Supporting Information for

ArPNO Catalyzed Acylative Kinetic Resolutions of Tertiary Alcohols: Access to 3-Hydroxy-3-Substituted Oxindoles

Min Yang, Yu-Lin Gao, Ming-Sheng Xie* and Hai-Ming Guo*

[†]NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. E-mail: xiemingsheng@htu.edu.cn; ghm@htu.edu.cn

Contents

General information	S2
Synthesis of staring materials	S3
General procedure for kinetic resolution of 3-hydroxy-3-substituted oxindole	S3
Screening of the solvent	S4
Gram-scale synthesis of 1i	S4
The X-ray data for product 3i	S7
HRMS analysis	S8
The analytical and spectral characterization data for Catalyst 7c, 6h, 6i	S8
The analytical and spectral characterization data for products	S10
Reference	S30
Copies of NMR spectra	S31
Copies of HPLC spectra	S70

1. General information

All reactions were carried out in oven-dried tube, and monitored by thin layer chromatography (TLC). All reagents were reagent grade quality and purchased from commercial sources unless otherwise indicated. ¹H NMR spectra were recorded on commercial instruments (400/600 MHz). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, sep = septet, br = broad, m = multiplet), coupling constants (Hz), integration. 13 C NMR data were collected on commercial instruments (100/150 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Coupling constants (J) are reported in Hz. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel ODH/IA/ID in comparison with the authentic racemates. Chiral HPLC analysis recorded on Thermo scientific Dionex Ultimate 3000. Optical rotations were reported as follows: $\left[\alpha\right]_{D}^{T}$ (c: = g/100mL, in solvent). Optical rotations recorded on Autopol Automatic Polarimeter. All products were further characterized by high-resolution mass spectra (HRMS). The HRMS was obtained using a Q-TOF instrument equipped with an ESI source. All the solvents were purified by usual methods before use. The starting materials $rac-1a-1f^{[1]}$, $rac-1t^{[1]}$ and $rac-1g^{[2]}$ were prepared according to the literature procedures. Catalyst 6a-6g were prepared according to the literature procedures^[3].

2. Synthesis of staring materials

Synthesis of substrates rac-1i-1s, 1h

Materials S1 were prepared according to the literature^[1].

According to reference^[4], material **S1** (3.0 mmol), PhB(OH)₂ (683.8 mg, 4.5 mmol), Cu(OAc)₂ (598.9 mg, 3.0 mmol) and Et₃N (834 μ L, 6.0 mmol) were dissolved in THF (30 mL). The reaction was stirred at room temperature under anhydrous conditions. After the reaction was complete (monitoring by TLC), the reaction mixture was filtered through a pad of celite. The solids were washed with EtOAc for many times. The residue was purified by flash column chromatography on silica gel (eluent: ether/ethyl acetate = 9/1 to 4/1, v/v) to give *rac*-1i-1s as white solids.

3. General procedure for kinetic resolution of 3-hydroxy-3-substituted oxindole

In a test tube, (\pm)-1 (0.1 mmol), C6c (2.7 mg, 5 mol %), and 3Å MS (10 mg) were added. Then, mesitylene/EtOAc (5/1, v/v, 1 mL), DIPEA (6.5 mg, 0.5 equiv), and acetic anhydride (15.3 mg, 1.5 equiv) were added successively. The reaction was stirred under air at 25 °C for 35-60 h. After the reaction was complete (monitoring by TLC), the reaction solution was quenched with methanol. Subsequently, the reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (eluent: ether/ethyl acetate = 15/1 to 5/1, v/v) to give the recovered alcohol 1a–t and acylated products 3a–t. The enantiomeric ratios of 1a–t and 3a–t were determined by chiral HPLC analysis. Conversion was determined by enantiomeric excess (ee) of 1 and 3. *s*-Factors were calculated by Kagan's equation^[5].

4. Screening of the solvent

F C C C	C6c (5 mol %) C6c (5 mol %) Et ₃ N (0.5 equit solvent, 25 °C 		OAc OMe 3a	Ph_OH O O O D O Me	$Ar = 3.5-tBu_2C_6$	/Pr ,
entry	solvent	t (h)	$ee (3a) \\ (\%)^b$	$ee (1a) \\ (\%)^b$	$\operatorname{conv}(\%)^c$	s ^d
1	toluene	10	89	-	-	-
2	PhF	10	80	-	-	-
3	PhCF ₃	10	78	-	-	-
4	mesitylene	10	91	-	-	-
5	mesitylene/EtOAc = 1:1	10	83	17	17	13
6	mesitylene/EtOAc = 2:1	10	87	25	22	21
7	mesitylene/EtOAc = $4:1$	21	84	37	31	15
8	mesitylene/EtOAc = $5:1$	21	87	37	30	29
9	mesitylene/EtOAc = $5:1$	36	84	58	41	20
10	mesitylene/EtOAc = $6:1$	36	83	50	38	16
11	mesitylene/EtOAc = $5:1$	72	81	77	49	22

Δr

^{*a*}Reaction conditions: (\pm)-1a (0.1 mmol), Ac₂O (0.75 equiv), C6c (5 mol %), Et₃N (0.5 equiv), solvent (1 mL) under air at 25 °C. ^{*b*}Determined by chiral HPLC analysis. ^{*c*}Conversion was determined by enantiomeric excess (ee) of 1a and 3a. ^{*d*}s-Factors were calculated by Kagan's equation.^[5]

Note: Due to the poor solubility of alcohol 1a in toluene, PhF, PhCF₃ and mesitylene, the ee value of recovered alcohol 1a could not be determined accurately, and only the ee value ester product 3a could be provided.

5. Gram-scale synthesis of 1i

Scheme S4

In a round-bottomed flask, (\pm)-**1i** (1.054 g, 3.5 mmol), **C6c** (2.7 mg, 5 mol %), and 3Å MS (10 mg) were added. Then, mesitylene/EtOAc (5/1, v/v, 35 mL), DIPEA (226.2 mg, 1.7 mmol), and acetic anhydride (0.536 g, 5.3 mmol) were added successively. The reaction was stirred under air at 25 °C for 50 h. After the reaction was complete (monitoring by TLC), The reaction solution was

quenched with methanol. Subsequently, the reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (eluent: ether/ethyl acetate = 15/1 to 5/1, v/v) to give the recovered alcohol **1i** (0.4395 g, 42% yield, 97% ee) and acylated products **3i** (0.5865 g, 49% yield, 92% ee). The enantiomeric ratios of **1i** and **3i** were determined by chiral HPLC analysis. Conversion was determined by enantiomeric excess (ee) of **1** and **3**. *s*-Factors were calculated by Kagan's equation.^[5]

11.	50 12.50 13.75	15.00 16.25	17.50 18.75	20.00 21	.25 22.50 23.30
Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mĂŬ	%	%
1	19.240	1368.286	2173.328	98.37	98.16
2	21.217	22.640	40.808	1.63	1.84
Total:		1390.926	2214.136	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	9.458	228.468	540.519	49.85	52.83
2	11.027	229.859	482.641	50.15	47.17
Total:		458.327	1023.159	100.00	100.00

6. The X-ray data for product 3i

Recrystallization in petroleum ether/ethyl acetate afforded crystals suitable for X-ray analysis.

