Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Rapid Construction of Indole-fused 8–10 Membered Lactones via a Tandem Reaction

Zhen Li,[‡] Shiqiang Ma,[‡] Fuhai Liu, Ruize Ma, Jipeng Zhao, Xingang Xie* and Xuegong She

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

*E-mail: xiexg @lzu.edu.cn

Contents

1. General Information	2
2. Preparation and characterization of starting materials	2-5
3. General procedure for the tandem reaction	5
4. Characterization data for the products	5-10
5. X-ray crystallography data for 2a	11
6. Derivatization of 2,3-disubstituted indoles	11-13

1. General Information

Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Oxygen- and moisture-sensitive reactions were carried out under argon atmosphere. Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction.

High-resolution mass spectral analysis (HRMS) data were measured on a Bruker APEXII mass spectrometer by means of the electrospray ionization (ESI) technique. ¹H NMR and ¹³C NMR spectra were recorded on 400 MHz spectrometers. Chemical shifts are reported as δ values relative to internal chloroform (δ 7.26 for 1H NMR and 77.0 for 13C NMR). Melting points were measured on a melting point apparatus and are uncorrected. Oil bath was used as heat source for reactions above room temperature.

2. Preparation and characterization of starting materials

General procedure for the substrates:

A mixture of 5,5-dimethyl-1,3-cyclohexanedione (5 mmol, 1 equiv), anhydrous K_2CO_3 (15 mmol, 3 equiv), and o-iodonitrobenzene (10 mmol, 2 equiv) in dimethyl sulfoxide (50 ml) was heated to 88 °C for 24 h. After cooling, the mixture was poured into ice water. The resulting solution was acidified with concentrated hydrochloric acid and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to give the crude compound, which was used in the next reaction without purification.

A mixture of 5,5-dimethyl-2-(2-nitrophenyl)-1,3-cyclohexanedione (5 mmol, 1equiv), K_2CO_3 (1.037 g, 7.5 mmol, 1.5 equiv) and allyl bromide (5 mmol, 1 equiv) in anhydrous acetone (50 ml) was stirred at reflux temperature for 15 h. Then, the mixture was concentrated *in vacuo*, the residue was solubilized with CH₂Cl₂ and washed with water. The aqueous layer was back-extracted with CH₂Cl₂, the combined organic layers

were dried with Na₂SO₄, filtered and concentrated under vacuum.

A solution of 5,5-dimethyl-3-allyloxy-2-(o-nitrophenyl)-2-cyclohexenone (1 mmol) in anhydrous DMF (10 ml) was stirred at reflux temperature for 12 h. Then, the mixture was diluted with ether, the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to give the compound **1a**.

Substrate 1c 2-allyl-2-(4-methoxy-2-nitrophenyl)-5,5-dimethylcyclohexane-1,3dione was obtained as a white solid. Mp: 85-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 0.8 Hz, 1H), 7.12 (d, J = 1.6 Hz, 2H), 5.64 – 5.54 (m, 1H), 4.97 – 4.92 (m, 2H), 3.88 (s, 3H), 2.94 (d, J = 7.2 Hz, 2H), 2.74 (d, J = 14.4 Hz, 2H), 2.58 (d, J = 14.4 Hz, 2H), 1.17 (s, 3H), 1.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 159.2, 149.8, 132.7, 132.4, 122.2, 119.1, 118.8, 110.4, 73.7, 55.8, 51.8, 38.1, 30.5, 30.3, 29.0; HRMS ESI Calcd for C₁₈H₂₁NO₅ [M+Na]⁺: 354.1312, Found: 354.1310.

