50, 75.16 (d, J = 62.6 Hz); ³¹P NMR (202 MHz, Chloroform-d) δ 30.32; HRMS (ESI) m/z calcd for: C₂₈H₂₁NO₆P [M+H]⁺: 498.1101, found: 498.1101.

2-(bis(4-(tert-butyl)phenyl)phosphoryl)-2-phenylindolin-3-one (30). Yellow solid

37.9 mg, 73% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (t, J = 9.3 Hz, 2H), 7.76 (m, 4H), 7.63 (s, 1H), 7.42 (d, J = 7.4 Hz, 2H), 7.37 (d, J = 7.7 Hz, 1H), 7.18 (dd, J = 21.4, 7.1 Hz, 6H), 6.81 (d, J = 8.1 Hz, 1H), 6.59 (t, J = 7.3 Hz, 1H), 1.31 (s, 9H), 1.18 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.92, 160.24, 157.11 – 154.58 (m), 136.99, 133.43 – 133.37 (m), 132.97 (d, J = 9.5 Hz), 132.17 (d, J = 9.4 Hz), 127.88 (d, J = 1.6 Hz), 127.83 (d, J = 1.9

Hz), 127.62 (d, J = 3.7 Hz), 125.73 (d, J = 99.5 Hz),125.44 (d, J = 101.0Hz) 125.10 (d, J = 12.4 Hz), 124.93 (d, J = 12.0 Hz), 124.49, 121.46, 118.61, 112.41, 75.19 (d, J = 60.8 Hz),35.02, 34.85, 31.09, 30.92; ³¹**P NMR** (162 MHz, Chloroform-*d*) δ 30.03; **HRMS** (ESI) m/z calcd for: C₃₄H₃₆NO₂PBr₂ [M+H]⁺: 522.2556, found: 522.2551.

2-(di-p-tolylphosphoryl)-2-phenylindolin-3-one (3p). Yellow solid, 35.1 mg, 80%

yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.83 (dd, *J* = 11.0, 7.9 Hz, 2H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.71 (dd, *J* = 11.0, 7.9 Hz, 2H), 7.57 (s, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.29 (dd, *J* = 15.3, 1.3 Hz, 1H), 7.26–7.15 (m, 5H), 7.03 (dd, *J* = 8.0, 2.7 Hz, 2H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.66 (t, *J* = 7.4 Hz, 1H), 2.39 (s, 3H), 2.27 (s, 3H); ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 196.94, 160.13 (d, *J* = 3.4 Hz), 142.81 (d, *J* = 2.5 Hz),

142.57 (d, J = 2.4 Hz), 137.21, 133.32, 133.02 (d, J = 9.4 Hz), 132.13 (d, J = 9.3 Hz), 128.85 (d, J = 7.9 Hz), 128.75 (d, J = 7.7 Hz), 127.90, 127.88, 127.56 (d, J = 3.5 Hz), 125.86 (d, J = 99.9 Hz), 125.44 (d, J = 100.8 Hz), 124.53, 121.38, 118.70, 112.32, 75.03 (d, J = 61.1 Hz), 21.67, 21.47; ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 30.35; **HRMS** (ESI) m/z calcd for: C₂₈H₂₅NO₂P[M+H]⁺: 438.1617, found: 438.1623.

2-((2,4-dimethylphenyl) (3,5- dimethylphenyl) phosphoryl)-2-phenylindolin-3-one

NH

(3q). Yellow solid, 37.0 mg, 80% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.78–7.67 (m, 2H), 7.45 (d, J = 9.7 Hz, 3H), 7.38 (d, J = 11.5 Hz, 2H), 7.27 (d, J = 9.4 Hz, 3H), 7.11 (s, 2H), 7.04 (s, 1H), 6.95 (s, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.66 $(t, J = 7.0 \text{ Hz}, 1\text{H}), 2.28 (s, 6\text{H}), 2.13 (s, 6\text{H}); {}^{13}\text{C} \text{ NMR} (101)$ MHz, Chloroform-*d*) δ 196.59, 159.87, 137.72 (d, J = 8.3 Hz), 137.59 (d, J = 8.8 Hz), 137.06, 134.09 (d, J = 2.4 Hz), 133.83