Table S1 Crystal data and structure refinement for 3i.			
Identification code	3i		
Empirical formula	$C_{22}H_{17}NO_3$		
Formula weight	343.39		
Temperature/K	189.99(10)		
Crystal system	orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁		
a/Å	8.30180(10)		
b/Å	10.53570(10)		
c/Å	20.17220(10)		
$\alpha^{\prime \circ}$	90		
β/°	90		
$\gamma/^{\circ}$	90		
Volume/Å ³	1764.37(3)		
Z	4		
$\rho_{calc}g/cm^3$	1.2926		
μ/mm^{-1}	0.697		
F(000)	722.3		
Crystal size/mm ³	$0.09\times0.06\times0.04$		
Radiation	Cu Ka (λ = 1.54184)		
2Θ range for data collection/°	8.76 to 143.14		
Index ranges	-10 \leq h \leq 9, -12 \leq k \leq 12, -24 \leq l \leq 24		
Reflections collected	22801		
Independent reflections	$3414 [R_{int} = 0.0336, R_{sigma} = 0.0176]$		
Data/restraints/parameters	3414/0/236		
Goodness-of-fit on F ²	1.103		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0340, wR_2 = 0.0863$		
Final R indexes [all data]	$R_1 = 0.0345, wR_2 = 0.0868$		
Largest diff. peak/hole / e Å ⁻³	0.13/-0.26		
Flack parameter	-0.14(13)		

Table 51 Ci ystai uata anu sti	ucture reminiment for 51
Identification code	3i
Empirical formula	C H NO

7. HRMS analysis

A mixture of C6c and acetic anhydride was stirred in mesitylene/EtOAc (5/1, v/v, 0.5 mL) at rt for

Figure S2. HRMS experiment

8. The analytical and spectral characterization data for Catalyst 7c, 6h, 6i

(*S*)-1-(4-(3,5-Di*-tert*-butylphenyl)pyridin-3-yl)-N-(2,6-diisopropylphenyl)pyrrolidine-2-carbo xamide (C7c)

White solid, m.p.: 77.3-79.0 °C. $R_f = 0.35$ (CH₂Cl₂/MeOH, 30/1, v/v). $[\alpha]_D^{26} = -64.6$ (c = 0.07, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.52 (s, 1H), 8.34 (d, *J* = 4.8 Hz, 1H), 7.68 (s, 1H), 7.26 (t, *J* = 8.4 Hz, 3H), 7.21 (d, *J* = 4.8 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 2H), 4.33 (t, *J* = 7.8 Hz, 2H), 3.26 – 3.22 (m, 1H), 2.89 – 2.85 (m, 2H), 2.55 – 2.49 (m, 2H), 2.11 – 2.05 (m, 1H), 1.93 – 1.85 (m, 2H), 1.30 (s, 18H), 1.00 – 0.86 (m, 12H).

¹³C NMR (150 MHz, CDCl₃) δ 172.3, 151.5, 146.3, 143.3, 142.4, 141.2, 139.7, 138.6, 130.3, 128.5, 125.8, 123.4, 122.5, 122.0, 64.2, 54.5, 35.0, 31.6, 31.5, 28.7, 25.1, 23.5. HRMS (ESI): exact mass calcd for C₃₆H₄₉N₃NaO⁺ (M+Na)⁺ requires m/z 562.3768, found m/z 562.3761.

(S)-4-(3,5-Di-tert-butylphenyl)-3-(2-(phenylcarbamoyl)pyrrolidin-1-yl)pyridine 1-oxide (C6h)

White solid, m.p.: 135.6-138.3 °C. $R_f = 0.19 (CH_2Cl_2/MeOH, 30/1, v/v) [\alpha]_D^{25} = -45.3 (c = 0.08, CHCl_3).$

¹H NMR (600 MHz, CDCl₃) δ 8.82 (s, 1H), 8.35 (d, J = 7.8 Hz, 1H), 7.86 (dd, J = 6.6, 1.8 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.32 (d, J = 1.8 Hz, 2H), 7.24 (d, J = 7.2 Hz, 2H), 7.15 – 7.11 (m, 3H), 6.97 (t, J = 7.2 Hz, 1H), 4.24 (t, J = 7.2 Hz, 1H), 3.27 – 3.23 (m, 1H), 2.91 – 2.87 (m, 1H), 2.39 – 2.34 (m, 1H), 2.10 – 2.04 (m, 1H), 1.94 – 1.90 (m, 1H), 1.83 – 1.78 (m, 1H), 1.35 (s, 18H).
¹³C NMR (150 MHz, CDCl₃) δ 170.4, 151.4, 145.0, 137.7, 137.4, 132.3, 130.8, 129.5, 128.9, 128.3, 124.2, 123.1, 122.2, 119.8, 64.3, 54.9, 35.1, 31.7, 31.6, 25.2.

HRMS (ESI): exact mass calcd for $C_{30}H_{37}N_3NaO_2^+$ (M+Na)⁺ requires m/z 494.2778, found m/z 494.2776.

(S)-4-(3,5-Di-tert-butylphenyl)-3-(2-(methyl(phenyl)carbamoyl)pyrrolidin-1-yl)pyridine

White solid, m.p.: 97.9-101.2 °C. $R_f = 0.24$ (CH₂Cl₂/MeOH, 30/1, v/v). $[\alpha]_D^{25} = +34.7$ (c = 0.2, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.79 (d, *J* = 4.8 Hz, 1H), 7.48 (s, 1H), 7.38 (s, 2H), 7.30 – 7.28 (m, 3H), 7.03 (d, *J* = 4.8 Hz, 1H), 6.70 (s, 2H), 4.28 (t, *J* = 7.2 Hz, 1H), 3.35 – 3.31 (m, 1H), 3.12 (s, 2H), 3.08 (t, *J* = 7.8 Hz, 1H), 1.85 – 1.81 (m, 1H), 1.76 – 1.69 (m, 1H), 1.68 – 1.56 (m, 1H), 1.33 (s, 18H).

¹³C NMR (150 MHz, CDCl₃) δ 171.8, 151.1, 144.3, 142.6, 137.9, 129.9, 129.8, 129.3, 128.9, 127.9, 127.5, 122.9, 121.7, 59.3, 51.5, 37.8, 35.0, 31.5, 31.2, 24.4.

HRMS (ESI): exact mass calcd for $C_{31}H_{39}N_3NaO_2^+$ (M+Na)⁺ requires m/z 508.2934, found m/z 508.2931.