Substrate 1d 2-allyl-2-(4-methyl-2-nitrophenyl)-5,5-dimethylcyclohexane-1,3dione was obtained as a yellow solid solid. Mp: 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 1.2 Hz, 1H), 7.41 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 5.59 (ddt, *J* = 17.2, 10.0, 7.2 Hz, 1H), 4.96 – 4.91 (m, 2H), 2.95 (d, *J* = 7.2 Hz, 2H), 2.74 (d, *J* = 14.4 Hz, 2H), 2.58 (d, *J* = 14.4 Hz, 2H), 2.43 (s, 3H), 1.17 (s, 3H), 1.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 148.9, 139.5, 133.4, 132.4, 131.6, 127.6, 125.8, 119.1, 74.0, 51.8, 38.1, 30.5, 30.3, 29.0, 20.6; HRMS ESI Calcd for C₁₈H₂₁NO₄ [M+H]⁺: 316.1543, Found: 316.1539.

Substrate 1e 2-allyl-2-(4-chloro-2-nitrophenyl)-5,5-dimethylcyclohexane-1,3dione was obtained as a yellow solid solid. Mp: 139-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (t, *J* = 2.4 Hz, 1H), 7.60 – 7.57 (m, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 5.51 (tdd, *J* = 12.8, 6.8, 2.8 Hz, 1H), 5.09 – 4.97 (m, 2H), 3.00 (d, *J* = 6.8 Hz, 2H), 2.69 (s, 4H), 1.22 (d, *J* = 2.0 Hz, 3H), 1.09 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 149.6, 134.7, 133.1, 132.6, 131.4, 128.8, 125.5, 119.9, 73.5, 51.3, 38.7, 30.4, 30.3, 30.1; HRMS ESI Calcd for C₁₇H₁₈ClNO₄ [M+Na]⁺: 358.0817, Found: 358.0813.

Substrate 1f 2-allyl-2-(4-bromo-2-nitrophenyl)-5,5-dimethylcyclohexane-1,3dione was obtained as a yellow solid solid. Mp: 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.73 (dd, J = 8.4, 1.6 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 5.56 – 5.45 (m, 1H), 5.02 (dd, J = 12.4, 11.2 Hz, 2H), 3.00 (d, J = 6.8 Hz, 2H), 2.69 (s, 4H), 1.21 (s, 3H), 1.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 149.6, 135.6, 133.3, 131.3, 129.2, 128.2, 122.1, 119.9, 73.5, 51.2, 38.6, 30.3, 30.3, 30.0; HRMS ESI Calcd for C₁₇H₁₈BrNO₄ [M+H] +: 380.0492,382.0472, Found: 380.0491,382.0471.

Substrate 1j 5,5-dimethyl-2-(2-methylallyl)-2-(2-nitrophenyl)cyclohexane-1,3dione was obtained as a white solid. Mp: 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ

7.92 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 4.72 (s, 1H), 4.45 (s, 1H), 2.99 (s, 2H), 2.74 (d, J = 14.4 Hz, 2H), 2.62 (d, J = 14.4 Hz, 2H), 1.52 (s, 3H), 1.16 (s, 3H), 1.02 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 202.7, 149.2, 139.8, 132.5, 132.4, 130.9, 128.9, 125.4, 116.6, 75.2, 51.7, 39.8, 30.4, 30.2, 29.2, 24.6; **HRMS ESI** Calcd for C₁₇H₂₁NO₄ [M+H] ⁺: 316.1543, Found: 316.1541.

3. General procedure for the tandem reaction

Under an argon atmosphere, a mixture of compound **1a** (0.10 mmol, 1.0 equiv.), $Fe(acac)_3$ (0.10 mmol, 1.0 equiv.), PhSiH₃ (0.40 mmol, 4.0 equiv.) in EtOH (1 mL) was stirred at 60 °C for 24 h. Then the reaction mixture was cooled to room temperature. EtOH was evaporated to give crude product, which was purified by silica gel column chromatography to afford compound **2a** (20 mg, 74%) as a white solid.

