Support Information

Catalyst-free highly regioselective hydrated ring-opening and formylation of quinazolinones

Xianglin Yu, Zhiliang Tang, Kun He, Weina Li, Jun Lin,* and Yi Jin*

[†]Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.

* Corresponding author. Tel./fax: +86-871-65031633. E-mail: linjun@ynu.edu.cn (J.

Lin); jinyi@ynu.edu.cn (Y. Jin).

Contents

1.	General information	S2		
2.	General Procedure for preparing Polysubstituted cyclopentene 3-5	S2		
3.	General Procedure for ¹⁸ O labeling experiment	S4		
4.	Spectroscopic Data of 4-5 & ¹⁸ O-4a	S5		
5.	X-ray Structure and Data of 4d	S24		
Figure S1. X-Ray crystal structure of 4d				
Table S1. Crystal data and structure refinement for 4d				
6.	¹ H NMR and ¹³ C NMR Spectra of These Compounds	S28		

1. General information

All chemicals and reagents were used of commercial grade and were used without further purification. The reactions were monitored by thin-layer chromatography (TLC) using silica gel GF254. Column chromatography was performed with 200–300 mesh silica gel. All yields refer to isolated products after purification. The intermediates and the products synthesized were fully characterized by spectroscopic data. The NMR spectra were recorded on Bruker DRX-600 (¹H: 600 MHz, ¹³C: 151 MHz) using CDCl₃ as solvents. The following abbreviation were used to explain the multiplicities: (s) = singlet, (d) = doublet, (t) = triplet, (q) = quartet, (sept) = septuplet, (dd) = double doublet, (dt) = double triplet, (dq) = double quartet, (ddd) = double-double doublet, (m) = multiplet; Chemical shifts (δ) are expressed in parts per million (ppm) and J values are given in hertz (Hz). IR spectra were recorded on an Agilent LC/MSD TOF instrument. The melting points were measured by the XT-4A melting point apparatus without correction.

2. General Procedure for preparing compounds 3, 4, or 5

Under air atmosphere, quinazolinone 1 (1 mmol), Kobayashi benzyne precursor 2a (2 mmol, 596 mg), CsF (2 mmol, 604 mg), H₂O (100 μ L), MeCN (10 ml) were added to 25 mL reaction tube. The mixture was stirred at 60 °C in oil bath for 4 h. After cooling to room temperature, the reaction was quenched with saturated NaCl solution and extracted with 60 mL EtOAc for three times. The organic layers were combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residues were purified by flash column chromatography on silica gel to provide the products 4a-4l.

The products were further identified by FTIR spectroscopy, NMR spectroscopy, and HRMS.

Under air atmosphere, quinazolinone 1 (1 mmol), Kobayashi benzyne precursor 2 (1 mmol), CsF (2 mmol, 302 mg), MeCN (10 ml) were added to 25 mL reaction tube. The mixture was stirred at 60 °C in oil bath for 0.8 h. After cooling to room temperature, the reaction was quenched with saturated NaCl solution and extracted with 60 mL EtOAc for three times. The organic layers were combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residues were purified by flash column chromatography on silica gel to provide the products **3a-3f**. The products were further identified by FTIR spectroscopy, NMR spectroscopy, and HRMS.

Under air atmosphere, 3-phenylquinazolinone **3** (0.5 mmol), Kobayashi benzyne precursor **2**' (0.5 mmol), CsF (1 mmol, 151 mg), H₂O (50 μ L), MeCN (10 ml) were added to 25 mL reaction tube. The mixture was stirred at 60 °C in oil bath for 4 h. After cooling to room temperature, the reaction was quenched with saturated NaCl solution and extracted with 60 mL EtOAc for three times. The organic layers were combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residues were purified by flash column chromatography on silica gel to provide the products **5a-5g**. The products were further identified by FTIR spectroscopy, NMR spectroscopy, and HRMS.

3. General Procedure for ¹⁸O labeling experiment

Under air atmosphere, quinazolinone **1a** (0.2 mmol, 29 mg), Kobayashi benzyne precursor **2a** (0.4 mmol, 119 mg), CsF (0.4 mmol, 121 mg), H₂¹⁸O (20 μ L), MeCN (2 ml) were added to 10 mL dry reaction tube. The mixture was stirred at 60 °C in oil bath for 4 h. After cooling to room temperature, the reaction was quenched with saturated NaCl solution and extracted with 10 mL EtOAc for three times. The organic layers were combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residues were purified by flash column chromatography on silica gel to provide the products **4a**. The products were further identified by HRMS.

Under ¹⁸O₂ atmosphere, quinazolinone **1a** (0.2 mmol, 29 mg), Kobayashi benzyne precursor **2a** (0.4 mmol, 119 mg), CsF (0.4 mmol, 121 mg), H₂O (20 μ L), MeCN (2 ml) were added to 10 mL dry schlenk tube. The mixture was stirred at 60 °C in oil bath for 4 h. After cooling to room temperature, the reaction was quenched with saturated NaCl solution and extracted with 10 mL EtOAc for three times. The organic layers were combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residues were purified by flash column chromatography on silica gel to provide the products **4a**. The products were further identified by HRMS.

- 4. Spectroscopic Data of 4-5 & ¹⁸O-4a
- 4.1 Spectroscopic Data of 4a

N-phenyl-2-(*N*-phenylformamido)benzamide(4a).

Synthesized according to General Procedure 1. Crude **4a** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 85% yield (269 mg, 0.85 mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 207.2-207.7 °C; **IR** (KBr): 3264, 3202, 3138, 3083, 2886, 1672, 1603, 1553, 1497, 1445, 1399, 1324, 1261, 754, 708, 696; ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.65 (s, 1H, CHO), 8.22 (s, 1H, NH), 7.70 (dd, *J* = 7.6, 1.7 Hz, 1H, ArH), 7.58 (d, *J* = 8.0 Hz, 2H, ArH), 7.51 (td, *J* = 7.7, 1.7 Hz, 1H, ArH), 7.47 (t, *J* = 7.5 Hz, 1H, ArH), 7.33 (dt, *J* = 9.9, 7.6 Hz, 4H, ArH), 7.30 – 7.22 (m, 3H, ArH), 7.19 (dd, *J* = 8.2, 3.6 Hz, 3H, ArH), 7.12 (t, *J* = 7.4 Hz, 1H, ArH); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 165.65, 163.17, 141.15, 137.82, 136.88, 135.97, 131.55, 129.76, 129.20 – 128.74 (m), 127.19, 124.57, 124.15, 119.95. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₀H₁₆O₂N₂ [M+H] ⁺, 317.1285; found, 317.1284.