94.8 Hz), 127.91 (d, J = 97.8 Hz), 127.92 (d, J = 1.8 Hz), 127.84–127.76 (m), 127.61 (d, J = 3.4 Hz), 124.40, 121.92, 119.02, 112.28, 74.85 (d, J = 59.8 Hz), 21.14, 21.10; ³¹P NMR (162 MHz, Chloroform-d) δ 31.24; HRMS (ESI) m/z calcd for: C₃₀H₂₉NO₂P [M+H]⁺: 466.1930, found: 466.1932.

2-(di-m-tolylphosphoryl)-2-phenylindolin-3-one (3r). Yellow solid, 34.8 mg, 80% yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78 (dd, *J* = 8.3, 2.9 Hz, 1H), 7.76–7.70 (m, 2H), 7.66 (dd, J = 11.6, 5.6 Hz, 2H), 7.62–7.53 (m, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.34–7.29 °0 (m, 3H), 7.28 (s, 1H), 7.19 (q, J = 7.9, 6.5 Hz, 3H), 7.16-7.09(m, 2H), 6.83 (d, J = 8.3 Hz, 1H), 6.65 (t, J = 7.4 Hz, 1H), 2.31 (s, 3H), 2.16 (s, 3H); ¹³C NMR (126 MHz, Chloroform-

d) δ 196.72, 160.00 (d, J = 3.5 Hz),137.91 (d, J = 1.7 Hz), 137.82 (d, J = 1.6 Hz), 137.19, 133.59 (d, J = 8.6 Hz), 133.17 (d, J = 2.0 Hz), 133.13 (d, J = 3.0 Hz), 132.91 (d, J = 2.9 Hz), 132.79 (d, J = 8.6 Hz), 130.06 (d, J = 9.8 Hz), 129.16 (d, J = 9.7 Hz), 128.73 (d, J = 95.9Hz), 128.25 (d, J = 96.4 Hz), 127.95 (d, J = 2.2 Hz), 127.87 (d, J = 2.0 Hz), 127.84, 127.57 (d, J = 3.9 Hz), 124.48, 121.62, 118.92, 112.27, 74.92 (d, J = 60.8 Hz), 21.40, 21.22; ³¹P NMR (202 MHz, Chloroform-d) δ 30.31; HRMS (ESI) m/z calcd for: C₂₈H₂₅NO₂P [M+H]⁺: 438.1617, found: 438.1621.

2-((4-fluoro-3-methylphenyl)(3-fluoro-4-methylphenyl)phosphoryl)-2-

phenylindolin-3-one (3s). Yellow solid 36.0 mg, 76% yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.70–7.59 (m, 2H), 7.52–7.43 (m, 3H), 7.30 (t, J = 7.3 Hz, 1H), 7.25-7.17 (m, 4H), 7.05 (q, J = 7.3 Hz,1H), 6.86 (d, J = 8.3 Hz, 1H), 6.67 (t, J = 7.4 Hz, 1H), 2.30 (s, 3H), 2.18 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) δ 196.73, 161.71 (dd, J = 17.3, 13.3 Hz), 160.25 (d, J = 4.1

Hz), 159.74 (dd, J = 17.3, 14.0 Hz), 137.59, 132.75 (d, J = 2.0 Hz), 131.57 (t, J = 4.9 Hz), 131.46 (t, J = 4.7 Hz), 130.21 (dd, J = 17.1, 2.5 Hz), 130.00 (dd, J = 17.2, 2.6 Hz), 128.58 (d, J = 3.6 Hz), 128.51 (d, J = 3.6 Hz), 128.28 (dd, J = 97.8, 6.0 Hz), 128.24 (d, *J* = 2.1 Hz), 128.10 (d, *J* = 1.9 Hz), 127.78 (dd, *J* =100.6, 6.1 Hz), 127.50 (d, *J* = 3.8 Hz), 124.60, 121.09, 119.46 (dd, J = 24.5, 10.4 Hz), 118.95, 118.72 (dd, J = 24.1, 10.1 Hz), 112.36, 74.96 (d, J = 64.9 Hz), 14.84 (d, J = 3.6 Hz), 14.63 (d, J = 3.4 Hz); ³¹P NMR (202 MHz, Chloroform-d) δ 27.70; ¹⁹F NMR (471 MHz, Chloroform-d) δ -