4. Characterization data for the products

Compound 2a 2,6,6-trimethyl-1,2,5,6,7,8-hexahydro-4H-oxonino[**5,4-b**]**indol-4-one** was obtained as a white solid. Mp: 222-224 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.08 (dtd, *J* = 18.8, 7.2, 1.2 Hz, 2H), 4.99 (ddd, *J* = 10.0, 6.4, 2.0 Hz, 1H), 3.10 – 3.01 (m, 2H), 2.68 (dd, *J* = 14.4, 10.0 Hz, 1H), 2.53 (d, *J* = 14.8 Hz, 1H), 2.33 (d, *J* = 11.2 Hz, 1H), 2.02 (d, *J* = 11.2 Hz, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.20 (d, *J* = 2.8 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.7,

135.2, 133.4, 128.1, 121.5, 119.0, 117.9, 110.1, 109.9, 69.9, 47.7, 37.8, 37.3, 33.8, 32.5, 28.3, 20.2; **HRMS ESI** Calcd for C₁₇H₂₁NO₂ [M+Na] ⁺: 294.1465, Found: 294.1460.

Compound 2b 2-methyl-1,2,5,6,7,8-hexahydro-4H-oxonino[**5,4-b**]**indol-4-one** was obtained as a white solid. Mp: 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.08 (ddd, *J* = 15.6, 14.0, 7.2 Hz, 2H), 5.03 – 4.96 (m, 1H), 3.00 (t, *J* = 12.8 Hz, 2H), 2.85 (dd, *J* = 14.4, 7.6 Hz, 1H), 2.72 (dd, *J* = 14.4, 10.0 Hz, 1H), 2.39 (td, *J* = 11.6, 7.2 Hz, 1H), 2.28 – 2.23 (m, 2H), 2.16 – 2.09 (m, 1H), 1.42 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 136.1, 135.7, 128.2, 121.6, 119.2, 117.8, 110.3, 109.0, 70.2, 34.3, 32.4, 28.0, 24.4, 20.2; **HRMS ESI** Calcd for C₁₅H₁₇NO₂ [M+H] ⁺: 244.1332, Found: 244.1327.

Compound 2c 10-methoxy-2,6,6-trimethyl-1,2,5,6,7,8-hexahydro-4H-oxonino[**5,4-b**]**indol-4-one** was obtained as a white solid. Mp: 220-222 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 6.75 – 6.72 (m, 2H), 4.97 (dq, *J* = 12.8, 6.4 Hz, 1H), 3.81 (s, 3H), 3.06 (d, *J* = 14.8 Hz, 1H), 2.97 (d, *J* = 14.0 Hz, 1H), 2.65 (dd, *J* = 14.4, 10.0 Hz, 1H), 2.51 (d, *J* = 14.8 Hz, 1H), 2.32 (d, *J* = 11.2 Hz, 1H), 2.02 (d, *J* = 11.2 Hz, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.23 (s, 3H), 1.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 156.2, 135.8, 132.1, 122.5, 118.5, 109.8, 108.7, 94.0, 69.8, 55.7, 47.6, 37.8, 37.4, 33.8, 32.6, 28.4, 20.2; **HRMS ESI** Calcd for C₁₈H₂₃NO₃ [M+H] ⁺: 302.1751, Found: 302.1744.

Compound 2d 2,6,6,10-tetramethyl-1,2,5,6,7,8-hexahydro-4H-oxonino[5,4b]indol-4-one was obtained as a white solid. Mp: 158-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.04 (s, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 4.98 (dqd, *J* = 12.8, 6.4, 1.6 Hz, 1H), 3.10 – 2.99 (m, 2H), 2.66 (dd, *J* = 14.8, 10.0 Hz, 1H), 2.54 (d, *J* = 14.8 Hz, 1H), 2.43 (s, 3H), 2.33 (d, *J* = 11.2 Hz, 1H), 2.02 (d, *J* = 11.2 Hz, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.22 (d, *J* = 4.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 135.5, 132.7, 131.2, 126.0, 120.7, 117.5, 110.1, 109.7, 69.9, 47.7, 37.8, 37.4, 33.7, 32.6, 28.3, 21.6, 20.2; **HRMS ESI** Calcd for C₁₈H₂₃NO₂ [M+H] ⁺: 286.1802, Found: 286.1799.