9. The analytical and spectral characterization data for products

(R)-Methyl 3-hydroxy-2-oxo-3-phenylindoline-1-carboxylate (1a)

(Known compound, see: H. Mandai, R. Shiomoto, K. Fujii, K. Mitsudo and S. Suga, Org. Lett., 2021, 23, 1169.)

White solid (10.6 mg, 37% yield, 96% ee). m.p.: 145.6-147.5 °C. $R_f = 0.24$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 11.438 min, 14.042 min; $[\alpha]_D^{25}$ = +64.6 (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.34 – 7.30 (m, 6H), 7.21 (t, *J* = 7.8 Hz, 1H), 3.95 (s, 1H), 3.89 (br, 1H).

HRMS (ESI): exact mass calcd for $C_{16}H_{13}NNaO_4^+$ (M+Na)⁺ requires m/z 306.0737, found m/z 306.0736.

(S)-Methyl 3-(acetoxy)-2-oxo-3-phenylindoline-1-carboxylate (3a)

White solid (17.5 mg, 54% yield, 83% ee). m.p.: 159.7-162.6 °C. $R_f = +0.44$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 9.302 min, 20.263 min. $[\alpha]_D^{25}$ = 68.8 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.35 – 7.30 (m, 5H), 7.27 – 7.25 (m, 2H), 3.96 (s, 3H), 2.17 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 171.6, 169.5, 151.5, 140.3, 135.8, 130.6, 129.4, 128.78, 128.75, 127.2, 124.1, 115.6, 80.9, 54.0, 20.7.

HRMS (ESI): exact mass calcd for $C_{18}H_{15}NNaO_5^+$ (M+Na)⁺ requires m/z 348.0842, found m/z 348.0843.

(S)-Methyl 3-(propionyloxy)-2-oxo-3-phenylindoline-1-carboxylate (3b)

White solid, m.p.: 138.2-140.8 °C. $R_f = 0.47$ (Pet/EtOAc, 5/1, v/v);

¹**H NMR** (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.35 – 7.29 (m, 5H), 7.25 – 7.21 (m, 2H), 3.96 (s, 3H), 2.71 (sep, *J* = 7.2 Hz, 1H), 1.24 (d, *J* = 6.6 Hz, 3H), 1.18 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.0, 171.6, 151.5, 140.3, 135.9, 130.6, 129.4, 128.8, 127.3, 126.7, 125.5, 124.0, 115.6, 80.7, 54.0, 27.3, 8.8.

HRMS (ESI): exact mass calcd for $C_{19}H_{17}NNaO_5^+$ (M+Na)⁺ requires m/z 362.0999, found m/z 362.0999.

(S)-methyl 3-(isobutyryloxy)-2-oxo-3-phenylindoline-1-carboxylate (3c)

(Known compound, see: H. Mandai, R. Shiomoto, K. Fujii, K. Mitsudo and S. Suga, Org. Lett., 2021, 23, 1169.)

White solid, m.p.: 103.2-106.3 °C. $R_f = 0.51$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.35 – 7.29 (m, 5H), 7.25 – 7.21 (m, 2H), 3.96 (s, 1H), 2.71 (sep, *J* = 7.0 Hz, 1H), 1.24 (d, *J* = 6.6 Hz, 3H), 1.18 (d, *J* = 7.2 Hz, 3H).

HRMS (ESI): exact mass calcd for $C_{20}H_{19}NNaO_5^+$ (M+Na)⁺ requires m/z 376.1155, found m/z 376.1158.

(S)-Methyl 3-((3-methylbutanoyl)oxy)-2-oxo-3-phenylindoline-1-carboxylate (3d)

White solid, m.p.: 90.6-92.4 °C. $R_f = 0.49$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.47 – 7.45 (m, 1H), 7.35 – 7.29 (m, 5H), 7.25 – 7.23 (m, 2H), 3.96 (s, 3H), 2.33 (dd, *J* = 14.4, 7.2 Hz, 1H), 2.28 (dd, *J* = 15, 7.2 Hz, 1H), 2.14 (sep, *J* = 7.2 Hz, 1H), 0.97 (dd, *J* = 8.4, 6.6 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 171.7, 171.6, 151.5, 140.4, 136.0, 130.6, 129.4, 128.8, 127.4, 126.8, 125.4, 124.0, 115.7, 80.8, 54.1, 43.0, 26.1, 22.5.

HRMS (ESI): exact mass calcd for $C_{21}H_{21}NNaO_5^+$ (M+Na)⁺ requires m/z 390.1312, found m/z 390.1314.

(R)-Isobutyl -3-hydroxy-2-oxo-3-phenylindoline-1-carboxylate (1e)

White solid (12.2 mg, 38% yield, 98% ee). m.p.: 118.7-120.2 °C. $R_f = 0.23$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ID, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 8.992 min, 11.087 min. $[\alpha]_D^{25} = +40.0$ (c = 0.6, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.00 (d, *J* = 7.8 Hz, 1H), 7.42 (td, *J* = 7.8, 1.8 Hz, 1H), 7.37 – 7.32 (m, 6H), 7.23 (td, *J* = 7.2, 1.2 Hz, 1H), 4.21 (dd, *J* = 10.8, 6.6 Hz, 1H), 4.15 (dd, *J* = 10.8, 6.6 Hz, 1H), 3.34 (br, 1H), 2.11 (sep, *J* = 7.2 Hz, 1H), 1.03 (dd, *J* = 6.6, 2.4 Hz, 6H).

¹³**C NMR** (150 MHz, CDCl₃) δ 175.7, 151.0, 139.8, 130.5, 128.9, 128.8, 125.7, 125.6, 115.6, 77.9, 73.7, 27.9, 19.1.

HRMS (ESI): exact mass calcd for $C_{19}H_{19}NNaO_4^+$ (M+Na)⁺ requires m/z 348.1206, found m/z 349.1209.

(S)-Isobutyl -3-acetoxy-2-oxo-3-phenylindoline-1-carboxylate (3e)

Colorless oil (16.7 mg, 45% yield, 80% ee). $R_f = 0.43$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 5.903 min, 7.880 min. [α]_D²⁵ = +54.7 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.34 – 7.30 (m, 5H), 7.26 – 7.22 (m, 2H), 4.18 (dd, J = 10.8, 6.6 Hz, 1H), 4.10 (dd, J = 10.2, 6.6 Hz, 1H), 2.16 (s, 3H), 2.08 (sep, J = 6.6 Hz, 1H), 0.99 (dd, J = 6.6, 3 Hz, 6H).

¹³**C NMR** (150 MHz, CDCl₃) δ 171.3, 169.4, 151.1, 140.5, 136.0, 130.6, 129.4, 128.8, 127.2, 126.7, 125.3, 124.1, 115.6, 80.9, 73.4, 27.8, 20.7, 19.14, 19.10;

HRMS (ESI): exact mass calcd for $C_{21}H_{21}NNaO_5^+$ (M+Na)⁺ requires m/z 390.1312, found m/z 390.1316.