4.2 Spectroscopic Data of 4b

2-fluoro-*N*-phenyl-6-(*N*-phenylformamido)benzamide(4b).

Synthesized according to General Procedure 1. Crude **4b** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 76% yield (254 mg, 0.76 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 210.7-211.4 °C; **IR** (KBr): 3270, 3208, 3145, 3096, 2882, 1676, 1610, 1556, 1496, 1450, 1403, 1322, 1276, 1239, 1150, 1052, 901, 858, 754, 691; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.60 (s, 1H, CHO), 8.08 (s, 1H, NH), 7.58 (d, *J* = 7.9 Hz, 2H, ArH), 7.48 – 7.42 (m, 1H, ArH), 7.35 (dt, *J* = 19.4, 7.7 Hz, 4H, ArH), 7.30 – 7.18 (m, 6H, ArH), 7.15 – 7.11 (m, 1H, ArH), 6.98 (d, *J* = 8.0 Hz, 1H, ArH); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 162.72, 160.64 (d, *J* = 39.5 Hz), 158.85, 140.85, 137.83, 137.39, 131.81, 131.74, 129.80, 129.04, 127.41, 125.61 (d, *J* = 39.3 Hz), 124.86, 124.57, 124.55, 124.38, 120.16, 116.21 (d, *J* = 22.1 Hz); ¹⁹F **NMR** (565 MHz, Chloroform-*d*) δ -113.32. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₀H₁₅FO₂N₂ [M+H] ⁺, 335.1190; found, 335.1192.

4.3 Spectroscopic Data of 4c

4-fluoro-*N*-phenyl-2-(*N*-phenylformamido)benzamide(4c).

Synthesized according to General Procedure 1. Crude **4c** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 79% yield (264 mg, 0.79 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 138.5-139.3 °C; IR (KBr): 3319, 3207, 3140, 3072, 1676, 1602, 1547, 1498, 1437, 1329, 1281, 1210,

1128, 914, 843, 758, 727, 691; ¹**H** NMR (600 MHz, Chloroform-*d*) δ 8.61 (s, 1H, CHO), 8.17 (s, 1H, NH), 7.70 (dd, J = 8.6, 6.0 Hz, 1H, ArH), 7.55 (d, J = 8.0 Hz, 2H, ArH), 7.37 (t, J = 7.7 Hz, 2H, ArH), 7.31 (dt, J = 19.0, 7.6 Hz, 4H, ArH), 7.20 (d, J = 7.8 Hz, 2H, ArH), 7.16 (td, J = 8.2, 2.7 Hz, 2H, ArH), 7.13 (t, J = 7.4 Hz, 1H, ArH), 6.91 (dd, J = 8.8, 2.5 Hz, 1H, ArH); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.85, 164.66 (d, J = 2.1 Hz), 162.95, 140.65, 137.68, 133.06, 130.77, 130.71, 129.91, 129.07, 127.57, 124.71, 124.37, 120.01, 116.35 (d, J = 23.0 Hz), 116.02 (d, J = 22.2 Hz); ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -107.27. HRMS (TOF-ESI⁺): *m*/*z* calcd for C₂₀H₁₅FO₂N₂ [M+H] ⁺, 335.1190; found, 335.1188.

4.4 Spectroscopic Data of 4d

5-chloro-*N*-phenyl-2-(*N*-phenylformamido)benzamide(4d).

Synthesized according to General Procedure 1. Crude **4d** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 81% yield (300 mg, 0.81 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 98.4-98.8 °C; **IR** (KBr): 3329, 3207, 3143, 3061, 1671, 1599, 1545, 1491, 1440, 1400, 1324, 1279, 1255, 1109, 753, 690; ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.60 (s, 1H, CHO), 7.64 (d, *J* = 2.6 Hz, 1H, NH), 7.55 (d, *J* = 8.0 Hz, 2H, ArH), 7.44 – 7.39 (m, 1H, ArH), 7.36 (t, *J* = 7.7 Hz, 2H, ArH), 7.28 (dq, *J* = 7.4, 3.3, 2.8 Hz, 4H, ArH), 7.20 (dd, *J* = 7.5, 1.6 Hz, 2H, ArH), 7.13 – 7.06 (m, 2H, ArH); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 164.30, 162.90, 140.88, 137.79, 137.62, 134.66, 134.40, 131.52, 130.17, 129.86, 129.01, 127.45, 124.74, 124.38, 120.06. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₀H₁₅ClO₂N₂ [M+Na] ⁺, 373.0714; found, 373.0716.

4.5 Spectroscopic Data of 4e

4-chloro-*N*-phenyl-2-(*N*-phenylformamido)benzamide(4e).

Synthesized according to General Procedure 1. Crude **4e** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 82% yield (305 mg, 0.81 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 172.2-172.9 °C; **IR** (KBr): 3321, 3084, 3024, 2928, 2876, 1675, 1597, 1538, 1494, 1442, 1405, 1325, 1283, 1163, 1104, 773, 751, 692; ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.59 (s, 1H, CHO), 8.26 (d, *J* = 6.6 Hz, 1H, NH), 7.62 (d, *J* = 8.3 Hz, 1H, ArH), 7.54 (d, *J* = 8.0 Hz, 2H, ArH), 7.41 (dd, *J* = 8.2, 2.1 Hz, 1H, ArH), 7.37 (t, *J* = 7.8 Hz, 2H, ArH), 7.30 (dt, *J* = 12.4, 7.7 Hz, 4H, ArH), 7.20 (d, *J* = 7.8 Hz, 2H, ArH), 7.16 (d, *J* = 2.1 Hz, 1H, ArH), 7.12 (t, *J* = 7.4 Hz, 1H, ArH); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 164.79, 162.97, 140.66, 137.65, 137.32, 137.01, 135.11, 130.05, 129.91, 129.13, 129.06, 128.96, 127.57, 124.75, 124.41, 120.07. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₀H₁₅ClO₂N₂ [M+H]⁺, 351.0895; found, 351.0892.