Compound 2e 10-chloro-2,6,6-trimethyl-1,2,5,6,7,8-hexahydro-4H-oxonino[**5,4-b**]**indol-4-one** was obtained as a yellow solid solid. Mp: 160-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.22 (d, *J* = 1.6 Hz, 1H), 7.02 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.97 (dqd, *J* = 12.8, 6.4, 1.6 Hz, 1H), 3.09 (d, *J* = 14.8 Hz, 1H), 2.98 (dd, *J* = 14.8, 1.6 Hz, 1H), 2.66 (dd, *J* = 14.8, 10.0 Hz, 1H), 2.53 (d, *J* = 14.8 Hz, 1H), 2.34 (d, *J* = 11.2 Hz, 1H), 2.03 (d, *J* = 11.2 Hz, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.22 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 135.4, 134.2, 127.5, 126.7, 119.8, 118.8, 110.2, 110.1, 69.7, 47.6, 37.9, 37.4, 33.9, 32.6, 28.4, 20.3; HRMS ESI Calcd for C₁₇H₂₀CINO₂ [M+H] ⁺: 306.1255, Found: 306.1253.

Compound 2f 10-bromo-2,6,6-trimethyl-1,2,5,6,7,8-hexahydro-4H-oxonino[5,4b]indol-4-one was obtained as a white solid. Mp: 236-238 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.38 (d, *J* = 1.6 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.16 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.97 (dtd, *J* = 12.8, 6.4, 4.8 Hz, 1H), 3.09 (d, *J* = 14.8 Hz, 1H), 2.96 (d, *J* = 1.6 Hz, 1H), 2.67 (dd, *J* = 14.8, 10.0 Hz, 1H), 2.53 (d, *J* = 14.8 Hz, 1H), 2.34 (d, *J* = 11.2 Hz, 1H), 2.03 (d, *J* = 11.2 Hz, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.23 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 135.9, 134.1, 127.0, 122.3, 119.2, 115.1, 113.0, 110.3, 69.7, 47.6, 37.8, 37.3, 33.8, 32.5, 28.4, 20.2; HRMS ESI Calcd for C₁₇H₂₀BrNO₂ [M+H] +: 350.0750, 352.0730, Found: 350.0749, 352.0746.

Compound 2g 2-methyl-1,5,6,7-tetrahydrooxocino[**5,4-b**]**indol-4**(**2H**)-**one** was obtained as a colorless oil liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.28 (s, 1H), 7.15 – 7.07 (m, 2H), 4.99 – 4.95 (m, 1H), 3.45 (ddd, J = 14.0, 11.6, 6.4 Hz, 1H), 3.07 – 3.03 (m, 1H), 2.93 – 2.87 (m, 1H), 2.81 (ddd, J = 10.0, 9.2, 6.4 Hz, 2H), 2.53 (ddd, J = 13.2, 11.6, 5.2 Hz, 1H), 1.47 (d, J = 6.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.5, 134.8, 134.5, 128.8, 121.6, 119.5, 117.8, 110.6, 109.3, 76.8, 38.0, 32.8, 24.8, 20.4. **HRMS ESI** Calcd for C₁₄H₁₅NO₂ [M+H] ⁺: 230.1176, Found: 230.1174.

