Supplementary Materials

Visible light enabling regioselective chlorination of electrondeficient coumarins using CuCl₂ via LMCT excitation

Weiming Li, Jinshan Liu, Min Zhou, Lin Ma, Min Zhang *

School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China

Email: <u>cheminzhang@gxu.edu.cn;</u> <u>zhangminnju@hotmail.com</u>.

Contents

1.	General information	3
2.	Typical procedure for 2a	3
3.	Syntheses of starting materials	5
4.	Conditions optimization and reaction scope details	.10
5.	The spectral data	.16
6.	The NMR Charts	.19
7.	References	.33

1. General information

All the commercially available coumarins are used without further purification. Thin-layer chromatography (TLC) was performed with silica gel GF254 plates. Column chromatography was performed on silica gel (300 ~ 400 mesh) with petroleum ether/ethyl acetate for the gradient elution. All melting points were measured without correction. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Advance III HD 600/500 spectrometer at 600/500 MHz (¹H NMR) and 151/125 MHz (¹³C NMR) respectively. The chemical shifts are reported relative to CHCl₃ (δ = 7.26 for ¹H NMR and δ = 77.16 for ¹³C NMR). The infrared spectra were recorded on a Nicolet iS 50 FT-IR spectrometer. HRMS spectra were acquired using an Agilent 6210 ESI/TOF mass spectrometer.

2. Typical procedure for 2a

A mixture of menadione (34.4 mg, 0.2 mmol), CuCl₂·2H₂O (51.2 mg, 0.3 mmol), LiCl (25.4 mg, 0.6 mmol) and TFA (91.2 mg, 0.8 mmol) was dissolved in MeCN (2.0 mL) and put in a reaction vessel open to air as shown below and irradiated with two blue LEDs (460-465 nm, 20 W, ~1240 W/m²) at 35 °C. The reaction vessel was open to air and the reaction process was monitored by TLC until completed. The reaction mixture was then diluted with 10 mL de-ionized water and extracted by 20 mL EtOAc for three times. The organic phase was combined, dried over Na₂SO₄ and the solvent was removed under vacuum. The crude product was then put on silica gel chromatography and eluted with EA/PE (0.5:100) to give **2a** as a yellow solid (34.1 mg, 82.6%).

The reaction temperature is controlled by a low temperature circulator and the apparatus is shown below:

Experimental Apparatus

Figure S1 UV-vis spectra of CuCl₂ and other mixtures.

3. Syntheses of starting materials

3.1. Syntheses of 6-phenyl-2H-chromen-2-one, 3H-benzo[f]chromen-3-one and 2H-benzo[h]chromen-2-one. ¹

A mixture of Phenol derivatives (1.0 mmol), trifluoromethanesulfonic acid (1.0 mmol) and propionic acid (0.5 mmol) in chlorobenzene (3.0 mL) was stirred at 100 °C for 1 h. After completion of reaction as indicated by TLC, the reaction mixture was poured into H₂O, neutralized with NaHCO₃ solution and extracted CH₂Cl₂. The organic layer was washed with 2 M NaOH, dried over anhydrous MgSO₄. The solvent was removed in *vaccum*, and the products were purified by silica gel column chromatography (EtOAc-Hex) to give the desired product.

6-phenyl-2H-chromen-2-one (30)

60 mg, 54%. Pale green solid, m.p. 108-110 °C (Acetone/PE, 1/2, V/V) (lit¹. 118–120 °C) .¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 – 7.71 (m, 2H), 7.66 (d, *J* = 2.1 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.36 (m, 2H), 6.46 (dd, *J* = 9.5, 2.1 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 160.8, 153.5, 143.6, 139.4, 137.9, 130.8, 129.1, 127.9, 127.1, 126.1, 119.1, 117.3, 117.1.

NMR spectra agree well with literature report.¹

3H-benzo[f]chromen-3-one (3r)

78 mg, 80%. Light pink solid, m.p. 100-102 °C(lit¹. 109–112 °C) (Acetone/PE, 1/1, V/V) .¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 9.8 Hz, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 9.0 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.69 (ddd, *J* = 8.3, 7.0, 1.3 Hz, 1H), 7.57 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.46 (d, *J* = 9.0 Hz, 1H), 6.57 (d, *J* = 9.8 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 161.0, 154.0, 139.2, 133.2, 130.4, 129.2, 128.4, 126.2, 121.5, 117.2, 115.8, 113.1.