(R)-Phenyl 3-hydroxy-2-oxo-3-phenylindoline-1-carboxylate (1f)

White solid (14.0 mg, 41% yield, 94% ee). m.p.: 109.8-113.8 °C. $R_f = 0.32$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 20.018 min, 24.643 min. [α]_D²⁵ = +29.5 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.41 – 7.35 (m, 5H), 7.32 – 7.29 (m, 4H), 7.27 – 7.25 (m, 4H), 3.87 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 175.6, 150.1, 149.4, 139.5, 139.0, 130.6, 130.3, 129.7, 129.0, 128.9, 126.7, 126.1, 125.8, 125.3, 115.8, 78.0.

HRMS (ESI): exact mass calcd for $C_{14}H_{11}NSNaO_4^+$ (M+Na)⁺ requires m/z 368.0893, found m/z 368.0896.

(S)-Phenyl 3-acetoxy-2-oxo-3-phenylindoline-1-carboxylate (3f)

White solid (19.3 mg, 50% yield, 67% ee). m.p.: 173.9-177.6 °C. $R_f = 0.52$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 9.660 min, 10.730 min. [α]_D²⁵ = +45.8 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.11 – 8.09 (m, 1H), 7.50 – 7.47 (m, 1H), 7.41 – 7.35 (m, 7H), 7.41 – 7.35 (m, 5H), 2.21 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 171.2, 169.6, 150.2, 149.5, 140.1, 135.7, 130.8, 129.63, 129.60, 128.9, 127.3, 126.5, 125.8, 124.2, 121.7, 115.8, 80.9, 20.8;

HRMS (ESI): exact mass calcd for $C_{23}H_{19}NNaO_4^+$ (M+Na)⁺ requires m/z 410.0999, found m/z 410.0989.

(R)-1-Benzyl-3-hydroxy-3-phenylindolin-2-one (1g)

White solid (11.4 mg, 36% yield, 69% ee). m.p.: 143.1-143.9 °C. $R_f = 0.19$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 11.607 min, 13.375 min. [α]_D²⁵ = +16.5 (c = 0.6, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.33 – 7.23 (m, 9H), 7.19 (td, *J* = 7.8, 1.2 Hz, 1H), 7.01 (td, *J* = 7.8, 1.2 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 5.01 (d, *J* = 15.6 Hz, 1H), 4.78 (d, *J* = 15.6 Hz, 1H), 3.88 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 177.9, 142.7, 140.3, 135.5, 131.9, 129.8, 129.0, 128.7, 128.4, 127.9, 127.4, 125.5, 125.1, 123.7, 109.9, 78.1, 44.1.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_2^+$ (M+Na)⁺ requires m/z 338.1151, found m/z 338.1149.

(S)-1-Benzyl-2-oxo-3-phenylindolin-3-yl acetate (3g)

White solid (14.7 mg, 41% yield, 81% ee). m.p.: 137.2-139.3 °C. $R_f = 0.40$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 9.900 min, 12.222 min. [α]_D²⁵= +25.6 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 – 7.36 (m, 2H), 7.35 – 7.28 (m, 7H), 7.25 – 7.21 (m, 3H), 7.05 (td, *J* = 7.8, 1.2 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 4.92 (dd, *J* = 21.6, 16.2 Hz, 2H), 2.19 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 174.1, 169.2, 143.7, 136.7, 135.6, 130.1, 129.1, 128.8, 128.7, 128.3, 127.7, 127.3, 126.4, 124.2, 123.2, 109.9, 81.4, 44.3, 21.0.

HRMS (ESI): exact mass calcd for $C_{23}H_{19}NNaO_3^+$ (M+Na)⁺ requires m/z 380.1257, found m/z 380.1255.

(R)-3-Hydroxy-1-(4-methoxyphenyl)-3-phenylindolin-2-one (1h)

White solid (10.6 mg, 32% yield, 85% ee). m.p.: 181.2-184.4 °C. $R_f = 0.21$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 16.365 min, 20.872 min. $[\alpha]_D^{25} = +28.0$ (c = 0.5, CHCl₃).

¹**H** NMR (600 MHz, CDCl₃) δ 7.49 – 7.47 (m, 2H), 7.37 – 7.31 (m, 6H), 7.27 – 7.25 (m, 1H), 7.09 (t, *J* = 7.2 Hz, 1H), 7.04 (d, *J* = 9.0 Hz, 2H), 6.82 (d, *J* = 7.8 Hz, 1H), 3.86 (s, 3H), 3.36 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 177.2, 159.5, 144.1, 131.3, 129.9, 128.9, 128.5, 128.0, 126.7, 125.4, 125.3, 124.0, 115.2, 110.1, 78.2, 55.7.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_3^+$ (M+Na)⁺ requires m/z 354.1101, found m/z 354.1095.

(S)-1-(4-Methoxyphenyl)-2-oxo-3-phenylindolin-3-yl acetate (3h)

White solid (16.1 mg, 43% yield, 77% ee). m.p.: 163.8-167.1 °C. $R_f = 0.43$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 14.178 min, 20.467 min. [α]_D²⁵ = +33.8 (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.49 – 7.48 (m, 2H), 7.38 – 7.35 (m, 5H), 7.32 – 7.29 (m, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 7.02 (d, *J* = 9.0 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 3.84 (s, 3H), 2.21 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 173.8, 169.4, 159.5, 145.5, 136.5, 130.1, 129.0, 128.7, 128.4, 128.0, 127.3, 126.5, 124.4, 123.4, 115.0, 109.9, 81.3, 55.6, 21.0;

HRMS (ESI): exact mass calcd for $C_{23}H_{19}NNaO_4^+$ (M+Na)⁺ requires m/z 396.1206, found m/z 396.1198.

(R)-3-Hydroxy-1,3-diphenylindolin-2-one (1i)

White solid (13.7 mg, 45% yield, 97% ee). m.p.: 166.0-169.6 °C. $R_f = 0.23$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL IA, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 19.536 min, 21.868 min. [α]_D²⁵ = +140.2 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 (t, *J* = 7.2 Hz, 2H), 7.47 – 7.39 (m, 5H), 7.35 – 7.28 (m, 4H), 7.24 (d, *J* = 9.0 Hz, 1H), 3.36 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 177.0, 143.6, 140.5, 134.1, 131.5, 129.9, 129.8, 128.9, 128.5, 128.4, 126.6, 125.4, 124.1, 110.1, 78.2.

HRMS (ESI): exact mass calcd for $C_{20}H_{15}NNaO_2^+$ (M+Na)⁺ requires m/z 324.0995, found m/z 324.0995.

(S)-2-Oxo-1,3-diphenylindolin-3-yl acetate (3i)

White solid (16.9 mg, 49% yield, 95% ee). m.p.: 145.9-149.6 °C. $R_f = 0.48$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 9.727 min, 10.500 min. [α]_D²⁵ = +72.5 (c = 0.4, CHCl₃).