4.6 Spectroscopic Data of 4f

5-bromo-*N*-phenyl-2-(*N*-phenylformamido)benzamide(4f).

Synthesized according to General Procedure 1. Crude **4f** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 83% yield (327 mg, 0.83 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 116.6-117.6 °C; **IR** (KBr): 3331, 3206, 3141, 3066, 1682, 1598, 1548, 1483, 1443, 1394, 1326, 1288,

1257, 1097, 902, 763, 694; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.58 (s, 1H, CHO), 8.55 (s, 1H, NH), 7.75 (s, 1H, ArH), 7.56 – 7.49 (m, 3H, ArH), 7.36 (t, *J* = 7.7 Hz, 2H, ArH), 7.31 – 7.20 (m, 6H, ArH), 7.07 (t, *J* = 7.4 Hz, 1H, ArH), 6.99 (d, *J* = 8.5 Hz, 1H, ArH); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.20, 162.66, 140.91, 137.82, 137.73, 135.33, 134.42, 131.85, 130.26, 129.83, 128.94, 127.46, 124.64, 124.54, 122.03, 120.07. HRMS (TOF-ESI⁺): *m*/*z* calcd for C₂₀H₁₅BrO₂N₂ [M+H] ⁺, 395.0390; found, 395.0390.

4.7 Spectroscopic Data of 4g

5-iodo-*N*-phenyl-2-(*N*-phenylformamido)benzamide(**4g**).

Synthesized according to General Procedure 1. Crude **4g** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 82% yield (362 mg, 0.82 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 118.1-119.0 °C; **IR** (KBr): 3326, 3135, 3063, 2924, 1677, 1600, 1543, 1496, 1442, 1389, 1324, 1265, 1160, 1085, 897, 831, 756, 691; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.60 (s, 1H, CHO), 8.31 (s, 1H, NH), 7.98 (dd, J = 4.7, 2.2 Hz, 1H, ArH), 7.78 (ddd, J = 8.3, 6.0, 2.2 Hz, 1H, ArH), 7.55 (d, J = 7.9 Hz, 2H, ArH), 7.36 (d, J = 7.1 Hz, 2H, ArH), 7.32 – 7.27 (m, 4H, ArH), 7.26 (d, J = 1.7 Hz, 1H, ArH), 7.21 (d, J = 7.8 Hz, 2H, ArH), 7.11 (td, J = 7.5, 3.4 Hz, 1H, ArH), 6.90 (dd, J = 8.4, 3.0 Hz, 1H, ArH); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 164.02, 162.79, 140.80, 140.49, 138.24, 137.72, 137.61, 135.91, 130.53, 129.85, 129.02, 127.46, 124.73, 124.42, 120.02, 93.64. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₀H₁₅IO₂N₂ [M+H] ⁺, 443.0251; found, 443.0251.

4.8 Spectroscopic Data of 4h

5-methyl-*N*-phenyl-2-(*N*-phenylformamido)benzamide(4h).

Synthesized according to General Procedure 1. Crude **4h** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 90% yield (297 mg, 0.90 mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 74.8-75.5 °C; **IR** (KBr): 3304, 3200, 3137, 3063, 1676, 1600, 1539, 1497, 1442, 1405, 1325, 1260, 1206, 1154, 1079, 831, 755, 696; ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.65 (s, 1H, CHO), 8.26 (s, 1H, NH), 7.57 (d, *J* = 8.0 Hz, 2H, ArH), 7.51 (s, 1H, ArH), 7.32 (q, *J* = 7.3 Hz, 5H, ArH), 7.26 – 7.21 (m, 2H, ArH), 7.17 (d, *J* = 7.9 Hz, 2H, ArH), 7.11 (t, *J* = 7.4 Hz, 2H, ArH), 7.07 (d, *J* = 8.1 Hz, 1H, ArH), 2.41 (s, 3H, ArH); ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.77, 163.32, 141.27, 139.24, 137.88, 136.61, 133.24, 132.24, 129.71, 129.62, 129.03, 128.83, 127.06, 124.49, 123.97, 119.90, 21.04. HRMS (TOF-ESI⁺): *m/z* calcd for C₂₁H₁₈FO₂N₂ [M+H] ⁺, 331.1441; found, 331.1442.

4.9 Spectroscopic Data of 4i

4,5-dimethoxy-*N*-phenyl-2-(*N*-phenylformamido)benzamide(4i).

Synthesized according to General Procedure 1. Crude **4i** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 89% yield (354 mg, 0.89 mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 90.8-100.5 °C; **IR** (KBr): 3321, 3065, 2935, 2859, 1675, 1602, 1514, 1444, 1400, 1361, 1317, 1261, 1181, 1140, 1075, 1029, 877, 756, 690; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.62 (s,

1H, CHO), 8.39 (s, 1H, NH), 7.49 (d, J = 8.0 Hz, 2H, ArH), 7.26 (t, J = 7.8 Hz, 2H, ArH), 7.24 (s, 1H, ArH), 7.20 (dd, J = 21.5, 7.6 Hz, 4H, ArH), 7.13 (s, 1H, ArH), 7.08 (d, J = 7.9 Hz, 2H, ArH), 7.02 (t, J = 7.4 Hz, 1H, ArH), 6.53 (s, 1H, ArH), 3.86 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.25, 162.59, 150.33, 148.22, 140.17, 136.93, 128.79, 128.23, 127.99, 127.56, 126.08, 123.40, 122.49, 118.79, 110.55, 110.35, 55.22, 55.20. HRMS (TOF-ESI⁺): *m/z* calcd for C₂₂H₂₀O₄N₂ [M+H]⁺, 399.1315; found, 399.1312.