NMR spectra agree well with literature report.¹

2H-benzo[h]chromen-2-one (3s)

80 mg, 81%. Light pink crystal, m.p. 136-138 °C (Acetone/PE, 1/2, V/V) (lit¹. 100–102 °C).¹H NMR (500 MHz, CDCl₃) δ 8.58 – 8.44 (m, 1H), 7.90 – 7.84 (m, 1H), 7.83 (d, *J* = 9.5 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.65-7.59 (m, 2H), 7.46 (d, *J* = 8.5 Hz, 1H), 6.52 (d, *J* = 9.4 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 161.1, 151.5, 144.3, 135.0, 128.9, 127.9, 127.4, 124.6, 123.7, 123.2, 122.5, 116.1, 114.4. NMR spectra agree well with literature report.¹

3.2 Synthesis of 7-chloro coumarin (3e).

To a three-neck flask, 7-hydroxycoumarin (3.24g 20 mmol) and phosphorus pentachloride (16.63g 80 mmol) and 50 mL toluene were added. The mixture was heated to 110 °C for about 6.5 h until the reaction is completed by TLC monitoring. The reaction mixture was cooled and then poured into ice water with stirring. The aqueous phase was extracted with dichloromethane twice and the organic phase was combined and dried over Na₂SO₄, filtered and concentrated. The crude product was purified by silica gel chromatography and recrystallized in ethyl acetate to give 7-

chlorocoumarin (2.88 g, 80%).

3.3 Synthesis of 4-chloro coumarin(3b).

4-Chlorocoumarin was synthesized as literature procedure.² To an oven-dried twoneck round-bottom flask, 4-hydroxycoumarin (100 mmol, 16.2 g) was charged in phosphorus oxychloride (50 mL). To this mixture, triethylamine (150 mmol, 20 mL) was added slowly in a period of 5–10 min and the mixture was refluxed for 3 h. After the completion of reaction, it was cooled to rt and quenched slowly by pouring into icecold water and extracted with dichloromethane. The organic extract was washed with water, brine, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The crude was purified by silica gel column chromatography (CHCl₃/EtOAc/PE = 7: 4: 100) to obtain 4-chlorocoumarin as white solid (14.5 g, 80% yield).

3.4 Synthesis of 6-fluoro coumarin and 6-brormo coumarin (3h, 3w).

6-Fluoro coumarin was synthesized using literature procedure.³ 4-Fluorophenol (0.01 mol), 0.01 mol of maleic anhydride and 1 mL of concentrated H₂SO₄ were mixed together. And the mixture was heated to 150 °C for 1.5 h. After cooling to room temperature, the reaction solution was diluted with 50 mL of water and extracted four times with 20 mL of ethyl acetate. The extracted liquid was dried with anhydrous magnesium sulfate, and then filtered and concentrated. The obtained crude product was further eluted and recrystallized from ethyl acetate for several times to give 6-fluoro coumarin (0.52 g, 32%).

The 6-bromo coumarin was synthesized using the same protocol (0.17 g, 8%).

3.5 Synthesis of 4-bromocoumarin (3v)

4-Bromo coumarin was synthesized using literature procedure.⁴ 4-Hydroxycoumarin (1 g, 6.16 mmol) was added to toluene (12.4 mL, 0.5 M), under an Ar atmosphere and heated to 100 °C. Subsequently, Bu₄NBr (2.98 g, 9.26 mmol) was added, heating was continued until the Bu₄NBr was dissolved, then P₂O₅ (1.75 g,12.34 mmol) was added, and the mixture was further refluxed for 3 h. The hot organic layer was then poured out, and the lower layer was extracted with hot toluene (2 ×20 mL). The combined toluene layer was then successively washed with 5% NaHCO₃ (2 ×30 mL), water (50 mL), and saturated brine (50 mL). Subsequently, the organic layer was dried with anhydrous Na₂SO₄ (10 g) and concentrated in vacuum to obtain 4bromocoumarin (1.34 g, 96%, m.p. 87–89 °C).