Compound 2h 7-methyl-8,13-dihydrobenzo[6,7]oxocino[5,4-b]indol-5(7H)-one was obtained as a white solid. Mp: 252-254 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.57 (dd, *J* = 7.6, 3.2 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.45 (td, *J* = 7.2, 1.6 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.17 – 7.14 (m, 1H), 5.18 (ddd, *J* = 11.6, 6.0, 2.4 Hz, 1H), 3.43 – 3.36 (m, 1H), 3.03 (dd, *J* = 16.8, 2.4 Hz, 1H), 1.51 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 136.6, 132.3, 131.3, 131.1, 130.6, 129.3, 129.0, 128.8, 128.7, 123.3, 120.1, 118.8, 110.9, 109.1, 74.7, 34.2, 21.7; HRMS ESI Calcd for C₁₈H₁₅NO₂ [M+H] ⁺: 278.1176, Found: 278.1173.

Compound 2i 2-methyl-1,5,6,7,8,9-hexahydrooxecino[**5,4-b**]**indol-4**(**2H**)**-one** was obtained as a white solid. Mp: 110-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.48 – 7.46 (m, 1H), 7.26 (dd, *J* = 6.8, 1.6 Hz, 1H), 7.14 – 7.06 (m, 2H), 5.32 – 5.13 (m, 1H), 3.29 (dd, *J* = 15.2, 4.8 Hz, 1H), 2.81 – 2.69 (m, 3H), 2.49 – 2.43 (m, 1H), 2.18 – 2.08 (m, 1H), 2.07 – 1.97 (m, 1H), 1.91 – 1.76 (m, 2H), 1.60 – 1.53 (m, 1H), 1.29 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 136.5, 135.5, 129.4, 121.0, 119.2, 118.5, 110.1, 107.4, 69.8, 35.5, 28.9, 27.4, 23.0, 22.4, 19.5. HRMS ESI Calcd for C₁₆H₁₉NO₂ [M+H] ⁺: 258.1489, Found: 258.1486.

Compound 2j 2,2,6,6-tetramethyl-1,2,5,6,7,8-hexahydro-4H-oxonino[**5,4-b**]**indol-4-one** was obtained as a colorless oil liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.14 – 7.06 (m, 2H), 3.09 (s, 2H), 2.76 (s, 2H), 2.13 (s, 2H), 1.54 (s, 6H), 1.27 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 135.2, 134.8, 129.4, 121.4, 119.3, 119.0, 110.2, 109.7, 83.2, 47.9, 37.2, 37.2, 34.7, 28.2; **HRMS ESI** Calcd for C₁₈H₂₃NO₂ [M+H]⁺: 286.1802, Found: 286.1797.

Compound 2k 1-(2-methyl-1H-indol-3-yl)propan-2-yl acetate was obtained as a colorless oil liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.57 – 7.55 (m, 1H), 7.24 (dd, *J* = 6.4, 2.4 Hz, 1H), 7.12 – 7.06 (m, 2H), 5.12 (dd, *J* = 13.2, 6.4 Hz, 1H), 3.03 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.81 (dd, *J* = 14.4, 7.6 Hz, 1H), 2.38 (s, 3H), 2.00 (s, 3H), 1.21 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 135.1, 132.1, 129.0, 121.0, 119.3, 118.3, 110.1, 107.6, 71.7, 30.6, 21.5, 19.5, 11.8; HRMS ESI Calcd for C₁₄H₁₇NO₂ [M+Na]⁺: 254.1152, Found: 254.1147.

Compound 2l 1-(2-phenyl-1H-indol-3-yl)propan-2-yl benzoate was obtained as a colorless oil liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.92 – 7.90 (m, 2H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.49 (dt, *J* = 14.8, 7.2 Hz, 5H), 7.37 (ddd, *J* = 7.2, 3.6, 1.2 Hz, 4H), 7.17 (ddd, *J* = 14.8, 8.0, 3.6 Hz, 3H), 5.50 (dd, *J* = 13.2, 6.4 Hz, 1H), 3.43 (dd, *J* = 14.4, 6.4 Hz, 1H), 3.20 (dd, *J* = 14.4, 7.2 Hz, 1H), 1.29 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 135.8, 135.7, 133.2, 132.6, 130.8, 129.6, 129.4, 128.9, 128.3, 128.2, 127.8, 122.4, 119.9, 119.6, 110.8, 108.9, 72.2, 31.1, 19.9; **HRMS ESI** Calcd for C₂₄H₂₁NO₂ [M+Na]⁺: 378.1465, Found: 378.1464.