4.10 Spectroscopic Data of 4j

2-methoxy-5-(phenylcarbamoyl)-4-(*N*-phenylformamido)phenyl acetate(4j).

Synthesized according to General Procedure 1. Crude **4j** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 89% yield (347 mg, 0.86 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 143.5-144.3 °C; **IR** (KBr): 3240, 3199, 3140, 3071, 2944, 2892, 1763, 1691, 1648, 1601, 1545, 1502, 1446, 1326, 1253, 1207, 1170, 1065, 1007, 913, 756, 695; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.64 (s, 1H, CHO), 8.24 (s, 1H, NH), 7.53 (d, *J* = 8.0 Hz, 2H, ArH), 7.41 (s, 1H, ArH), 7.36 (t, *J* = 7.7 Hz, 2H, ArH), 7.29 (ddd, *J* = 17.6, 8.7, 4.8 Hz, 3H, ArH), 7.26 (s, 1H, ArH), 7.20 (d, *J* = 7.9 Hz, 2H, ArH), 7.10 (t, *J* = 7.4 Hz, 1H, ArH), 6.71 (s, 1H, ArH), 3.79 (s, 3H, OCH₃), 2.32 (s, 3H, CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.32, 164.44, 163.07, 153.49, 140.98, 139.56, 137.86, 134.73, 129.81, 129.10, 129.00, 127.22, 124.50, 123.97, 123.52, 119.96, 112.80, 56.25, 20.54. HRMS (TOF-ESI⁺): *m/z* calcd for C₂₃H₂₀O₅N₂ [M+H] ⁺, 405.1445; found, 405.1450.

4.11 Spectroscopic Data of 4k

(Z)-N,2-diphenyl-3-(N-phenylformamido)but-2-enamide(4k).

Synthesized according to General Procedure 1. Crude **4k** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 84% yield (299 mg, 0.84 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 161.7-162.5 °C; **IR** (KBr): 3323, 3198, 3062, 2927, 2859, 1684, 1636, 1588, 1540, 1495, 1440, 1383, 1338, 1313, 1277, 1210, 1771, 1079, 1034, 753, 699; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.47 (s, 1H, CHO), 8.16 (s, 1H, NH), 7.58 – 7.50 (m, 4H, ArH), 7.42 (t, *J* = 7.7 Hz, 4H, ArH), 7.41 – 7.34 (m, 4H, ArH), 7.30 (dd, *J* = 28.9, 7.3 Hz, 4H, ArH), 7.06 (t, *J* = 7.4 Hz, 1H, ArH), 1.81 (s, 3H, CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.81, 162.39, 139.17, 138.80, 137.61, 134.83, 133.03, 129.88, 128.93, 128.91, 128.68, 128.55, 127.60, 124.37, 124.18, 119.82, 17.36.HRMS (TOF-ESI⁺): *m/z* calcd for C₂₃H₂₀O₂N₂ [M+H] ⁺, 357.1598; found, 357.1601.

4.12 Spectroscopic Data of 41

(Z)-N-phenyl-2-(1-(N-phenylformamido)ethylidene)pentanamide(41).

Synthesized according to General Procedure 1. Crude **4I** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 91% yield (313 mg, 0.91 mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 102.5-102.9 °C; **IR** (KBr): 3334, 3065, 2966, 2933, 2877, 1666, 1600, 1540, 1497, 1441, 1386, 1333, 1274, 1248, 1178, 1112, 1079, 1033, 912, 761, 691; ¹H NMR (600 MHz,

Chloroform-*d*) δ 8.40 (s, 1H, CHO), 8.31 (s, 1H, NH), 7.56 (d, J = 7.2 Hz, 2H, ArH), 7.36 (t, J = 7.9 Hz, 2H, ArH), 7.31 – 7.21 (m, 6H, ArH), 7.07 (t, J = 7.4 Hz, 1H, ArH), 2.51 – 2.20 (m, 2H, CH₂CH₂CH₃), 1.84 (s, 3H, CH₃), 1.66 (h, J = 7.5 Hz, 2H, CH₂CH₂CH₃), 1.03 (t, J = 7.3 Hz, 3H, CH₂CH₂CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.34, 162.63, 139.07, 138.95, 137.67, 130.53, 129.81, 128.98, 127.48, 124.26, 123.92, 119.68, 32.67, 21.49, 16.32, 13.85. HRMS (TOF-ESI⁺): m/zcalcd for C₂₀H₂₂O₂N₂ [M+H] ⁺, 345.1573; found, 345.1571.

4.13 Spectroscopic Data of 5aa

N-phenyl-2-(*N*-*m*-tolylformamido)benzamide(**5aa**).

Synthesized according to General Procedure 1. Crude **5aa** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 42% yield (74 mg, 0.21 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 131.0-131.6 °C; **IR** (KBr): 3266, 3202, 3137, 3080, 2928, 2881, 1669, 1604, 1550, 1497, 1446, 1330, 1260, 757, 716, 693; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.63 (s, 1H, CHO), 8.27 (s, 1H, NH), 7.72 – 7.67 (m, 2H, ArH), 7.61 – 7.55 (m, 4H, ArH), 7.54 – 7.42 (m, 4H, ArH), 7.33 (t, *J* = 7.8 Hz, 4H, ArH), 7.24 – 7.17 (m, 3H, ArH), 7.15 – 7.09 (m, 4H, ArH), 7.07 (dd, *J* = 8.1, 6.3 Hz, 3H, ArH), 6.98 (d, *J* = 7.3 Hz, 2H, ArH), 2.29 (s, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 165.70, 163.26, 139.91, 137.87, 136.76, 136.04, 131.50, 130.31, 129.51, 129.05, 129.01, 128.94, 128.81, 128.04, 124.87, 124.54, 124.22, 121.33, 119.95, 21.32. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₁H₁₈O₂N₂ [M+Na] ⁺, 353.1260; found, 353.1258.

4.14 Spectroscopic Data of 5aa'

N-phenyl-2-(*N*-*p*-tolylformamido)benzamide(**5aa**').

Synthesized according to General Procedure 1. Crude **5aa'** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 40% yield (70 mg, 0.20 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 131.0-131.6 °C; **IR** (KBr): 3266, 3202, 3137, 3080, 2928, 2881, 1669, 1604, 1550, 1497, 1446, 1330, 1260, 757, 716, 693; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.60 (s, 1H, CHO), 8.29 (s, 1H, NH), 7.72 – 7.67 (m, 2H, ArH), 7.61 – 7.55 (m, 4H, ArH), 7.54 – 7.42 (m, 5H, ArH), 7.33 (t, *J* = 7.8 Hz, 5H, ArH), 7.24 – 7.17 (m, 4H, ArH), 7.15 – 7.04 (m, 8H, ArH), 6.98 (d, *J* = 7.3 Hz, 3H, ArH), 2.31 (s, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 163.22, 141.06, 138.62, 137.87, 136.76, 136.12, 131.50, 130.31, 129.51, 129.05, 129.01, 128.94, 128.81, 128.04, 124.87, 124.54, 124.22, 121.33, 119.95, 20.89. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₁H₁₈O₂N₂ [M+Na] ⁺, 353.1260; found, 353.1258.

4.15 Spectroscopic Data of 5bb

N-(*m*-tolyl)-2-(*N*-*m*-tolylformamido)benzamide(**5bb**).

Synthesized according to General Procedure 1. Crude **5bb** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 35% yield (63 mg, 0.17 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 123.5-124.4

°C; **IR** (KBr): 3273, 3153, 3099, 3038, 2924, 2879, 1669, 1601, 1557, 1491, 1445, 1406, 1341, 1257, 1175, 781, 716, 689; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.57 (d, J = 6.1 Hz, 1H, CHO), 8.29 (s, 1H, NH), 7.67 (d, J = 7.1 Hz, 3H, ArH), 7.45 (ddd, J = 26.1, 12.3, 6.0 Hz, 9H, ArH), 7.36 (t, J = 7.8 Hz, 2H, ArH), 7.29 – 7.12 (m, 8H, ArH), 7.12 – 7.03 (m, 7H, ArH), 6.95 (dd, J = 26.7, 8.8 Hz, 5H, ArH), 2.30 (s, 3H, CH₃), 2.28 (s, 3H, CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.55, 163.21, 141.12, 139.87, 138.68, 136.15, 135.39, 134.13, 131.42, 131.38, 130.30, 130.28, 129.50, 129.04, 128.98, 128.91, 128.85, 128.73, 128.00, 125.34, 124.87, 124.23, 121.35, 120.56, 120.54, 120.04, 120.01, 117.11, 117.09, 21.48, 21.32. HRMS (TOF-ESI⁺): m/z calcd for C₂₂H₂₀O₂N₂ [M+Na] ⁺, 367.1417; found, 367.1416.

4.16 Spectroscopic Data of 5bb'

N-(*m*-tolyl)-2-(*N*-*p*-tolylformamido)benzamide(**5bb**').

Synthesized according to General Procedure 1. Crude **5bb**' was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 40% yield (73 mg, 0.20 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 123.5-124.4 °C; **IR** (KBr): 3273, 3153, 3099, 3038, 2924, 2879, 1669, 1601, 1557, 1491, 1445, 1406, 1341, 1257, 1175, 781, 716, 689; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.60 (d, J = 6.1 Hz, 1H, CHO), 8.26 (d, J = 9.9 Hz, 1H, NH), 7.67 (d, J = 7.1 Hz, 2H, ArH), 7.45 (ddd, J = 26.1, 12.3, 6.0 Hz, 7H, ArH), 7.36 (t, J = 7.8 Hz, 2H, ArH), 7.29 – 7.12 (m, 6H, ArH), 7.12 – 7.03 (m, 6H, ArH), 6.95 (dd, J = 26.7, 8.8 Hz, 4H, ArH), 2.32 (s, 3H, CH₃), 2.30 (s, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 165.66, 163.17, 141.12, 138.95, 137.85, 136.79, 136.09, 131.42, 131.38, 130.30, 130.28, 129.50, 129.04, 128.98, 128.91, 128.85, 128.73, 128.00, 125.34, 124.87, 124.23, 121.35,

120.56, 120.54, 120.04, 120.01, 117.11, 117.09, 21.32, 20.89. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₂H₂₀O₂N₂ [M+Na] ⁺, 367.1417; found, 367.1416.

4.17 Spectroscopic Data of 5cc

4-chloro-*N*-(*m*-tolyl)-2-(*N*-*m*-tolylformamido)benzamide(**5cc**).

Synthesized according to General Procedure 1. Crude **5cc** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 40% yield (75 mg, 0.20 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 84.2-84.8 °C; **IR** (KBr): 3317, 3042, 2925, 1675, 1599, 1519, 1489, 1409, 1327, 1155, 1105, 893, 830, 784, 698, 691; ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.56 (d, *J* = 6.3 Hz, 1H, CHO), 8.24 (s, 1H, NH), 7.60 (dd, *J* = 8.4, 3.8 Hz, 2H, ArH), 7.45 – 7.31 (m, 6H, ArH), 7.27 – 7.18 (m, 3H, ArH), 7.17 (d, *J* = 8.1 Hz, 4H, ArH), 7.13 – 7.06 (m, 5H, ArH), 6.99 (d, *J* = 7.8 Hz, 2H, ArH), 6.93 (d, *J* = 7.6 Hz, 1H, ArH), 2.32 (s, 3H, CH₃), 2.31 (d, *J* = 2.4 Hz, 3H, CH₃); ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 164.79, 163.00, 139.00, 137.62, 137.37, 136.89, 135.14, 130.46, 130.45, 130.09, 129.65, 129.52, 129.04, 128.99, 128.87, 128.40, 125.54, 125.12, 124.48, 121.58, 120.61, 120.10, 117.16, 21.46, 21.32. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₂H₁₉ClO₂N₂ [M+H] ⁺, 379.1208; found, 379.1211.

4.18 Spectroscopic Data of 5cc'

4-chloro-*N*-(*m*-tolyl)-2-(*N*-*p*-tolylformamido)benzamide(**5cc**').

Synthesized according to General Procedure 1. Crude **5cc'** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 34% yield (64 mg, 0.17 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 84.2-84.8 °C; **IR** (KBr): 3317, 3042, 2925, 1675, 1599, 1519, 1489, 1409, 1327, 1155, 1105, 893, 830, 784, 698, 691; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.54 (d, *J* = 6.2 Hz, 1H, CHO), 8.25 (s, 1H, NH), 7.60 (dd, *J* = 8.4, 3.8 Hz, 2H, ArH), 7.45 – 7.31 (m, 7H, ArH), 7.27 – 7.18 (m, 4H, ArH), 7.17 (d, *J* = 8.1 Hz, 5H, ArH), 7.13 – 7.06 (m, 6H, ArH), 6.99 (d, *J* = 7.8 Hz, 3H, ArH), 6.93 (d, *J* = 7.6 Hz, 2H, ArH), 2.32 (s, 3H, CH₃), 2.31 (d, *J* = 2.4 Hz, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 164.68, 163.05, 140.59, 139.00, 137.69, 135.10, 130.46, 130.45, 130.09, 129.65, 129.52, 129.04, 128.99, 128.87, 128.40, 125.54, 125.12, 124.48, 121.58, 120.61, 120.10, 117.16, 20.92, 20.89. **HRMS** (TOF-ESI⁺): *m*/*z* calcd for C₂₂H₁₉CIO₂N₂ [M+H] ⁺, 379.1208; found, 379.1211.

4.19 Spectroscopic Data of 5dd

N-(3-methoxyphenyl)-2-(*N*-(3-methoxyphenyl)formamido)benzamide(**5dd**). Synthesized according to General Procedure 1. Crude **5dd** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 40% yield (79 mg, 0.2 mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 162.9-164.0 °C; **IR** (KBr): 3266, 3207, 3139, 3083, 2962, 2929, 1667, 1605, 1555, 1511, 1462, 1415, 1348, 1245, 1180, 1037, 836; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.66 (s, 1H, CHO), 8.07 (s, 1H, NH), 7.72 – 7.66 (m, 3H, ArH), 7.48 (tdd, J = 18.5, 14.1, 7.8 Hz, 8H, ArH), 7.35 (s, 2H, ArH), 7.28 – 7.22 (m, 4H, ArH), 7.20 (dd, J = 8.3, 6.0 Hz, 4H, ArH), 7.15 (d, J = 8.8 Hz, 3H, ArH), 7.08 (d, J = 6.9 Hz, 2H, ArH), 6.86 (dd, J = 8.8, 6.5 Hz, 5H, ArH), 6.79 (t, J = 8.6 Hz, 3H, ArH), 6.74 (s, 1H, ArH), 6.69 (dd, J = 8.3, 2.5 Hz, 1H, ArH), 3.81 (s, 3H, CH₃), 3.79 (s, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 165.44, 163.11, 160.60, 160.25, 158.84, 142.25, 139.06, 136.87, 136.28, 131.49, 131.43, 130.41, 129.76, 129.04, 128.99, 128.88, 128.78, 128.73, 126.17, 121.67, 116.30, 114.95, 114.25, 112.76, 112.14, 110.50, 110.22, 105.59, 55.41, 55.36. **HRMS** (TOF-ESI⁺): *m*/*z* calcd for C₂₁H₁₈O₃N₂ [M+Na] ⁺, 399.1315; found, 399.1314.

4.20 Spectroscopic Data of 5dd'

N-(4-methoxyphenyl)-2-(*N*-(4-methoxyphenyl)formamido)benzamide(**5dd**').

Synthesized according to General Procedure 1. Crude **5dd'** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 40% yield (79 mg, 0.2 mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 162.9-164.0 °C; **IR** (KBr): 3266, 3207, 3139, 3083, 2962, 2929, 1667, 1605, 1555, 1511, 1462, 1415, 1348, 1245, 1180, 1037, 836; ¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.55 (s, 1H, CHO), 8.27 (s, 1H, NH), 7.72 – 7.66 (m, 3H, ArH), 7.48 (tdd, *J* = 18.5, 14.1, 7.8 Hz,

8H, ArH), 7.35 (s, 2H, ArH), 7.28 – 7.22 (m, 4H, ArH), 7.20 (dd, J = 8.3, 6.0 Hz, 4H, ArH), 7.15 (d, J = 8.8 Hz, 3H, ArH), 7.08 (d, J = 6.9 Hz, 2H, ArH), 6.86 (dd, J = 8.8, 6.5 Hz, 5H, ArH), 6.79 (t, J = 8.6 Hz, 3H, ArH), 6.74 (s, 1H, ArH), 6.69 (dd, J = 8.3, 2.5 Hz, 1H, ArH), 3.77 (s, 3H, CH₃), 3.73 (s, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 165.76, 163.33, 160.60, 160.25, 158.84, 142.25, 139.06, 136.87, 136.28, 131.49, 131.43, 130.41, 129.76, 129.04, 128.99, 128.88, 128.78, 128.73, 126.17, 121.67, 116.30, 114.95, 114.25, 112.76, 112.14, 110.50, 110.22, 105.59, 55.52. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₁H₁₈O₃N₂ [M+Na] ⁺, 399.1315; found, 399.1314.

4.21 Spectroscopic Data of 5ee

5-methyl-*N*-phenyl-2-(*N*-*m*-tolylformamido)benzamide(**5ee**).