3.6 Synthesis of 6,8-dichlorocoumarin(3g).

6,8-Dichlorocoumarin coumarin was synthesized as literature procedure.⁵ To a solution of phenol derivative (10 mmol) in methanesulfonic acid (20 mL) was added propiolic acid (12 mmol) at room temperature. After stirring at 80-90 °C under N₂ atmosphere for 4 h, the solution was diluted with 50 mL de-ionized water and extracted with ethyl acetate (20 mL*3). The ethyl acetate layer was washed with saturated Na₂CO₃ (10 mL*3), saturated NaCl, dried over MgSO₄ and concentrated to give 6,8-dichlorocoumarin (0.30 g, 14%) as a gray solid (m.p. 156-158 °C).

3.7 Synthesis of 8-chlorocoumarin (3f).

To a solution of *p*-chlorophenol (10 mmol) in Eaton's reagent (20 mL) was added propiolic acid (12 mmol) at room temperature. After stirring at 110 °C under N₂ atmosphere for 4 h, the solution was diluted with 50 mL de-ionized water and extracted with ethyl acetate (20 mL*3). The ethyl acetate layer was washed with saturated Na₂CO₃ (10 mL*3), saturated NaCl, dried over MgSO₄, concentrated and chromatographed to give 8-chlorocoumarin (0.24 g, 13%) as a white solid with m.p. 140-142 $^{\circ}$ C.

3.8 Synthesis of 7-methoxycoumarin (3n).

7-Methoxycoumarin was synthesized using literature procedure.⁶ K₂CO₃ (2.0 g, 14.5 mmol) and MeI (3.42 g, 24.1 mmol) were added to a solution of 7-hydroxyl coumarin (2.0 g, 12.3 mmol) in acetone (100 mL) and the mixture was reacted for 5 h. After filtration and dilution with EtOAc, the resulting solution was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed to afford compound 7-methoxycoumarin (2.1 g, 97%) as a crystalline solid.

4. Conditions optimization and reaction scope details

	Table S1 Reaction conditions screening for chlorination of menadione (1a).									
	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & $									
		1a 2a	2a	•	2a		MCN	IQ		
Entry	PC/Other	Lewis Acid	Cl Source	Acid	Tim	Temp,	Conver	Produ	ıct	and
					e, h	°C	sion, %	yield,	% ^a	
								2a	2a'	2a"
1°	2% 4CzIPN	/	4	HCl 3eq	3.0	35	100	8.9		
2 ^d	2% 4CzIPN	$CuCl_2 \cdot 2H_2O \ 0.1 \ eq$	LiCl 2.8eq	HCl 3eq	8.5	35	92.7	17.8		
3	2% 4CzIPN	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	5.0	35	100	75.6	12.2	4.2
4	N/A	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	4.3	35	100	81.0	13.3	5.1
5	N/A	CuCl ₂ ·2H ₂ O 1.5eq	LiCl 3eq	TFA 4eq	4.2	35	100	82.6	10.0	5.5
6 ^e	N/A	CuCl ₂ ·2H ₂ O 1.5eq	LiCl 3eq	HOAc	5.5	35	91.4	11.8	/	/
$7^{\rm f}$	Under O ₂	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	4	35	100	85.5	7.1	5.3
$8 \mathrm{g}$	Under Ar	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	8	35	84.1	42	3.1	5.1
9 ^h	No light	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	23	35	NR			
10	N/A	FeCl ₃ ·6H ₂ O1.0 eq	LiCl 3eq	TFA 4eq	3	35	92.0	15.8	3.1	/
11	N/A	CeCl ₃ 1.0 eq	LiCl 3eq	TFA 4eq	7.5	35	93.6	5.4		
12	N/A	ZnCl ₂ 1.0 eq	LiCl 4eq	TFA 4eq	2.5	35	100	7.8		
13	N/A	CuCl ₂ ·2H ₂ O 1.0eq	NCS 2eq	/	8.5	35	100	61.5	2.7	5.7
14	N/A	$CuCl_2 \cdot 2H_2O$ 1.5 eq	/	HCl 4eq	4.2	35	100	80.7	12.2	7.0
15	N/A	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	6.2	24	100	77.5	15.4	6.1
16	N/A	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	5.0	30	100	82.1	8.6	5.9
17	N/A	CuCl ₂ ·2H ₂ O 1.5eq	/	HCl 3eq	4.3	40	100	80.0	12.5	7.3
18	N/A	CuCl ₂ ·2H ₂ O 0.5eq	LiCl 5eq	TFA 4eq	10	35	82.3	39.0	/	7.6
19	N/A	CuCl ₂ ·2H ₂ O 1.0eq	LiCl 4eq	TFA 4eq	6.5	32	100	67.6	10.0	6.0
20	N/A	CuCl ₂ ·2H ₂ O 2.0eq	LiCl 2eq	TFA 4eq	3.8	35	100	80.7	9.7	3.2
21	N/A	CuCl2·2H2O 1.5eq	LiCl 2eq	TFA 4eq	5.4	40	100	82.8	10.9	5.0
22	N/A	CuCl ₂ ·2H ₂ O 1.5eq	LiCl 3eq	TFA 2 eq	5.4	38	100	75.8	11.2	6.2
23	N/A	CuCl2·2H2O 1.5eq	/	TFA 4eq	6	40	88.1	57.8	/	/
24	N/A	CuCl2·2H2O 1.5eq	LiCl 1eq	TFA 4eq	6	40	94.8	80.3	3.3	4.7
25	N/A	CuCl ₂ ·2H ₂ O 1.0eq	/	HCl 4eq	5.1	35	100	71.6	19.7	8.4