5. X-ray crystallography data for 2a

CCDC	2170036
Empirical formula	$C_{17}H_{21}NO_2$
Formula weight	271.35
Temperature/K	295.99(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	9.8106(2)
b/Å	17.8042(2)
c/Å	9.8334(2)
$\alpha/^{\circ}$	90
β/°	119.489(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1495.08(6)
Z	4
$\rho_{calc}g/cm^3$	1.206
μ/mm^{-1}	0.622
F(000)	584.0
Crystal size/mm ³	$0.28 \times 0.15 \times 0.14$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	9.936 to 154.97
Index ranges	$-12 \le h \le 11, -21 \le k \le 22, -9 \le l \le 1$
Reflections collected	14667
Independent reflections	2988 [$R_{int} = 0.0364$, $R_{sigma} = 0.0255$]
Data/restraints/parameters	2988/0/185
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0376, wR_2 = 0.1023$
Final R indexes [all data]	$R_1 = 0.0408, wR_2 = 0.1049$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.16

6. Derivatization of 2,3-disubstituted indoles.

0°C, to the solution of compound **2a** (60 mg, 0.22 mmol) in THF was added LiAlH₄ (17 mg, 0.44 mmol) and stirred at 0°C for 2 h. The reaction was quenched by water (17 μL), 10% NaOH (34 μL), water (51 μL). The reaction mixture was filtered through a pad of celite. The filtrare was collected and concentrated in vacuo to give crude product, which was purified by silica gel column chromatography to afford compound **3** (46 mg, 76%) as a colorless oil liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 9.29 (s, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.14 – 7.04 (m, 2H), 4.14 (ddd, J = 8.8, 6.4, 4.4 Hz, 1H), 3.91 – 3.82 (m, 2H), 2.92 (dd, J = 14.4, 4.4 Hz, 1H), 2.82 – 2.78 (m, 1H), 2.76 (s, 2H), 2.05 (m, 2H), 1.59 (m, 1H), 1.51 – 1.41 (m, 1H), 1.29 (d, J = 6.0 Hz, 3H), 0.99 (s, 3H), 0.95 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 135.3, 135.2, 128.3, 121.0, 118.8, 118.3, 110.5, 108.9, 68.0, 59.7, 41.9, 37.4, 34.7, 34.7, 28.6, 28.3, 22.7; **HRMS ESI** Calcd for C₁₇H₂₅NO₂ [M+H] ⁺: 276.1958, Found: 276.1956.

To the solution of compound **2a** (50 mg, 0.18 mmol) in MeOH was added H₂SO₄ (3.8 µL, 0.07 mmol) and stirred at reflux temperature until the **2a** disappears. The reaction mixture was cooled to room temperature and quenched with saturated aqueous solution NaHCO₃. Then, MeOH was evaporated. Residue extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with saturated brine and dried over anhydrous Na₂SO₄, the solution was evaporated in vacuo, then purified by silica gel flash column chromatography to afford compound **4** (35 mg, 71%) as a colorless oil liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (dd, *J* = 6.8, 2.0 Hz, 1H), 7.48 (dd, *J* = 6.4, 2.4 Hz, 1H), 7.33 – 7.24 (m, 2H), 4.16 – 4.09 (m, 1H), 2.82 – 2.71 (m, 4H), 2.47 – 2.38 (m, 2H), 2.05 (d, *J* = 13.7 Hz, 1H), 1.29 (d, *J* = 6.4 Hz, 3H), 1.06 (d, *J* = 2.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 134.4, 134.3, 130.7, 124.3, 123.8, 118.2, 116.3, 114.4, 67.5, 47.5, 35.6, 33.9, 32.5, 27.7, 27.7, 23.1; HRMS ESI Calcd for C₁₇H₂₁NO₂ [M+H] ⁺: 272.1645, Found: 272.1644.