115.64, -115.72; **HRMS** (ESI) m/z calcd for: C₂₈H₂₃NO₂PF₂ [M+H]⁺: 474.1429, found: 474.1428.

2-(bis(4-fluorophenyl)phosphoryl)-2-phenylindolin-3-one (3t). Yellow solid 31.5

mg, 71% yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.09 - 8.00 (m, 2H), 7.91 - 7.81 (m, 2H), 7.77 (d, *J* = 7.2 Hz, 3H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.27 - 7.18 (m, 2H), 7.17 - 7.10 (m, 2H), 6.94 (t, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.3 Hz, 1H), 6.70 (t, *J* = 7.4 Hz, 1H); ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 197.00 (d, *J* = 1.2 Hz), 166.30 (dd, *J* = 30.4, 3.4 Hz), 164.28 (dd, *J* = 30.4, 3.4 Hz), 160.23

(d, J = 4.0 Hz), 137.74, 135.61 (dd, J = 10.6, 9.0 Hz), 134.69 (dd, J = 10.4, 9.1 Hz), 132.80 (d, J = 2.1 Hz), 128.28 (d, J = 2.4 Hz), 128.13 (d, J = 2.0 Hz), 127.48 (d, J = 4.1 Hz), 124.77 (dd, J = 100.0, 3.3 Hz), 124.58, 124.34 (dd, J = 102.5, 3.3 Hz), 121.07, 119.09, 115.84 – 115.61 (m), 115.60 – 115.37 (m),112.24, 75.05 (d, J = 64.1 Hz); ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 28.45; ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -105.29, -105.52; **HRMS** (ESI) m/z calcd for: C₂₆H₁₈NO₂PBr₂ [M+H]⁺: 446.1116, found: 446.1118.

2-(bis(4-chlorophenyl)phosphoryl)-2-phenylindolin-3-one (3u). Yellow solid,34.2

mg, 72% yield.¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.99–7.90 (m, 2H), 7.76 (t, J = 6.6 Hz, 4H), 7.48–7.38 (m, 3H), 7.36–7.28 (m, 1H), 7.27–7.20 (m, 3H), 7.17 (d, J = 7.6 Hz, 2H), 6.85 (d, J = 8.3 Hz, 1H), 6.68 (t, J = 7.4 Hz, 1H);¹³**C NMR** (101 MHz, Chloroform-*d*) δ 196.90, 160.42 (d, J = 4.2 Hz), 139.36 (d, J = 3.5 Hz), 139.17 (d, J = 3.5 Hz), 137.88, 134.41 (d, J = 10.1 Hz), 133.46 (d, J = 10.0 Hz), 132.63 (d, J = 1.7 Hz), 128.66 (d, J = 8.5 Hz),

128.54 (d, J = 8.3 Hz), 128.40 (d, J = 2.0 Hz), 128.19 (d, J = 1.6 Hz), 127.56 (d, J = 4.0 Hz), 127.31 (d, J = 98.4 Hz), 126.98 (d, J = 100.5 Hz), 124.64, 120.91, 119.08, 112.34, 75.05 (d, J = 64.9 Hz); ³¹**P NMR** (162 MHz, Chloroform-*d*) δ 28.72; **HRMS** (ESI) m/z calcd for: C₂₆H₁₉NO₂PCl₂ [M+H]⁺: 478.0525, found: 478.0521.

2-(bis(4-bromophenyl)phosphoryl)-2-phenylindolin-3-one (3v). Yellow solid 44.1 mg, 78% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (dd, *J* = 10.7, 8.5 Hz, 2H), 7.73 (d, *J* = 7.8 Hz, 2H), 7.70 (s, 1H), 7.65 (dd, *J* = 10.7, 8.5 Hz, 2H), 7.56 (dd, *J* = 8.4, 2.3 Hz, 2H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 6.5 Hz, 2H), 7.35–7.29 (m, 1H), 7.24 (d, *J* = 7.0 Hz, 1H), 7.20 (t, *J* = 7.4 Hz, 2H), 6.84 (d, *J* = 8.3 Hz, 1H), 6.70 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.73, 160.16 (d, *J*

= 3.8 Hz), 137.89, 134.43 (d, J = 10.0 Hz), 133.48 (d, J = 9.8 Hz), 132.57 (d, J = 1.8 Hz), 131.58 (d, J = 12.6 Hz), 131.47(d, J = 12.1 Hz), 128.44 (d, J = 2.5 Hz), 128.24 (d, J = 1.6 Hz), 128.10 (d, J = 3.5 Hz), 127.86 (d, J = 3.5 Hz), 127.67 (d, J = 99.1 Hz),

127.46 (d, J = 4.0 Hz), 127.32 (d, J = 99.7 Hz), 124.67, 121.04, 119.29, 112.30, 74.85 (d, J = 64.4 Hz); ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 28.98; **HRMS** (ESI) m/z calcd for: C₂₆H₁₉NO₂PBr₂ [M+H]⁺: 565.9515 (⁷⁹Br), found: 565.9520.

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3w). Yellow solid 40.4 mg, 74% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.17 (dd, *J* = 10.7, 8.5 Hz, 2H), 7.94 (dd, *J* = 10.6, 8.5 Hz, 2H), 7.77–7.72 (m, 2H), 7.70 (dd, *J* = 8.3, 2.1 Hz, 3H), 7.49 (d, *J* = 6.4 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.37–7.30 (m, 1H), 7.25–7.18 (m, 2H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.71 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.52 (d, *J* = 1.6 Hz), 160.09 (d, *J* = 4.3

Hz), 138.09, 134.75-134.34 (m), 133.82-133.22 (m), 133.53 (d, J = 9.7 Hz), 132.75 (d, J = 94.4 Hz), 132.61 (d, J = 9.5 Hz), 132.48 (d, J = 96.4 Hz), 132.25 (d, J = 2.1 Hz), 128.70 (d, J = 2.4 Hz), 128.39 (d, J = 2.2 Hz), 127.60 – 127.29 (m), 125.32 – 124.83 (m), 124.73, 123.34(qd, J = 272.3 Hz), 121.00, 119.57, 112.29, 74.84 (d, J = 64.9 Hz); ³¹P NMR (202 MHz, Chloroform-d) δ 27.66; ¹⁹F NMR (471 MHz, Chloroform-d) δ - 63.33, -63.54; HRMS (ESI) m/z calcd for: C₂₈H₁₉NO₂PF₆ [M+H]⁺: 546.1052, found: 546.1048.

2-(bis(3-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3x). Yellow

solid 42.5 mg, 78% yield.¹H NMR (500 MHz, Chloroform-*d*) δ 8.29–8.22 (m, 2H), 8.16 (d, *J* = 11.3 Hz, 1H), 7.95–7.88 (m, 1H), 7.80 (s, 1H), 7.76–7.70 (m, 2H), 7.66–7.57 (m, 2H), 7.4–7.38 (m, 2H), 7.35 (s, 1H), 7.35– 7.31 (m, 1H), 7.25–7.17 (m, 3H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.72–6.66 (m, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ

196.47 (d, J = 1.3 Hz), 159.90 (d, J = 4.1 Hz), 138.03, 136.13 (d, J = 9.6 Hz), 135.13 (d, J = 9.4 Hz), 132.09 (d, J = 2.1 Hz), 130.11 (dd, J = 9.8, 3.8 Hz), 131.02 (d, J = 12.4 Hz), 130.76 (d, J = 12.4 Hz), 129.84 (d, J = 96.0 Hz), 129.41 – 129.30 (m), 129.30 (d, J = 96.0 Hz), 129.25 – 129.17 (m), 129.08 (dd, J = 9.5, 3.9 Hz), 128.87 (d, J = 5.6 Hz), 128.78 (d, J = 5.2 Hz), 128.64 (d, J = 2.5 Hz), 128.37 (d, J = 2.1 Hz), 127.30 (d, J = 4.3 Hz), 123.42 (qd, J = 273.2, 27.2 Hz), 124.66, 121.15, 119.64, 112.28, 74.78 (d, J = 64.5 Hz); ³¹**P NMR** (202 MHz, Chloroform-*d*) δ 27.51; ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -62.94, -62.98; **HRMS** (ESI) m/z calcd for: C₂₈H₁₉NO₂PF₆ [M+H]⁺: 546.1052, found: 546.1050.

2-(bis(3,5-bis(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3y).

Yellow solid 55.4 mg, 81% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.51 (d, *J* = 11.0 Hz, 2H), 8.29 (d, *J* = 10.9 Hz, 2H), 8.07 (s, 1H), 7.90 (s, 2H), 7.79–7.72 (m, 2H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.43–7.34 (m, 1H), 7.30–7.27 (m, 1H), 7.20 (t, *J* = 7.7 Hz, 2H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.75 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.19 (d, J = 2.0 Hz), 160.08 (d, J = 4.8 Hz), 138.63, 133.21 (dd, J = 9.5, 3.2 Hz), 132.73 – 131.59 (m), 131.15(d, J = 95.2 Hz), 131.07 (d, J = 2.3 Hz), 130.60 (d, J = 98.0 Hz), 129.22 (d, J = 2.6 Hz), 128.70 (d, J = 2.2 Hz), 127.17 (d, J = 4.5 Hz), 126.80 – 126.38 (m), 124.83, 122.53 (qd, J = 272.9, 33.2 Hz), 120.82, 120.17, 112.33, 74.79 (d, J = 68.0 Hz); ³¹P NMR (202 MHz, Chloroform-*d*) δ 27.61; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -63.14, -63.20; **HRMS** (ESI) m/z calcd for: C₃₀H₁₇NO₂PF₁₂ [M+H]⁺: 682.0800, found: 682.0798.

2-phenyl-2-(phenyl(propyl)phosphoryl)indolin-3-one (3z). Yellow solid 20.7 mg, 53%

yield, mixture of diastereomer (1:1 dr). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 7.8 Hz, 2H), 7.70–7.64 (m, 2H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.48 (q, *J* = 7.2 Hz, 4H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.40–7.34 (m, 4H), 7.29 (s, 2H), 7.22–7.18 (m, 2H), 7.16 (t, 2H), 7.11 (t, *J* = 7.4 Hz, 2H), 7.07 (d, *J* = 8.2 Hz, 1H), 6.84 (t, *J* = 7.4

Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.54 (t, J = 7.4 Hz, 1H), 2.07–1.88 (m, 4H), 1.40– 1.29 (m, 4H), 1.29–1.20 (m, 4H), 0.80 (t, J = 7.1 Hz, 3H), 0.73 (t, J = 7.2 Hz, 3H); ¹³C **NMR** (126 MHz, Chloroform-*d*) δ 196.76, 196.71, 160.18 (d, J = 3.1 Hz), 159.97 (d, J = 2.9 Hz), 137.69, 137.10, 132.92 (d, J = 1.9 Hz), 132.77 (d, J = 1.8 Hz), 132.51 (d, J = 8.7 Hz), 132.39 (d, J = 1.9 Hz), 132.12 (d, J = 8.8 Hz), 132.07 (d, J = 1.4 Hz), 128.52 (d, J = 1.4 Hz), 128.30 (d, J = 1.8 Hz), 128.09 (d, J = 82.6 Hz), 128.03 (d, J = 11.9 Hz), 127.89 (d, J = 11.4 Hz), 127.74 (d, J = 1.8 Hz), 127.68 (d, J = 1.1 Hz), 127.37 (d, J = 80.5 Hz), 127.35 (d, J = 3.2 Hz), 126.75 (d, J = 2.8 Hz), 124.82, 124.24, 121.32, 121.02, 119.17, 118.61, 112.80, 112.11, 73.99 (d, J = 65.7 Hz), 73.92 (d, J = 64.8 Hz), 24.08 (d, J = 8.5 Hz), 23.96 (d, J = 7.5 Hz), 23.95 (d, J = 66.2 Hz), 23.40 (d, J = 4.2 Hz), 22.84 (d, J = 4.2 Hz), 22.71 (d, J = 67.6 Hz), 13.57, 13.53; ³¹P NMR (202 MHz, Chloroform-*d*) δ 42.95, 41.86; **HRMS** (ESI) m/z calcd for: C₂₄H₂₅NO₂P [M+H]⁺: 390.1617, found: 390.1616.

2-(dimethylphosphoryl)-2-phenylindolin-3-one (3aa). Yellow solid 23.1 mg, 81%

yield. ¹**H NMR** (500 MHz, DMSO-*d*6) δ 8.84 (s, 1H), 7.85–7.80 (m, 2H), 7.5–7.51 (m, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.38–7.33 (m, 1H), 7.09 (d, *J* = 8.3 Hz, 1H), 6.82–6.75 (m, 1H), 1.35 (d, *J* = 13.0 Hz, 3H), 1.26 (d, *J* = 12.5 Hz, 3H); ¹³C NMR (126)

MHz, DMSO-*d*₆) δ 195.99, 160.89 (d, *J* = 4.0 Hz), 138.25, 133.79 (d, *J* = 1.1 Hz), 128.60 (d, *J* = 1.8 Hz), 128.36 (d, *J* = 2.1 Hz), 126.83 (d, *J* = 3.5 Hz), 124.63, 119.73, 118.68, 112.73, 73.75 (d, *J* = 60.8 Hz), 12.90 (d, *J* = 90.4 Hz), 12.37(d, *J* = 89.4Hz); ³¹P NMR (162 MHz, Chloroform-*d*) δ 48.58; HRMS (ESI) m/z calcd for: C₁₆H₁₆NO₂P [M+H]⁺: 286.0991, found: 286.0993.

ethyl (3-oxo-2-phenylindolin-2-yl)(phenyl)phosphinate (3ab). Yellow solid 24.6 mg,

65% yield, mixture of diastereomer (1:1 dr). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (d, J = 7.8 Hz, 2H), 7.71 (dd, J = 10.9, 7.9 Hz, 2H), 7.59 (q, J = 5.6, 4.2 Hz, 6H), 7.53 (t, J = 7.5 Hz, 1H), 7.45–7.40 (m, 1H), 7.40–7.31 (m, 7H), 7.25–7.15 (m, 6H), 6.98 (d, J = 8.2 Hz, 1H), 6.83–6.77 (m, 3H), 6.59 (t, J = 7.3 Hz, 1H),

4.07–3.98 (m, 4H), 1.29 (t, J = 7.0 Hz, 3H), 1.08 (t, J = 7.0 Hz, 3H); ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 195.49, 195.08, 159.84 (d, J = 3.3 Hz), 159.63 (d, J = 3.9 Hz), 137.09, 136.97, 133.66 (d, J = 9.4 Hz), 133.18 (d, J = 9.4 Hz), 133.02 (d, J = 2.7 Hz), 132.87, 132.83, 132.73 (d, J = 2.6 Hz), 128.21 (d, J = 2.1 Hz), 128.15 (d, J = 2.4 Hz), 128.01 (d, J = 1.8 Hz), 127.93 (d, J = 3.1 Hz), 127.90 (d, J = 1.8 Hz), 127.88 (d, J = 2.3 Hz), 127.43 (d, J = 85.4 Hz), 127.31 (d, J = 3.7 Hz), 126.90 (d, J = 4.2 Hz), 126.41 (d, J = 94.8 Hz), 73.29 (d, J = 91.8 Hz), 63.05 (d, J = 7.6 Hz), 62.65 (d, J = 7.3 Hz), 16.44 (d, J = 5.4 Hz), 16.30 (d, J = 5.7 Hz); ³¹**P** NMR (202 MHz, Chloroform-*d*) δ 36.21, 30.45; **HRMS** (ESI) m/z calcd for: C₂₂H₂₁NO₃P [M+H]⁺: 378.1254, found: 378.1255.