^a Reagents and conditions: menadione (0.2 mmol), LiCl/TFA or HCl was mixed in 2 mL MeCN, irradiated between two blue LEDs (460-465 nm, 20 W, ~1240 W/m²) open to air at 35 °C. NR= No reaction. ^b Isolated yield. ^c Methyl chlorinated naphthoquinone (2-(chloromethyl)naphthalene-1,4-dione, MCNQ) was obtained in 21% yield. ^d MCNQ (3.4%) was obtained. ^e Reacted in 2 mL acetic acid. The major product is 3-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl acetate (42%). ^f Using O₂ balloon. ^g Using Ar balloon (1 atm). MCNQ was obtained in 12% yield. ^h In dark.

Table S2 Chlorination of naphthoquinone 1b. ^a							
				+	O Cl O		
1b			2b		2b'		
Lewis Acid/eq. Li	Cl TFA	Time,	h Conversion, %		Yield, % ^b		
				2b	2b'		
CuCl ₂ ·2H ₂ O 2.5 1	2	9	100	37.6	40.0		
$CuCl_2{\cdot}2H_2O~1.5~0$	0^{c}	11.5	100	33.9	39.6		
CuCl ₂ ·2H ₂ O 2.5 1	2 ^d	9.5	71.5	60.5	10.2		
$CuCl_2 \cdot 2H_2O \ 1.5 \ 3$	4	62.5	89.8	7.4	44.1		

^a Reagents and conditions: naphthoquinone (0.2 mmol), LiCl/TFA or HCl was mixed in 2 mL MeCN, irradiated between two blue LEDs (460-465 nm, 20 W, ~1240 W/m²) open to air at 35 °C. ^b Isolated yield. ^c 6 eq HCl. ^d 2.0 eq HOAc.

					CI + O	Ring ope	ning product	
	3a		4a					
Entry	PC/2 mol%	Lewis Acid	LiCl	HC	TFA	Time, h	Conv., %	Yield, % ^b
1	N/A	CuCl ₂ ·2H ₂ O 1.5 eq	3	0	3	9.5	100	67.6
2	N/A	CuCl ₂ ·2H ₂ O 1.5 eq	0	3	0	4.5	100	53.2
3	N/A	$CuCl_2 \cdot 2H_2O$ 1.5 eq	1	2.5	0	6.5	91.8	67.5
4	N/A	$CuCl_2{\cdot}2H_2O~2.0~eq$	2	0	2	11.5	100	68.0
5	4CzIPN	$CuCl_2{\cdot}2H_2O~0.1~eq$	4.3	1.5	0	3.2	100	56.6
6	4CzIPN	$CuCl_2{\cdot}2H_2O~0.1~eq$	2	0	1.5	1.8	100	53.1
7	4CzIPN	N/A	2	0	1.5	1.8	64.0	0 °
8	N/A	Cu(AcO) ₂ ·H ₂ O 1.5 eq	5	0	3	15	100	65.0
9	N/A	CuCl 1.5 eq	5	0	3	14	100	69.4
10	N/A	Cu(BF ₄) ₂ ·H ₂ O 1.5 eq	6	0	3	10	100	66.5