Under argon atmosphere, a mixture of 2f (20 mg, 0.06 mmol), NaHCO₃ (20 mg, 0.24 mmol) and (2-methoxyphenyl)boronic acid 5 (18 mg, 0.12 mmol) in DME (1 mL) and H₂O (0.2 mL) was allowed to stir for 5 min at room temperature. Then Pd(PPh₃)₄ (7 mg, 0.006 mmol) was added. The reaction was allowed to stir for 10 min at room temperature and was heated at 95 °C with vigorous stirring for 12 h. Cooled to room temperature, the mixture was diluted with Et₂O followed by filtration through a thin pad of silica gel with Et₂O rinse. Solvent evaporation followed by flash chromatography to afford the product 6 (11 mg, 50%) as a colorless oil liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 0.8 Hz, 1H), 7.36 (dd, J =7.6, 1.6 Hz, 1H), 7.33 - 7.27 (m, 1H), 7.25 - 7.22 (m, 1H), 7.02 (ddd, J = 11.2, 8.8, 4.8 Hz, 2H), 5.02 (ddd, *J* = 10.0, 6.4, 1.6 Hz, 1H), 3.81 (s, 3H), 3.14 – 3.04 (m, 2H), 2.70 (dd, J = 14.8, 10.0 Hz, 1H), 2.58 (d, J = 14.8 Hz, 1H), 2.37 - 2.33 (m, 1H), 2.05 (d, J = 14.8 Hz, 1H), 2.10 Hz, 10.0 Hz, 10.011.2 Hz, 1H), 1.43 (d, J = 6.4 Hz, 3H), 1.27 (s, 3H), 1.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) & 171.7, 156.6, 135.2, 133.9, 132.1, 131.9, 131.3, 127.9, 127.3, 121.3, 120.8, 117.3, 111.3, 111.1, 110.1, 70.0, 55.6, 47.7, 37.9, 37.6, 29.7, 22.7, 20.3, 14.1; HRMS **ESI** Calcd for C₂₄H₂₇NO₃ [M+H]⁺: 378.2064, Found: 378.2061.

		—159.18	—149. 79	< 132.73 $ < 132.44$	$\begin{array}{c} 122.24\\ 119.12\\ 118.78\end{array}$	—110.36	73. 74	—55. 83 —51. 79	$ \begin{array}{c} -38.13 \\ \hline 30.47 \\ \hline 30.30 \\ \hline 29.03 \end{array} $
--	--	---------	----------	----------------------	--	---------	--------	--------------------	---

27	
-203.	

148.95	139.50 133.41 132.41 131.59 127.56 1125.77 119.07

--74.00

--51.83

 $\begin{array}{c} -38.06\\ \swarrow 30.45\\ \swarrow 30.31\\ \checkmark 28.96\\ -20.58\end{array}$

fl (ppm)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCI₃)

fl (ppm)

f f f f

 $\begin{pmatrix} 135.16\\ 134.78\\ -129.35\\ 121.35\\ 119.29\\ 118.95\\ 118.95\\ 109.70 \end{pmatrix}$

-28.21--47.85

29 26 36 77	333
	8 0 8
\vee \mid \vee	$/ \langle \rangle$

66	20	86 86 86 73 30 74 74
-67.	—59.	$\begin{array}{c} \sim 41. \\ \sim 34. \\ \sim 22. \\ \sim 22. \end{array}$

—168.81

--67.52

 $\begin{array}{c} \begin{array}{c} & 35.55 \\ \hline & 33.94 \\ \hline & 32.52 \\ \hline & 27.72 \\ \hline & 27.70 \\ \hline & 23.05 \end{array}$

--47.46

¹³C NMR (400 MHz, CDCI₃)