Synthesized according to General Procedure 1. Crude **5ee** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 45% yield (84 mg, 0.23 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 68.8-70.2 °C; **IR** (KBr): 3306, 3201, 3039, 2983, 2926, 1675, 1604, 1541, 1499, 1442, 1327, 1258, 1201, 1154, 1082, 1035, 901, 821, 757, 692, 625, 551; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.61 (s, 1H, CHO), 8.32 (s, 1H, NH), 7.58 (t, *J* = 7.1 Hz, 4H, ArH), 7.51 (s, 2H, ArH), 7.32 (q, *J* = 6.0, 4.3 Hz, 7H, ArH), 7.25 (s, 1H, ArH), 7.21 (t, *J* = 8.2 Hz, 2H, ArH), 7.14 – 7.03 (m, 10H, ArH), 6.96 (d, *J* = 6.0 Hz, 3H, ArH), 2.41 (s, 3H, CH₃), 2.30 (s, 3H, CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.79, 163.44, 139.87, 139.17, 137.90, 136.52, 133.27, 132.22, 130.28, 129.66, 129.48, 129.04, 128.80, 128.72, 127.93, 124.68, 124.47, 124.02, 121.12, 119.88, 21.32, 21.05. HRMS (TOF-ESI⁺): *m/z* calcd for C₂₂H₂₀O₂N₂ [M+Na] ⁺, 367.1417; found, 367.1415.

4.22 Spectroscopic Data of 5ee'

5-methyl-N-phenyl-2-(N-p-tolylformamido)benzamide(5ee').

Synthesized according to General Procedure 1. Crude **5ee'** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 40% yield (73 mg, 0.20 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 68.8-70.2 °C; **IR** (KBr): 3306, 3201, 3039, 2983, 2926, 1675, 1604, 1541, 1499, 1442, 1327, 1258, 1201, 1154, 1082, 1035, 901, 821, 757, 692, 625, 551; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.63 (s, 1H, CHO), 8.29 (s, 1H, NH), 7.58 (t, *J* = 7.1 Hz, 4H, ArH), 7.51 (s, 2H, ArH), 7.32 (q, *J* = 6.0, 4.3 Hz, 7H, ArH), 7.25 (s, 1H, ArH), 7.21 (t, *J* = 8.2 Hz, 2H, ArH), 7.14 – 7.03 (m, 10H, ArH), 6.96 (d, *J* = 6.0 Hz, 3H, ArH), 2.41 (s, 3H, CH₃), 2.28 (s, 3H, CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.82, 163.41, 141.16, 139.17, 138.73, 137.14, 133.35, 132.22, 130.28, 129.66, 129.48, 129.04, 128.80, 128.72, 127.93, 124.68, 124.47, 124.02, 121.12, 119.88, 21.05, 20.88. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₂H₂₀O₂N₂ [M+Na] ⁺, 367.1417; found, 367.1415.

4.23 Spectroscopic Data of 5ff

2-(N-(3-methoxyphenyl)formamido)-5-methyl-N-phenylbenzamide(5ff).

Synthesized according to General Procedure 1. Crude **5ff** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 43% yield (84 mg, 0.22

mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 103.6-104.4 °C; **IR** (KBr): 3320, 3135, 3069, 2931, 1679, 1601, 1538, 1498, 1448, 1327, 1226, 1043, 835, 756, 701, 684; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.67 (s, 1H, CHO), 8.21 (s, 1H, NH), 7.58 (d, J = 8.0 Hz, 2H, ArH), 7.51 (s, 1H, ArH), 7.33 (t, J = 8.0 Hz, 3H, ArH), 7.27 – 7.20 (m, 2H, ArH), 7.10 (t, J = 7.8 Hz, 2H, ArH), 6.77 (ddd, J = 16.3, 8.2, 2.3 Hz, 2H, ArH), 6.70 (t, J = 2.3 Hz, 1H, ArH), 3.71 (s, 3H, OCH₃), 2.42 (s, 3H, CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.75, 163.35, 160.58, 142.30, 139.33, 137.86, 136.58, 133.11, 132.27, 130.41, 129.63, 129.06, 128.81, 124.50, 119.84, 116.08, 112.70, 109.97, 55.39, 21.06. HRMS (TOF-ESI⁺): *m/z* calcd for C₂₂H₂₀O₃N₂ [M+Na]⁺, 383.1366; found, 383.1366.

4.24 Spectroscopic Data of 5ff'

2-(N-(4-methoxyphenyl)formamido)-5-methyl-N-phenylbenzamide(5ff').

Synthesized according to General Procedure 1. Crude **5ff**⁷ was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 35% yield (65 mg, 0.17 mmol) as a white solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 93.7-94.5 °C; **IR** (KBr): 3310, 3136, 3057, 2931, 1680, 1603, 1508, 1443, 1406, 1328, 1250, 1179, 1083, 1035, 958, 833, 757, 697; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.55 (s, 1H, CHO), 8.31 (s, 1H, NH), 7.60 (d, *J* = 7.9 Hz, 2H, ArH), 7.49 (s, 1H, ArH), 7.34 (t, *J* = 7.9 Hz, 2H, ArH), 7.30 (dd, *J* = 8.2, 2.1 Hz, 1H, ArH), 7.26 (s, 1H, ArH), 7.12 (d, *J* = 15.0 Hz, 3H, ArH), 7.08 (d, *J* = 8.1 Hz, 1H, ArH), 6.85 – 6.82 (m, 2H, ArH), 3.76 (s, 3H, OCH₃), 2.41 (s, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 165.91, 163.51, 158.75, 139.09, 137.90, 136.38, 134.20, 133.57, 132.20, 129.59, 129.07, 128.56, 125.99, 124.49, 119.86, 114.90, 55.52, 21.03. **HRMS** (TOF-ESI⁺): *m/z* calcd for

4.25 Spectroscopic Data of 5gg

4-chloro-N-phenyl-2-(N-m-tolylformamido)benzamide(5gg).