Table S3 Screening of halogenation for coumarin (3a).^a

^a Reagents and conditions: a mixture of coumarin (0.2 mmol), Lewis Acid, LiCl or HCl was dissolved in MeCN (2 mL) and irradiated under two blue LEDs (460-465 nm, 20 W, ~1240 W/m²) at 35 °C, open to air. NR= No reaction.^b Isolated yield.^c The conversion of coumarin is based on the recovery of starting materials (36.0%), complicated high polarized products was generated.

Substrate	Substrate's Structure	Product	Deviation condition ^a	from	standard	Time, h	Yield, %
3a		CI CI	None			9.5	68
3b	CI	CI CI	None			12	87
3c	CI CI		None			7.5	66
3d	CI C	CI CI	None			8.5	70
3e			None			6	62
3f			None			10.5	62
3g	CI CI CI	CI CI CI	None			9.5	75
3h	F C C C C C C C C C C C C C C C C C C C	F CI	None			16	61
3i	O ₂ N O O	O ₂ N Cl	None			10.5	62
3j	но ото	HOOOO	None			37	69
3k	нобо	HOLOOO	2.5 eq CuCl	2.2H ₂ O		11.5	87

Table S4 Scope of the chlorination reactions.

31	ОН	ОН	None	9.5	89
		CI			
3m			None	3.5	57
3n	Aco		None	11.5	78
30		Cl	2.5 eq CuCl ₂ .2H ₂ O	26	74
3р	N O O		None	6	18
3q		CI	2.5 eq CuCl ₂ .2H ₂ O, 1.5 eq HOAc	1.5	29
3r		CI	4 eq TFA	13.5	74
3s		CI	2.5 eq CuCl ₂ .2H ₂ O	36	58
5a		CI CI	None	16	37
5b			None	10	25

^a Standard condition: Substrate (0.2 mmol), CuCl₂·2H₂O (0.3 mmol), LiCl (0.6 mmol), TFA (0.4 mmol) in 2 mL MeCN. The reaction mixture was irradiated under two blue LEDs (460-465 nm, 20 W, \sim 1240 W/m²) at 35 °C until the reaction is completed by TLC monitoring.

5. The spectral data

The unreported compounds were characterized by ¹H NMR, ¹³C NMR, IR and HRMS the details are given below. All the known compounds' spectral data (¹H NMR, ¹³C NMR, IR, MS) agree with the reported references. The spectral data of the compounds reported in previous paper of *Synlett*, 2019, 30, 630–634 (DOI: 10.1055/s-0037-1612080) are not shown here.

3,5-dichloro-2H-chromen-2-one (4c)

Yield: 28.3 mg, 66%. White solid, m.p. 164-166 °C (Acetone/PE, 2/1, V/V). ¹H NMR (500 MHz, CDCl₃) δ 8.25 (s, 1H), 7.48 (t, J = 8.2 Hz, 1H), 7.37 (dd, J = 8.0, 0.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 156.6, 153.5, 136.6, 132.0, 131.7, 125.7, 123.8, 117.6, 115.7. IR(KBr) υ_{max} : 3089, 1743, 1730, 1609, 1591, 1446, 1314, 1247, 1228, 1201, 1157, 1137, 991, 964, 914, 789, 752, 722, 679, 605, 582, 475. HRMS calcd for C₉H₅Cl₂O₂⁺ (M+H)⁺(Cl³⁵):214.9661, found: 214.9662.

3,6-dichloro-2H-chromen-2-one (4d)

Yield: 29.5 mg, 70%. White solid, m.p. 166-168 °C(Acetone/PE, 2/1, V/V) (lit⁷124-126 °C).¹H NMR (500 MHz, CDCl₃) δ 7.81 (s, 1H), 7.49 (dd, J = 8.8, 2.4 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H).¹³C NMR (151 MHz, CDCl₃) δ 156.8, 151.2, 138.9, 132.0, 130.6, 126. 6, 124.0, 119.9, 118.4.IR(KBr) υ_{max} : 3099, 3062, 3045, 1732, 1601, 1557, 1475, 1409, 1336, 1266, 1241, 1145, 1081, 998, 945, 925, 893, 865, 819, 755, 651, 638, 571, 530, 461 cm⁻¹. HRMS calcd for C₉H₅Cl₂O₂⁺ (M+H)⁺(Cl³⁵): 214.9661, found: 214.9668.