¹**H** NMR (600 MHz, CDCl₃) δ 7.53 – 7.47 (m, 6H), 7.43 – 7.38 (m, 4H), 7.34 – 7.32 (m, 2H), 7.15 (t, *J* = 7.2 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 2.22 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.5, 169.4, 145.0, 136.5, 134.7, 130.1, 129.7, 129.1, 128.7, 128.4, 128.1, 126.7, 126.5, 124.5, 123.5, 109.9, 81.3, 20.9.

HRMS (ESI): exact mass calcd for $C_{22}H_{17}NNaO_3^+$ (M+Na)⁺ requires m/z 366.1101, found m/z 366.1098.

(R)-4-Chloro-3-hydroxy-1,3-diphenylindolin-2-one (1j)

White solid (13.7 mg, 41% yield, 99% ee). m.p.: 179.0-182.6 °C. $R_f = 0.32$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 10.328 min, 12.397 min. [α]_D²⁵= -9.3 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 (t, J = 7.8 Hz, 2H), 7.48 – 7.46 (m, 2H), 7.44 – 7.35 (m, 6H),

7.25 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 3.57 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 175.4, 145.6, 138.1, 133.8, 132.3, 131.2, 130.0, 128.8, 128.7, 128.1, 126.6, 125.6, 124.9, 108.6, 78.7.

HRMS (ESI): exact mass calcd for $C_{20}H_{14}CINNaO_2^+$ (M+Na)⁺ requires m/z 358.0605, found m/z 358.0606.

(S)-4-Chloro-2-oxo-1,3-diphenylindolin-3-yl acetate (3j)

White solid (19.7 mg, 52% yield, 83% ee). m.p.: 163.3-167.0 °C. $R_f = 0.48$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 7.642 min, 8.897 min. [α]_D²⁵ = +74.1 (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.54 – 7.48 (m, 4H), 7.45 – 7.40 (m, 6H), 7.28 (t, *J* = 3.6 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 2.29 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 172.9, 169.7, 146.8, 134.4, 134.2, 131.4, 131.3, 129.8, 129.3, 128.9, 128.7, 127.1, 126.1, 124.9, 124.4, 108.4, 81.4, 20.5.

HRMS (ESI): exact mass calcd for $C_{22}H_{16}CINNaO_3^+$ (M+Na)⁺ requires m/z 400.0711, found m/z 400.0713.

(R)-5-Chloro-3-hydroxy-1,3-diphenylindolin-2-one (1k)

White solid (14.7 mg, 44% yield, 99% ee). m.p.: 175.9-179.6 °C. $R_f = 0.24$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 9.260 min, 14.766 min. $[\alpha]_D^{25}$ = +54.9 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.54 (t, J = 7.8 Hz, 2H), 7.47 – 7.42 (m, 5H), 7.39 – 7.34 (m, 3H),

7.31 (d, J = 2.4 Hz, 1H), 7.31 (dd, J = 8.4, 1.8 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 3.85 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 176.7, 142.0, 139.9, 133.8, 133.1, 130.0, 129.9, 129.8, 129.4, 129.0, 128.8, 128.7, 126.5, 125.8, 125.3, 111.2, 78.2.

HRMS (ESI): exact mass calcd for $C_{20}H_{14}CINNaO_2^+$ (M+Na)⁺ requires m/z 358.0605, found m/z 358.0603.

(S)-5-Chloro-2-oxo-1,3-diphenylindolin-3-yl acetate (3k)

White solid (18.9 mg, 50% yield, 90% ee). m.p.: 172.6-176.5 °C. $R_f = 0.44$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ID, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 13.750 min, 21.401 min. [α]_D²⁵ = +43.9 (c = 0.5, CHCl₃).

¹**H** NMR (600 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.48 – 7.46 (m, 2H), 7.44 – 7.39 (m, 6H), 7.30 – 7.28 (m, 2H), 6.78 (d, *J* = 9.0 Hz, 1H), 2.24 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.1, 169.5, 143.6, 135.8, 134.3, 130.1, 129.9, 129.8, 129.3, 128.9, 128.8, 128.6, 126.3, 124.7, 111.0, 81.0, 20.9.

HRMS (ESI): exact mass calcd for $C_{22}H_{16}CINNaO_3^+$ (M+Na)⁺ requires m/z 400.0711, found m/z 400.0697.

(R)-6-Chloro-3-hydroxy-1,3-diphenylindolin-2-one (11)

White solid (15.4 mg, 46% yield, 97% ee). m.p.: 198.9-201.2 °C. $R_f = 0.32$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 15.917 min, 22.748 min. [α]_D²⁵ = +80.6 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.55 (t, J = 7.8 Hz, 2H), 7.47 – 7.41 (m, 5H), 7.38 – 7.33 (m, 3H),

7.25 (d, *J* = 6.6 Hz, 1H), 7.08 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.87 (d, *J* = 1.8 Hz, 1H), 3.63 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 177.0, 144.7, 140.0, 135.8, 133.7, 130.1, 129.8, 128.0, 128.9, 128.8, 126.5, 126.4, 125.3, 110.8, 77.9.

HRMS (ESI): exact mass calcd for $C_{20}H_{14}CINNaO_2^+$ (M+Na)⁺ requires m/z 358.0605, found m/z 358.0604.

(S)-6-Chloro-2-oxo-1,3-diphenylindolin-3-yl acetate (31)

White solid (18.4 mg, 49% yield, 92% ee). m.p.: 196.9-200.2 °C. $R_f = 0.48$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 8.312 min, 10.654 min. [α]_D²⁵ = +42.5 (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.54 – 7.52 (m, 2H), 7.48 – 7.42 (m, 8H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.12 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.83 (d, *J* = 1.8 Hz, 1H), 2.22 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.4, 169.5, 146.3, 136.1, 135.9, 134.2, 130.0, 129.3, 128.9, 128.8, 127.0, 126.4, 125.5, 123.5, 110.6, 80.8, 20.9.

HRMS (ESI): exact mass calcd for $C_{22}H_{16}CINNaO_3^+$ (M+Na)⁺ requires m/z 400.0711, found m/z 400.0705.

(R)-3-Hydroxy-5-methoxy-1,3-diphenylindolin-2-one (1m)

White solid (15.6 mg, 47% yield, 83% ee). m.p.: 110.5.0-113.6 °C. $R_f = 0.13$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 11.643 min, 19.335 min. [α]_D²⁵ = +69.2 (c = 0.3, CHCl₃).

¹**H** NMR (600 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 7.49 – 7.45 (m, 4H), 7.42 – 7.39 (m, 1H),

7.37 – 7.31 (m, 3H), 6.94 (d, *J* = 2.4 Hz, 1H), 6.84 – 6.79 (m, 2H), 3.75 (s, 3H), 3.72 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 176.9, 157.0, 140.5, 136.8, 134.4, 132.6, 129.8, 128.8, 128.5, 128.2, 126.3, 125.4, 115.0, 111.6, 110.9, 78.5, 55.9.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_3^+$ (M+Na)⁺ requires m/z 354.1101, found m/z 354.1096.