diethyl (3-oxo-2-phenylindolin-2-yl)phosphonate(3ac). Yellow solid 22.5 mg, 65%

yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.00–7.87 (m, 2H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.50–7.42 (m, 1H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.34 – 7.29 (m, 1H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.84 (t, *J* = 7.4 Hz, 1H), 6.17 (s, 1H), 4.13 – 4.02 (m, 2H), 4.01 – 3.86 (m, 2H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.07 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 194.67 (d, *J* = 4.0 Hz), 159.80 (d, *J* = 4.5

Hz), 137.29, 133.44 (d, J = 2.9 Hz), 128.34 (d, J = 2.6 Hz), 128.26 (d, J = 3.0 Hz), 126.80 (d, J = 4.9 Hz), 125.19, 120.62, 119.56, 112.53, 71.52 (d, J = 144.6 Hz), 64.59 (d, J = 7.7 Hz), 64.33 (d, J = 7.3 Hz), 16.23 (d, J = 5.9 Hz), 16.18 (d, J = 5.9 Hz);³¹P **NMR** (202 MHz, Chloroform-*d*) δ 15.86; **HRMS** (ESI) m/z calcd for: C₁₈H₂₀NO₄P [M+H]⁺: 346.1203, found: 346.1204.

dimethyl (3-oxo-2-phenylindolin-2-yl)phosphonate(3ad). Yellow solid 20.3 mg, 64%

yield. ¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.95–7.89 (m, 2H), 7.67–7.62 (m, 1H), 7.51–7.46 (m, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.36–7.31 (m, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.87 (t, *J* = 7.4 Hz, 1H), 3.66 (dd, *J* = 17.4, 10.7 Hz, 6H); ¹³**C** NMR (126 MHz, Chloroform*d*) δ 194.53 (d, *J* = 3.8 Hz), 159.69 (d, *J* = 4.9 Hz), 137.50, 133.18

(d, J = 3.1 Hz), 128.53 (d, J = 2.7 Hz), 128.46 (d, J = 3.0 Hz), 126.67 (d, J = 4.9 Hz), 125.33, 120.35 (d, J = 1.9 Hz), 119.75, 112.60, 71.27 (d, J = 146.7 Hz), 54.96 (d, J = 7.5 Hz), 54.71 (d, J = 7.3 Hz), 50.85 (s, MeOH); ³¹P NMR (202 MHz, Chloroform-*d*) δ 18.46; **HRMS** (ESI) m/z calcd for: C₁₆H₁₇NO₄P [M+H]⁺: 318.0890, found: 318.0887.

5. Single Crystal X-ray Structure Determinations of Compounds

Single crystal X-ray structure determinations of compound 3ac (CCDC: 2159691)

Bond precision:	C-C = 0.0045 A	Wavelength=0.71073
Cell:	a=9.8688(7) b=9.9088(7)	c=10.7278(8)
	alpha=73.336 (2) beta=	75.766 (2)
	gamma=60.403 (2)	
Temperature:	293 K	
	Calculated	Reported
Volume	866.99 (11)	866.99 (11)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C18 H20 N O4 P	C18 H20 N O4 P
Sum formula	C18 H20 N O2 P	C18 H20 N O4 P
Mr	345.32	345.32
Dx,g cm-3	1.323	1.323
Z	2	2
Mu (mm-1)	0.180	0.180
F000	364.0	364.0
F000'	364.37	
h,k,lmax	12,12,13	12,12,13

Nref	3991	3970	
Tmin,Tmax	0.945,0.972	0.689,0.746	
Tmin'	0.937		
Correction method= # Repo	rted T Limits:	Tmin=0.689 Tmax=0.746	
AbsCorr = MULTI-SCAN			
Data completeness= 0.995		Theta(max) = 27.551	
R(reflections) = 0.0589(3309)		wR2(reflections)= 0.1673(3970)	
S = 1.026		Npar= 221	

6. ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra for compounds

2-(diphenylphosphoryl)-2-phenylindolin-3-one (3a)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

2-(diphenylphosphoryl)-6-methyl-2-phenylindolin-3-one (3b)

2-(diphenylphosphoryl)-5-methyl-2-phenylindolin-3-one (3c)

2-(diphenylphosphoryl)-7-methyl-2-phenylindolin-3-one (3d)

un mit die der in der sicher all der sicher der sicher der sicher der sicher auf der sicher alle der sicher der Auf der sicher sicher der sicher de	

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2; f1 (ppm)

5-bromo-2-(diphenylphosphoryl)-2-phenylindolin-3-one (3e)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.1 f1 (ppm)

6-chloro-2-(diphenylphosphoryl)-2-phenylindolin-3-one (3f)

-25.7314

50 130 110 90 70 50 30) 10 -10 -30 -50 -70 -90 -110 -130 f1 (ppm)	-150 -170 -190 -210 -230 -24

2-(diphenylphosphoryl)-3-oxo-2-phenylindoline-5-carbonitrile (3g)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-(diphenylphosphoryl)-2-(4-methoxyphenyl)indolin-3-one (3h)

-29.7427

2-(diphenylphosphoryl)-2-(4-fluorophenyl)indolin-3-one (3i)

2-(4-bromophenyl)-2-(diphenylphosphoryl)indolin-3-one (3j)

2-(diphenylphosphoryl)-2-(naphthalen-2-yl)indolin-3-one (3k)

2-(tert-butyl)-2-(diphenylphosphoryl)indolin-3-one (3l).

2-(bis(4-methoxyphenyl)phosphoryl)-2-phenylindolin-3-one (3m)

2-(bis(benzo[d][1,3]dioxol-4-yl)phosphoryl)-2-phenylindolin-3-one (3n)

2-(bis(4-(tert-butyl)phenyl)phosphoryl)-2-phenylindolin-3-one (30)

-30 -50 -70 f1 (ppm) -90 -110 -130 -150 -170 -190 -210 -230 -25 130 110 -10

2-(di-p-tolylphosphoryl)-2-phenylindolin-3-one (3p)

35.5 135.0 134.5 134.0 133.5 133.0 132.5 132.0 131.5 131.0 130.5 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5 126 f1 (ppm)

2-((2,4-dimethylphenyl)(3,5-dimethylphenyl)phosphoryl)-2-phenylindolin-3-one (3q)

2-(di-m-tolylphosphoryl)-2-phenylindolin-3-one (3r)

2-(bis(4-fluorophenyl)phosphoryl)-2-phenylindolin-3-one (3t)

2-(bis(4-chlorophenyl)phosphoryl)-2-phenylindolin-3-one (3u)

2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3w)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2! f1 (ppm)

2-(bis(3-(trifluoromethyl)phosphoryl)-2-phenylindolin-3-one (3x)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 f1 (ppm)

2-(bis(3,5-bis(trifluoromethyl)phenyl)phosphoryl)-2-phenylindolin-3-one (3y)

2-phenyl-2-(phenyl(propyl)phosphoryl)indolin-3-one (3z)

ethyl (3-oxo-2-phenylindolin-2-yl)(phenyl)phosphinate(3ab)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

dimethyl (3-oxo-2-phenylindolin-2-yl)phosphonate(3ad).