3,8-dichloro-2H-chromen-2-one (4f)

Yield: 26.5 mg, 62%. White solid, m.p.164-166 °C (Acetone/PE, 2/1, V/V). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (s, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.27 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 148.5, 139.7, 132.4, 125.8, 125.5, 123.4, 122.0, 120.2. IR(KBr) ν_{max} : 2924, 2855, 1756, 1738, 1600, 1489, 1442, 1354, 1253, 1225, 1143, 10036, 948, 932, 779, 748, 725, 658cm⁻¹. HRMS calcd for C₉H₅Cl₂O₂⁺ (M+H)⁺(Cl³⁵): 214.9661, found: 214.9657.

3,6,8-trichloro-2H-chromen-2-one (4g)

Yield: 37.2 mg, 75%. White solid, m.p. 126-128°C (Acetone/PE, 2/1, V/V). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.60 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 2.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 147.1, 138.6, 131.9, 130.4, 125.2, 124.7, 122.8, 120.6. IR(KBr) υ_{max} :3075, 2924, 2853, 1754, 1553, 1458, 1449, 1439, 1416, 1341, 1243, 1229, 1149, 1100, 1013, 966, 931, 885, 866, 837, 752, 688, 641, 573, 539cm⁻¹. HRMS calcd for C₉H₄Cl₃O₂⁺ (M+H)⁺(Cl³⁵): 248.9271, found: 248.9267.

3-chloro-6-fluoro-2H-chromen-2-one (4h)

Yield: 24.2 mg, 61%. White solid, m.p. 148-150 °C (Acetone/PE, 2/1, V/V). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.35 (dd, J = 9.1, 4.4 Hz, 1H), 7.28 (ddd, J = 10.9, 8.1, 2.9 Hz, 1H), 7.17 (dd, J = 7.7, 2.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.16 (d, J = 245.6 Hz), 156.95 (s), 148.98 (d, J = 2.1 Hz), 139.17 (d, J = 2.8 Hz), 124.05 (s), 119.65 (d, J = 9.3 Hz), 119.46 (d, J = 24.6 Hz), 118.55 (d, J = 8.5 Hz), 112.73 (d, J = 24.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -116.79. IR(KBr) υ_{max} : 3054, 1741, 1568, 1486, 1431, 1346, 1260, 1149, 1001, 933, 890, 876, 822, 750, 696, 588, 463 cm⁻¹. HRMS calcd for C₉H₅ClFO₂⁺ (M+H)⁺(Cl³⁵): 198.9957, found: 198.9954.

3-chloro-6-nitro-2H-chromen-2-one (4i)

Yield: 28.3 mg, 62%. Yellow solid, m.p. 186-188 °C (Acetone/PE, 2/1, V/V). ¹H NMR (600 MHz, CDCl₃) δ 8.44 – 8.40 (m, 1H), 8.41 (s, 1H), 7.96 (s, 1H), 7.53 – 7.48 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 156.1, 155. 8, 144.7, 138.7, 126.7, 125.2, 123.2, 119.0, 118.2. IR (KBr): 3056, 1741, 1609, 1528, 1475, 1350, 1261, 1244, 1155, 1121, 1086, 990, 949, 930, 841, 821, 756, 748, 722, 650 cm⁻¹. HRMS calcd for C₉H₄ClNNaO₄⁺ (M+Na)⁺(Cl³⁵): 247.9721, found: 247.9726.