(S)-5-Methoxy-2-oxo-1,3-diphenylindolin-3-yl acetate (3m)

White solid (16.5 mg, 44% yield, 83% ee). m.p.: 157.8-161.0 °C. $R_f = 0.28$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 10.995 min, 12.090 min. [α]_D²⁵ = +69.4 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 – 7.45 (m, 6H), 7.40 – 7.38 (m, 4H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.86 – 6.79 (m, 2H), 3.78 (s, 3H), 2.22 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.3, 169.4, 156.6, 138.4, 136.5, 134.9, 129.7, 129.3, 129.1, 128.8, 128.2, 126.7, 126.4, 114.5, 111.3, 110.5, 81.6, 55.9, 21.0.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_4^+$ (M+Na)⁺ requires m/z 380.1257, found m/z 380.1248.

(R)-3-Hydroxy-1-phenyl-3-(o-tolyl)indolin-2-one (1n)

White solid (11.1 mg, 35% yield, 93% ee). m.p.: 170.2-173.0 °C. $R_f = 0.25$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 9.383 min, 11.168 min. [α]_D²⁵ = +5.9 (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.01 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.48 – 7.42 (m, 3H), 7.31 (t, J = 7.8 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.09 – 7.07 (m, 2H), 7.03 (t, J = 7.8 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 3.49 (br, 1H), 2.00 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 176.4, 144.2, 138.1, 134.5, 134.2, 131.6, 130.3, 129.9, 128.5, 128.4, 126.3, 126.2, 126.1, 125.4, 110.0, 77.7, 19.6.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_2^+$ (M+Na)⁺ requires m/z 338.1151, found m/z 338.1159.

(S)-2-Oxo-1-phenyl-3-(o-tolyl)indolin-3-yl acetate (3n)

White solid (16.7 mg, 47% yield, 89% ee). m.p.: 147.5-151.3 °C. $R_f = 0.44$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 7.338 min, 8.273 min. [α]_D²⁵ = +23.7 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 – 7.45 (m, 4H), 7.40 – 7.37 (m, 1H), 7.28 (t, *J* = 7.8 Hz, 1H),

7.23 – 7.19 (m, 4H), 7.14 – 7.08 (m, 2H), 6.80 (d, *J* = 7.8 Hz, 1H), 2.57 (s, 3H), 2.18 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.4, 168.9, 145.4, 137.8, 134.7, 133.1, 130.2, 129.7, 128.9,

 $128.4,\,128.0,\,127.4,\,126.9,\,126.0,\,124.8,\,123.6,\,110.0,\,82.9,\,21.4,\,21.0.$

HRMS (ESI): exact mass calcd for C₂₃H₁₉NNaO₃⁺ (M+Na)⁺ requires m/z 380.1257, found m/z

380.1256.

(*R*)-3-Hydroxy-1-phenyl-3-(m-tolyl)indolin-2-one (10)

White solid (15.5 mg, 49% yield, 83% ee). m.p.: 122.8-126.6 °C. $R_f = 0.24$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0mL/min, λ = 256 nm, retention time: 8.190 min, 10.218 min. $[\alpha]_D^{25}$ = +95.7 (c = 0.4, CHCl₃).

¹**H** NMR (600 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.45 – 7.39 (m, 3H), 7.33 – 7.32 (m, 2H), 7.25 – 7.20 (m, 3H), 7.12 – 7.08 (m, 2H), 6.88 (d, *J* = 7.8 Hz, 1H), 3.83 (br, 1H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.1, 143.5, 140.4, 138.4, 131.6, 129.7, 129.6, 129.2, 128.3, 126.5, 126.0, 125.3, 124.0, 122.5, 110.0, 78.2, 21.7.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_2^+$ (M+Na)⁺ requires m/z 338.1151, found m/z 338.1150.

(S)-2-Oxo-1-phenyl-3-(m-tolyl)indolin-3-yl acetate (30)

White solid (17.1 mg, 48% yield, 87% ee). m.p.: 174.2-178.1 °C. $R_f = 0.47$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 8.172 min, 9.900 min. [α]_D²⁵ = +55.9 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.50 – 7.43 (m, 4H), 7.40 – 7.37 (m, 2H), 7.31 – 7.28 (m, 2H), 7.24 – 7.22 (m, 1H), 7.19 – 7.15 (m, 2H), 7.11 (t, *J* = 7.8 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 2.35 (s, 3H), 2.20 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.7, 169.5, 145.0, 138.6, 136.4, 134.7, 130.0, 129.9, 129.7, 128.6, 128.4, 128.2, 127.1, 127.0, 124.5, 123.6, 123.5, 110.0, 81.4, 21.7, 21.0. HRMS (ESI): exact mass calcd for C₂₃H₁₉NNaO₃⁺ (M+Na)⁺ requires m/z 380.1257, found m/z 380.1260.

(*R*)-3-Hydroxy-1-phenyl-3-(p-tolyl)indolin-2-one (1p)

White solid (14.7 mg, 47% yield, 75% ee). m.p.: 124.0-126.4 °C. $R_f = 0.24$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL IA, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 20.473 min, 25.571 min. $[\alpha]_D^{25}$ = +85.3 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 (t, *J* = 7.8 Hz, 2H), 7.44 – 7.39 (m, 3H), 7.36 – 7.33 (m, 3H), 7.25 – 7.24 (m, 1H), 7.15 (d, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 7.8 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 3.65 (br, 1H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.1, 148.5, 138.3, 137.6, 134.2, 131.6, 129.8, 129.7, 129.5, 128.4, 126.6, 125.4, 125.3, 124.0, 110.1, 78.1, 21.3.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_2^+$ (M+Na)⁺ requires m/z 338.1151, found m/z 338.1142.

(S)-2-Oxo-1-phenyl-3-(p-tolyl)indolin-3-yl acetate (3p)

White solid (17.1 mg, 48% yield, 83% ee). m.p.: 164.2-166.1 °C. $R_f = 0.47$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm,

retention time: 8.221 min, 11.033 min. $[\alpha]_D^{25} = +46.8$ (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.50 (t, *J* = 7.8 Hz, 2H), 7.46 – 7.44 (m, 2H), 7.41 – 7.37 (m, 3H), 7.32 – 7.30 (m, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.8 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 2.35 (s, 3H), 2.20 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.7, 169.5, 145.1, 139.1, 134.8, 133.5, 133.1, 129.7, 129.5, 128.3, 128.1, 127.0, 126.5, 124.5, 123.5, 110.0, 81.3, 21.3, 21.0.

HRMS (ESI): exact mass calcd for $C_{23}H_{19}NNaO_3^+$ (M+Na)⁺ requires m/z 380.1257, found m/z 380.1258.