Synthesized according to General Procedure 1. Crude **5gg** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 52% yield (94 mg, 0.26 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 164.8-165.5 °C; **IR** (KBr): 3320, 3204, 3140, 3071, 2961, 2945, 1675, 1599, 1544, 1493, 1441, 1412, 1328, 1280, 1156, 1103, 760, 698, 690; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.59 (s, 1H, CHO), 8.22 (s, 1H, NH), 7.63 (dd, *J* = 8.3, 3.9 Hz, 2H, ArH), 7.58 – 7.53 (m, 3H, ArH), 7.45 – 7.35 (m, 3H, ArH), 7.35 – 7.22 (m, 7H, ArH), 7.20 – 7.05 (m, 8H, ArH), 6.99 (d, *J* = 5.9 Hz, 2H, ArH), 2.31 (s, 3H, CH₃); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.80, 163.08, 140.53, 140.15, 137.65, 136.99, 135.10, 130.49, 130.11, 129.68, 129.11, 129.08, 128.97, 128.44, 125.09, 124.74, 124.45, 121.54, 120.00, 21.33. HRMS (TOF-ESI⁺): *m/z* calcd for C₂₁H₁₇ClO₂N₂ [M+H] ⁺, 365.1051; found, 365.1051.

4.26 Spectroscopic Data of 5gg'

4-chloro-*N*-phenyl-2-(*N*-*p*-tolylformamido)benzamide(5gg').

Synthesized according to General Procedure 1. Crude **5gg'** was purified by FC on silica gel (Petroleum ether/EtOAc 20:1), affording the product in 26% yield (47 mg, 0.13 mmol) as a yellow solid. R_f (Petroleum ether/EtOAc 5:1) 0.4. Mp: 164.8-165.5 °C; **IR** (KBr): 3320, 3204, 3140, 3071, 2961, 2945, 1675, 1599, 1544, 1493, 1441, 1412, 1328, 1280, 1156, 1103, 760, 698, 690; ¹H **NMR** (600 MHz, Chloroform-*d*) δ 8.56 (s, 1H, CHO), 8.24 (s, 1H, NH), 7.63 (dd, *J* = 8.3, 3.9 Hz, 3H, ArH), 7.58 – 7.53 (m, 6H, ArH), 7.42 (ddd, *J* = 7.4, 5.1, 2.0 Hz, 3H, ArH), 7.40 – 7.22 (m, 15H, ArH), 7.20 – 7.05 (m, 15H, ArH), 6.99 (d, *J* = 5.9 Hz, 4H, ArH), 2.33 (s, 3H, CH₃); ¹³C **NMR** (151 MHz, Chloroform-*d*) δ 164.80, 163.12, 140.53, 138.08, 137.74, 137.38, 135.11, 130.49, 130.11, 129.84, 129.68, 129.11, 129.08, 129.06, 128.97, 128.44, 125.09, 124.74, 124.45, 121.54, 120.00, 20.93. **HRMS** (TOF-ESI⁺): *m/z* calcd for C₂₁H₁₇ClO₂N₂ [M+H] ⁺, 365.1051; found, 365.1051.

4.27 Spectroscopic Data of ¹⁸O-4a

HRMS (TOF-ESI⁺): m/z calcd for C₂₀H₁₆O¹⁸ON₂ [M+Na] ⁺, 341.1146; found, 341.1150.

5. X-ray Structure and Data of 4d

Figure S1. X-Ray crystal structure of 4d, ellipsoids was drawn at the 50% probability level.

Table S1. Crystal data and structure refinement for 4d

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) yxl061712_0m

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: yxl061712_0m

Bond precision:	C-C = 0.0023 A	Wavelength=0.71073	
Cell:	a=7.4409(10)	b=12.1832(16)	c=19.152(3)
Temperature:	alpha=90 296 K	beta=91.399(2)	gamma=90
	Calculated	Reported	
Volume	1735 7 (4)	1735 7(4)	
Space group	P 21/c	P 21/c	
Hall group	-P 2vbc	-P 2vbc	
Moiety formula	C20 H15 C1 N2 O2	?	
Sum formula	C20 H15 C1 N2 O2	C20 H15 C1	N2 02
Mr	350.79	350.79	
Dx, g cm-3	1.342	1.342	
Z	4	4	
Mu (mm-1)	0.235	0.235	
F000	728.0	728.0	
F000'	728.88		
h,k,lmax	9,15,25	9,15,24	
Nref	4052	4011	
Tmin, Tmax	0.956,0.972		
Tmin'	0.956		
Correction metho	od= Not given		
Data completenes	ss= 0.990	Theta(max) = 27.659	
R(reflections) =	0.0379(3158)		wR2(reflections)=
S = 1.004	Npar= 22	26	0.1404(4011)

Compound 4d (50mg) was add to a 10mL sample bottle, following to add DCM (2mL), n-hexane (2.5mL) and toluene (0.1mL), then seal the bottle with a parafilm, and poke 15 small holes on the parafilm, place the sample bottle in a safe place to allow it to volatilize and separate out the single crystal. Take out the single crystal and send it for single crystal diffraction test to obtain relevant data. Instrument model: Intensity data for single crystals of each complex were collected on a BRUKER SMART APEX II CCD detector with graphite-monochromatized Mo K α radiation (k = 0.071073 nm). The structures were solved by direct method using the program SHELXS-97 and subsequent Fourier difference techniques, and refined anisotropically by full matrix least-squares on F2 using SHELXL-97.

6. ¹H NMR and ¹³C NMR Spectra of These Compounds

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound **3a**

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4a

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4b

Oct16-2019-yuxianglin.21.fid YUNNAN UNIVERSITY ASCEND AVIIIID600 yx1-0716-2-2 Oct16-2019-yuxianglin F19CPD CDC13 (D:\jinyi} jinyi 4

¹⁹F-NMR (565 MHz, CDCl₃) spectrum of compound 4b

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4c

 $^{19}\mbox{F-NMR}$ (565 MHz, CDCl₃) spectrum of compound 4c

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4d

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4e

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4f

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4g

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4h

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4i

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4j

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4k

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 4I

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 5aa and 5aa'

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound **5bb** and **5bb**'

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 5cc and 5cc'

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound **5dd** and **5dd**'

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 5ee and 5ee'

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 5ff

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 5ff'

¹³C-NMR (151 MHz, CDCl₃) Spectra of compound 5gg and 5gg'