3-chloro-4-hydroxy-2H-chromen-2-one (4l)

Yield: 34.9 mg, 89%. White solid, m.p. 206-208 °C (lit⁸ 206-207°C) (CH₂Cl₂/PE, 1/1, V/V). ¹H NMR (500 MHz, Acetone-*d*₆) δ 7.94 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.69 (ddd, *J* = 8.8, 7.4, 1.6 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.3 Hz, 1H). ¹³C NMR (126 MHz, Acetone-*d*₆) δ 160.4, 158.8, 152.6, 133.5, 125.3, 124.2, 117.3, 116.5, 100.4. NMR spectra agree well with literature report.⁸

3-chloro-6-phenyl-2H-chromen-2-one (40)

Yield: 38.5 mg, 74%. White solid, m.p. 162-164 °C (CH₂Cl₂/PE, 1/2, V/V). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.76 (dd, J = 8.6, 2.2 Hz, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.57 (dt, J = 3.1, 1.9 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.45 – 7.38 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 157.4, 152.2, 140.2, 139.2, 138.6, 131.0, 129.2, 128.2, 127.2, 125.5, 122.9, 119.2, 117.3. IR(KBr) ν_{max} : 1730, 1708, 1569, 1480, 996, 754, 693, 645, 607 cm⁻¹. HRMS calcd for C₁₅H₁₀ClO₂⁺ (M+H)⁺(Cl³⁵): 257.0364 , found: 257.0360.

2-chloro-3H-benzo[f]chromen-3-one (4r)

Yield: 34.7 mg, 75%. White solid, m.p.160-162 °C (lit⁹ 164-165 °C)(CH₂Cl₂/PE, 1/2, V/V). ¹H NMR (500 MHz, CDCl₃) δ 8.57 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 9.0 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.60 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1H), 7.43 (d, *J* = 9.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.5, 152.5, 136.4, 133.3, 130.5, 129.2, 128.7, 128.4, 126.6, 121.9, 121.5, 116.7, 113.2. IR(KBr) ν_{max} : 3063, 2924, 1732, 1697, 1626, 1586, 1562, 1509, 1457, 1435, 1330, 1277, 1208, 1001, 985, 916, 903, 812, 776, 745, 588, 539 cm⁻¹.

NMR spectra agree well with literature report.9

3-chloro-2H-benzo[h]chromen-2-one (4s)

Yield: 27.6 mg, 58%. White solid, m.p.146-148 °C (CH₂Cl₂/PE, 1/2, V/V). ¹H NMR (500 MHz, CDCl₃) δ 8.48 – 8.42 (m, 1H), 7.92 (s, 1H), 7.85 (dd, *J* = 5.9, 3.3 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.37 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.5, 149.9, 140.8, 134.7, 129.0, 127.9, 127.6, 125.2, 122.8, 122.7, 122.2, 121.8, 114.3. IR(KBr) υ_{max} :1739, 1721, 1635, 1601, 1556, 1542, 1471, 1373, 1340, 1278, 1128, 1049, 941, 918, 807, 754, 671, 619, 569 cm⁻¹. HRMS calcd for C₁₃H₈ClO₂⁺ (M+H)⁺(Cl³⁵): 231.0207, found:231.0204.

6. The NMR Charts

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7. References

- 1. H. Choi, J. Kim and K. Lee, *Tetrahedron Letters*, 2016, **57**, 3600-3603.
- 2. M. L. N. Rao and A. Kumar, *Tetrahedron*, 2014, **70**, 6995-7005.
- 3. Y. Bai, J. Du and X. Weng, Spectrochim Acta A Mol Biomol Spectrosc, 2014, **126**, 14-20.
- 4. L. Zhao, J. Zhang, T. Liu, H. Mou, C. Wei, D. Hu and B. Song, *Journal of Agricultural and Food Chemistry*, 2020, **68**, 975-981.
- 5. X.-H. Cao, X. Pan, P.-J. Zhou, J.-P. Zou and O. T. Asekun, *Chemical Communications*, 2014, **50**, 3359-3362.
- 6. G. Pan, L. Zhao, N. Xiao, K. Yang, Y. Ma, X. Zhao, Z. Fan, Y. Zhang, Q. Yao, K. Lu and P. Yu, *European Journal of Medicinal Chemistry*, 2016, **122**, 674-683.
- 7. L. Vanammoole, R. Kommera, S. Hariprasad Kurma, J. Rao Vaidya and C. Raju Bhimapaka, *Chemistry Select*, 2020, **5**, 8875-8880.
- 8. F. Arndt, L. Loewe, R. Ün and E. Ayça, *Chemische Berichte*, 1951, **84**, 319-329.
- 9. R. S. Mali and J. V. Deshpande, *Organic Preparations and Procedures International*, 1995, **27**, 663-667.