(R)-3-Hydroxy-3-(4-methoxyphenyl)-1-phenylindolin-2-one (1q)

White solid (15.0 mg, 45% yield, 69% ee). m.p.: 156.1-159.4 °C. $R_f = 0.12$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 16.843 min, 22.111 min. [α]_D²⁵ = +80.2 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (t, *J* = 7.8 Hz, 2H), 7.38 – 7.35 (m, 5H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.06 (t, *J* = 7.8 Hz, 1H), 6.83– 6.81 (m, 3H), 4.07 (br, 1H), 3.73 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.2, 159.6, 143.4, 134.1, 132.5, 131.6, 129.7, 129.6, 128.3, 127.0, 126.5, 125.3, 124.0, 114.1, 110.0, 77.8, 55.3.

HRMS (ESI): exact mass calcd for $C_{21}H_{17}NNaO_3^+$ (M+Na)⁺ requires m/z 354.1101, found m/z 354.1094.

(S)-3-(4-Methoxyphenyl)-2-oxo-1-phenylindolin-3-yl acetate (3q)

White solid (16.5 mg, 44% yield, 82% ee). m.p.: 134.3-138.2 °C. $R_f = 0.28$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 11.960 min, 17.981 min. [α]_D²⁵ = +71.40 (c = 0.4, CHCl₃).

¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.49 (m, 2H), 7.45 – 7.39 (m, 5H), 7.34 – 7.30 (m, 2H),

7.15 (t, J = 6.6 Hz, 1H), 6.92 – 6.89 (m, 2H), 6.84 (d, J = 7.8 Hz, 1H), 3.80 (s, 3H), 2.20 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.8, 169.6, 160.3, 145.0, 130.1, 129.7, 128.3, 128.2, 128.1, 127.9, 127.0, 124.5, 123.4, 114.1, 110.0, 81.0, 55.4, 21.0.

HRMS (ESI): exact mass calcd for $C_{23}H_{19}NNaO_4^+$ (M+Na)⁺ requires m/z 396.1206, found m/z 396.1210.

(R)-3-(4-Chlorophenyl)-3-hydroxy-1-phenylindolin-2-one (1r)

White solid (9.6 mg, 29% yield, 88% ee). m.p.: 133.3-135.0 °C. $R_f = 0.21$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 7.855 min, 12.186 min. [α]_D²⁵ = +84.9 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.53 (t, *J* = 7.8 Hz, 2H), 7.43 – 7.38 (m, 5H), 7.31 – 7.27 (m, 4H), 7.11 (t, *J* = 7.8 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 4.11 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 176.8, 143.4, 139.0, 134.4, 133.9, 131.2, 130.0, 129.8, 128.9, 128.5, 127.0, 126.5, 125.3, 124.3, 110.3, 77.8.

HRMS (ESI): exact mass calcd for $C_{20}H_{14}CINNaO_2^+$ (M+Na)⁺ requires m/z 358.0605, found m/z

358.0598.

(S)-3-(4-Chlorophenyl)-2-oxo-1-phenylindolin-3-yl acetate (3r)

White solid (16.4 mg, 43% yield, 75% ee). m.p.: 157.1-160.7 °C. $R_f = 0.41$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 8.905 min, 11.168 min. [α]_D²⁵ = +46.3 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 (t, *J* = 7.8 Hz, 2H), 7.45 – 7.41 (m, 5H), 7.36 – 7.28 (m, 4H), 7.15 (t, *J* = 7.8 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 2.20 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.2, 159.6, 143.4, 134.1, 132.5, 131.6, 129.7, 129.6, 128.3, 127.0, 126.5, 125.3, 114.1, 110.0, 77.8, 55.3.

HRMS (ESI): exact mass calcd for $C_{22}H_{16}CINNaO_3^+$ (M+Na)⁺ requires m/z 354.1101, found m/z 354.1094.

(R)-3-Hydroxy-1-phenyl-3-vinylindolin-2-one (1s)

White solid (8.2 mg, 33% yield, 98% ee). m.p.: 116.5-119.8 °C. $R_f = 0.16$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ID, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 16.466 min, 19.528 min. [α]_D²⁵ = +50.4 (c = 0.4, CHCl₃).

¹**H** NMR (600 MHz, CDCl₃) δ 7.54 – 7.51 (m, 2H), 7.43 – 7.41 (m, 4H), 7.29 – 7.26 (m, 1H), 7.16 – 7.14 (m, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 6.14– 6.09 (m, 1H), 5.50 (d, *J* = 17.4 Hz, 1H), 5.38 (d, *J* = 10.2 Hz, 1H), 3.37 (br, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 176.3, 143.5, 136.4, 134.1, 129.9, 129.8, 129.0, 128.4, 126.6,

125.2, 123.9, 117.2, 110.1, 77.4.

HRMS (ESI): exact mass calcd for $C_{16}H_{13}NNaO_2^+$ (M+Na)⁺ requires m/z 274.0838, found m/z 274.0838.

(R)-2-Oxo-1-phenyl-3-vinylindolin-3-yl acetate (3s)

White solid (15.9 mg, 54% yield, 57% ee). m.p.: 100.6-103.3 °C. $R_f = 0.44$ (Pet/EtOAc, 5/1, v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 7.783 min, 9.143 min. [α]_D²⁵ = +15.3 (c = 0.3, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 – 7.50 (m, 2H), 7.44 – 7.39 (m, 3H), 7.29 – 7.25 (m, 2H), 7.10 (t, *J* = 7.8 Hz, 1H), 6.77 (d, *J* = 7.8 Hz, 1H), 6.12 (dd, *J* = 17.4, 10.8 Hz, 1H), 5.41 (d, *J* = 10.8 Hz, 1H), 5.36 (d, *J* = 16.8 Hz, 1H), 2.12 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.0, 169.2, 144.6, 134.6, 133.2, 130.1, 129.8, 128.4, 127.0, 126.2, 124.1, 123.3, 119.5, 110.0, 80.7, 20.9.

HRMS (ESI): exact mass calcd for $C_{18}H_{15}NNaO_3^+$ (M+Na)⁺ requires m/z 316.0944, found m/z 316.0947.

(R)-Methyl 3-hydroxy-2-oxo-3-(thiophen-2-yl)indoline-1-carboxylate (1t)

(Known compound, see: H. Mandai, R. Shiomoto, K. Fujii, K. Mitsudo and S. Suga, Org. Lett., 2021, 23, 1169.)

White solid (10.4 mg, 36% yield, 98% ee). m.p.: 116.2-120.0 °C. $R_f = 0.17$ (Pet/EtOAc, 5/1,

v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm,

retention time: 14.312 min, 17.983 min. $[\alpha]_D^{25} = -31.2$ (c = 0.7, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 6.6 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 4.2 Hz, 1H), 7.26 (t, *J* = 7.8 Hz, 1H), 6.89 (t, *J* = 4.2 Hz, 1H), 6.83 (d, *J* = 1.8 Hz, 1H), 4.10 (br, 1H), 3.95 (s, 1H).

HRMS (ESI): exact mass calcd for $C_{14}H_{11}NSNaO_4^+$ (M+Na)⁺ requires m/z 312.0301, found m/z 312.0296.

(S)-Methyl 3-acetoxy-2-oxo-3-(thiophen-2-yl)indoline-1-carboxylate (3t)

White solid (13.3 mg, 40% yield, 89% ee). m.p.: 200.2-203.8 °C. $R_f = 0.43$ (Pet/EtOAc, 5/1,

v/v).

HPLC CHIRALCEL ODH, *n*-hexane/2-propanol = 95/5, flow rate = 0.5 mL/min, λ = 256 nm, retention time: 12.005 min, 20.882 min. [α]_D²⁵ = +128.7 (c = 0.4, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 5.4 Hz, 1H), 7.27 (t, *J* = 7.2 Hz, 1H), 6.93 (t, *J* = 4.8 Hz, 1H), 6.84 (d, *J* = 3.6 Hz, 1H), 3.97 (s, 3H), 2.13 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 170.4, 169.3, 151.4, 139.9, 137.9, 131.0, 128.8, 128.2, 126.8, 128.7, 125.3, 123.9, 115.7, 78.7, 54.1, 20.6.

HRMS (ESI): exact mass calcd for $C_{16}H_{13}NSNaO_5^+$ (M+Na)⁺ requires m/z 48.0842, found m/z 348.0843.

10. Reference

- (1) H. Mandai, R. Shiomoto, K. Fujii, K. Mitsudo and S. Suga, Org. Lett., 2021, 23, 1169.
- (2) M. D. Greenhalgh, S. M. Smith, D. M. Walden, J. E. Taylor, Z. Brice, E. R. T. Robinson, C.
- Fallan, D. B. Cordes, A. M. Z. Slawin, H. C. Richardson, M. A. Grove, P. H.-Y. Cheong and A. D. Smith, *Angew. Chem., Int. Ed.*, 2018, **57**, 3200.
- (3) M.-S. Xie, M. Shan, N. Li, Y.-G. Chen, X.-B. Wang, X. Cheng, Y. Tian, X.-X. Wu, Y. Deng, G.-R. Qu and H.-M. Guo, *ACS Catal.*, 2022, **12**, 877.
- (4) K. S. Kumar, R. Adepu, S. Sandra, D. Rambabu, R. Krishna, M. C. Reddy, R. Misra, M. Pal, *Bioorg. Med. Chem. Lett.*, **2012**, 22, 1146-1150.
- (5) H. B. Kagan and J.-C. Fiaud, Top. Stereochem., 1988, 18, 249.

11. Copies of NMR spectra

¹H NMR for C7c

¹³C NMR for C7c

¹H NMR for C6h

¹³C NMR for C6h

¹³C NMR for C6i

¹H NMR for 1a

¹H NMR for 3a

¹³C NMR for 3a

¹H NMR for 3b

¹³C NMR for 3b

¹H NMR for 3c

¹H NMR for 3d

¹³C NMR for 3d

¹H NMR for 1e

¹³C NMR for 1e

¹H NMR for 3e

¹³C NMR for 3e

¹H NMR for 1f

¹³C NMR for 1f

¹H NMR for 3f

¹³C NMR for 3f

¹H NMR for 1g

¹³C NMR for 1g

¹H NMR for 3g

¹³C NMR for 3g

¹H NMR for 1h

¹³C NMR for 1h

¹H NMR for 3h

¹³C NMR for 3h

¹H NMR for 1i

¹³C NMR for 1i

¹H NMR for 3i

¹³C NMR for 3i

¹H NMR for 1j

¹³C NMR for 1j

¹H NMR for 3j

¹³C NMR for 3j

¹H NMR for 1k

¹³C NMR for 1k

¹H NMR for 3k

¹³C NMR for 3k

¹H NMR for 11

¹³C NMR for 11

¹H NMR for 3l

¹³C NMR for 3l

¹H NMR for 1m

¹H NMR for 3m

¹³C NMR for 3m

¹H NMR for 1n

¹³C NMR for 1n

¹H NMR for 3n

¹³C NMR for 3n

¹H NMR for 10

¹³C NMR for 10 $\begin{array}{c} 143.47\\ 140.38\\ 138.44\\ 134.12\\ 131.62\\ 131.62\\ 129.68\\ 129.68\\ 129.68\\ 129.53\\ 128.63\\ 128.63\\ 128.63\\ 128.63\\ 128.63\\ 128.64\\ 125.47\\ 124.02\\ 125.47\\ 110.03\end{array}$ 177.12 78.16 77.37 77.16 76.95 - 21.68 CH₃ OH C Ρh - 1000000 -500000 To o 100 90 f1 (ppm) $\dot{70}$

¹H NMR for 30

¹³C NMR for 30

¹H NMR for 1p

¹³C NMR for 1p

¹H NMR for 3p

¹³C NMR for 3p

¹H NMR for 1q

¹H NMR for 3q

¹³C NMR for 3q

¹H NMR for 1r

¹³C NMR for 1r

¹H NMR for 3r

¹³C NMR for 3r

¹H NMR for 1s

¹H NMR for 3s

¹³C NMR for 3s

¹H NMR for 1t

¹H NMR for 3t

¹³C NMR for 3t

12. Copies of HPLC spectra

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	8.982	179.249	442.833	39.95	59.13
2	11.493	43.360	73.753	9.66	9.85
3	13.955	44.436	69.322	9.90	9.26
4	21.648	181.686	162.996	40.49	21.76
Total:		448.731	748.904	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	9.302	25.666	67.161	5.19	10.27
2	11.438	172.828	325.271	34.96	49.76
3	14.042	2.784	4.947	0.56	0.76
4	20.263	293.074	256.290	59.28	39.21
Total:		494.352	653.669	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	9.458	228.468	540.519	49.85	52.83
2	11.027	229.859	482.641	50.15	47.17
Total:		458.327	1023.159	100.00	100.00

1896.912

100.00

100.00

977.250

Total:

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	8.172	69.223	175.945	7.80	9.57
2	9.900	817.873	1661.813	92.20	90.43
Total:		887.096	1837.758	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	11.960	284.455	441.398	8.82	16.25
2	17.981	2939.452	2274.628	91.18	83.75
Total:		3223.907	2716.026	100.00	100.00

175.416

3229.127

101.632

1737.577

5.85

100.00

5.43

100.00

2

Total:

12.186

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	16.245	957.875	2043.901	49.69	55.74
2	19.655	969.754	1623.187	50.31	44.26
Total:		1927.628	3667.088	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	7.641	1034.750	3084.036	48.99	52.37
2	9.028	1077.388	2805.315	51.01	47.63
Total:		2112.139	5889.351	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	11.717	519.891	1013.821	49.06	66.36
2	22.018	539.891	513.915	50.94	33.64
Total:		1059.781	1527.736	100.00	100.00

880.501

100.00

100.00

869.403

Total: