Supporting Information

Synthesis of *trans*-Stilbenes via Phosphine-Catalyzed Coupling Reaction of Benzylic Halides

Sheng Zhang,*^[a] Zhilong Xie,^[a] Zhanqiang Ye,^{+[a]} Mingyang Zhang,^{+[a]} Dongdeng Li,^{+[a]} Masahiko Yamaguchi,^[a] and Ming Bao*^[a]

^[a]State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

Table of Contents

1. General Information
2. Synthesis of the Starting Materials
3. Optimization of Reaction Conditions
4. Detailed Investigation of the Functional Group Compatibility
5. General Procedure for Phosphine-Catalyzed Coupling of Benzylic Halides9
6. Mechanistic Studies
1) Synthesis of phosphonium salts and ylide and ³¹ P NMR spectra9
2) ^{31}P NMR tracking on the transformation of 1a under Condition A13
3) ^{31}P NMR tracking on the transformation of 1v under Condition B15
4) 31 P NMR spectra of the reaction of 1v with different amounts of phosphine and
base under Condition B17
5) 31 P NMR tracking on the transformation of 1v in the presence of catalytic
amount of 3v under Condition A
6) ${}^{31}P$ NMR tracking on the transformation of 1v in the presence of catalytic
amount of 3v under Condition B20
7) ^{31}P NMR tracking on the transformation of 1v in the presence of catalytic
amount of 3w under Condition B21
8) ${}^{31}P$ NMR tracking on the transformation of 1k in the presence of catalytic
amount of 3v under Condition B
9) Research on the synthesis of unsymmetrical stilbenes by GC-MS24

10) Kinetic isotope effect studies of phosphine-catalyzed transformati	on of
benzyl chloride in the presence of CsF and $B(OMe)_3$ as base and ad	ditive,
respectively	30
11) Hammett plots for the reaction of meta-and para-substituted benzyl chl	orides
under Condition B	31
12) The reactivity of different kinds of phosphines	32
13) ¹¹ B NMR tracking on the transformation of $B(OMe)_3$ in the presence of	of CsF
as base	33
14) The study of β -H elimination	34
7. Procedures for the Further Derivatizations	35
1) Gram-scale experiment	35
2) Synthesis of 6b-d ^[3]	36
3) UV-vis Absorption and Fluorescence Spectra of 6b, 6c and 6d	37
4) Cyclic voltamograms of 6b, 6c and 6d ^[1]	38
8. Characterization Data of Compounds	39
9. X-Ray Crystallographic Analysis	48
10. References	51
11. Copies of NMR Spectra	53

1. General Information

Unless otherwise noted, all reactions were carried out in oven-dried 25-mL Schlenk tubes under a nitrogen atmosphere and IKA plate was used as the heat source. Solvents were purified by standard techniques without special instructions. ¹H, ¹³C and ³¹P NMR spectra were recorded on either a Bruker Avance II 400 MHz spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 162 MHz for ³¹P, 128 MHz for ¹¹B), a Varian Inova 500 MHz spectrometer (500 MHz for ¹H, 125 MHz for ¹³C) or a Bruker Avance NEO 600 MHz spectrometer (600 MHz for ¹H, 150 MHz for ¹³C); CDCl₃ and TMS were used as a solvent and an internal standard, respectively. The chemical shifts are reported in ppm downfield (δ) from TMS, the coupling constants J are given in Hz. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. IR spectra were recorded on a NEXUS FT-IR spectrometer. High resolution mass spectra were recorded on either a Q-TOF mass spectrometry or a LTQ Orbitrap XL mass spectrometry. X-ray crystallography analysis was performed on a Bruker D8 Venture X-ray diffraction meter. TLC was carried out on SiO₂ (silica gel 60 F₂₅₄, Merck), and the spots were located with UV light. Flash chromatography was carried out on SiO₂ (silica gel 60, 200-300 mesh). Unless otherwise noted, starting materials are commercially available. All the physical measurements were performed in THF including electronic absorption (UV-vis) and fluorescence spectra. The fluorescence decay curves were recorded at room temperature using nitrogen laser as excitation source. The lifetimes were estimated from the measured fluorescence decay using iterative fitting procedure. $E_{1/2}$ vs Fc⁺/Fc was estimated by cyclic voltammetric method using carlxm electrcxle as a working electrode, platinum wire as a counter electrode, and Ag/AgCl electrode as a reference electrode with the solution dissolved in CH₂Cl₂ (0.01 M) using 0.1 M of Bu₄NPF₆ as a supporting electrolyte with a scan rate of 100 mV/s and all the potentials were calibrated with ferrocene, $(E_{1/2} (Fc/Fc^+) = 0.63 V vs)$ NHE) as an external standard^[1].

2. Synthesis of the Starting Materials

Procedure for Preparation of Benzyl Chloride 1q-d2^[2]

To a solution of 2-biphenylcarboxylic acid (198.4 mg, 1.0 mmol) in 5.0 mL of anhydrous THF at 0 °C, lithium aluminum deuteride (LiAlD₄) (96 mg, 2.5 mmol) was slowly added in portions. The reaction mixture was slowly warmed to room temperature and stirred for 12 h. After carefully quenched by NaOH (2.0 mL, 2.0 M) and washed with brine, the combined organic layers were dried over Na₂SO₄, filtrated. The solvent was removed by evaporation under vacuum to afford a crude product, which was directly used for chlorination without purification.

To a solution of the crude product in CH₂Cl₂ (5.0 mL) at 0 °C, SOCl₂ (0.18 g, 0.11 mL, 1.5 mmol) was slowly added dropwise via syringe. The reaction mixture was slowly warmed to room temperature and stirred for 12 h. After washed with saturated NaHCO₃ (aq.) and brine, the combined organic layers were dried over Na₂SO₄, filtrated, and then concentrated under vacuum to afford a crude product. The crude product was purified by silica gel column chromatography (eluent: *n*-hexane/ethyl acetate = 20/1) to give **1q**-*d*₂ as a colorless liquid (187.7 mg, 91% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.60–7.56 (m, 1H), 7.48–7.37 (m, 7H), 7.35–7.30 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 142.1, 140.2, 134.9, 130.5, 130.4, 129.2, 128.6, 128.3, 128.0, 127.5, 44.0 (m).

Procedure for Preparation of Benzyl Chloride 1p

A solution of 2.5 M *n*-butyllithium (30 mmol, 12 mL) in hexane was slowly added to a solution of 4-bromobenzenemethanol (10 mmol, 1.87 g) in THF (35 mL) at -65 °C. After stirring for 30 min at -65 °C, deuterium oxide (13.5 mmol, 2.7 mL) was added carefully and the temperature of the reaction solution was maintained at -65 °C. After the dropwise addition, the mixture was warmed to room temperature and was extracted with toluene. The combined organic layers were washed with water and dried with MgSO₄. The solvent was removed by evaporation under vacuum to give a crude product. The crude product was purified by silica gel column chromatography (eluent: *n*-hexane/ethyl acetate = 5/1) to afford the product as a colorless liquid.

To a solution of the above product in CH₂Cl₂ (50 mL) at 0 °C, SOCl₂ (1.78 g, 1.1 mL, 15 mmol) was slowly added dropwise via syringe. The reaction mixture was slowly warmed to room temperature and stirred overnight. After washed with saturated

NaHCO₃ (aq.) and brine, the combined organic layers were dried over Na₂SO₄, filtrated, and then concentrated under vacuum to give a crude product. The crude product was purified by silica gel column chromatography (eluent: *n*-hexane) to afford the 1p as a colorless liquid (1.26 g, 99% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.46–7.36 (m, 4H), 4.63 (s, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 137.5, 128.63, 128.57, 128.1 (m), 46.3; HRMS (EI) m/z calcd for C₇H₆DCl [M]⁺: 127.0299, found: 127.0291.

3. Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions for phosphine-catalyzed coupling of 1chloromethylnaphthalene.[a]

 \sim

		Cl catalyst, base solvent, 120 °C		
Fntry	1v Catalyst	Base	2v Solvent	Vield [%][b]
1[c]	DCv	CaE	1 4 diavana	22 (22)
1 ¹¹	PCy ₃	CaF	1,4-dioxane	33 (33) 15
2	PCy ₃			15
3	PCy ₃	<i>t</i> -BuONa	1,4-dioxane	
4	PCy ₃	NaH	1,4-dioxane	90 ^[a]
5	PCy ₃	NaN(SiMe ₃) ₂	1,4-dioxane	5
6	PCy ₃	t-BuOLi	1,4-dioxane	trace
7 ^[c]	Ni(PCy ₃) ₂ Cl ₂	CsF	1,4-dioxane	33
8	/	NaH	1,4-dioxane	17
9	PPh ₃	NaH	1,4-dioxane	28
10	POPh ₃	NaH	1,4-dioxane	17
11	POCy ₃	NaH	1,4-dioxane	34
12	P(OPh) ₃	NaH	1,4-dioxane	8
13 ^[e]	PCy ₃	NaH	1,4-dioxane	62
14 ^[f]	PCy ₃	NaH	1,4-dioxane	63
15 ^[g]	PCy ₃	NaH	1,4-dioxane	42
16 ^[h]	PCy ₃	NaH	1,4-dioxane	82
17 ^[i]	PCy ₃	NaH	1,4-dioxane	77
18 ^[j]	PCy ₃	NaH	1,4-dioxane	53
19	PCy ₃	NaH	THF	86
20 ^[k]	PCy ₃	NaH	THF	90 (88)
21 ^[1]	PCy ₃	NaH	THF	80

[a] Reaction condition: 1-(chloromethyl)naphthalene (1v, 0.6 mmol), catalyst (20 mol%) and base (3.0 equiv) in dry solvent (5.0 mL) at 120 °C under N₂ atmosphere for 24 h. [b] Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. Isolated yield is given in parentheses. [c] B(OMe)₃ (1.5 equiv) was used as the additive. [d] Product could not be purified due to residual

1,4-dioxane. [e] 15 mol% catalyst was used. [f] 2.0 equiv of base was used. [g] 1.2 equiv of base was used. [h] 100 °C. [i] 80 °C. [j] 60 °C. [k] 2.0 mL of THF was used for 12 h. [l] 8.0 mL of THF was used.

 Table S2. Optimization of reaction conditions for phosphine–catalyzed coupling of 4-methylbenzyl chloride.^[a]

 \mathcal{A}

ÇΙ

		solvent, 120 °C		
	/	10	20	
Entry	Phosphine	Base	Solvent	Yield [%] ^[b]
1 ^[c]	PCy ₃	CsF	1,4-dioxane	58
2	PCy ₃	CsF	1,4-dioxane	39
3	PCy ₃	^t BuOK	1,4-dioxane	/
4	PCy ₃	^t BuONa	1,4-dioxane	3
5	PCy ₃	NaH	1,4-dioxane	82
6 ^[d]	PCy ₃	NaH	1,4-dioxane	68
7	PCy ₃	NaH	DCM	/
8	PCy ₃	NaH	DMF	/
9	PCy ₃	NaH	DMSO	/
10	PCy ₃	NaH	Et ₂ O	27
11	PCy ₃	NaH	MTBE	40
12	PCy ₃	NaH	DME	76
13	PCy ₃	NaH	THF	62
14	PCp ₃	NaH	1,4-dioxane	36
15	PAd ₃	NaH	1,4-dioxane	24
16 ^[e]	PCy ₃	NaH	1,4-dioxane	86
17 ^[e,f]	PCy ₃	NaH	1,4-dioxane	89 (86)

[a] Reaction condition: 1-(chloromethyl)-4-methylbenzene (**10**, 0.6 mmol), catalyst (20 mol%) and base (3.0 equiv) in dry solvent (5.0 mL) at 120 °C under N₂ atmosphere for 24 h. [b] Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. Isolated yield is given in parentheses. [c] B(OMe)₃ (1.5 equiv) was used as the additive. [d] 1.5 equiv of base was used. [e] 1,3,5-trimethoxybenzene (1.5 equiv) was used as the additive. [f] 2.0 mL of 1,4-dioxane was used for 12 h.

4. Detailed Investigation of the Functional Group Compatibility

		PCy ₃ (20 m X CsF (3.0 ec B(OMe) ₃ (1.5 1,4-dioxane (5 120 °C, 2	nol%) quiv) equiv) 5.0 mL) 4 h	2	
Product	R	Yield [%] ^[b]	Dechlorination product [%] ^[c]	Methoxy substituted product [%] ^[c]	Alkyl-alkyl coupling product [%] ^[c]
2a ^[d]	3-F	84	12	0	0
2b	3-Br	94(57 ^[e])	$3(10^{[e]})$	0(22 ^[e])	$0(5^{[e]})$
2c	2-Br	62(61 ^[e])	24(12 ^[e])	7(21 ^[e])	$0(4^{[e]})$
2d	4-Br	41	52	3	0
2e	3-C1	75	21	2	0
2 f	2-C1	30	17	42	5
2g	4-Cl	15	20	51	7
2h	4-H	61	25	6	0
2i ^[f]	4-CN	41	41	6	4
2 j ^[f]	4-OOCMe	67	30	1	0
2k	3-OMe	75	4	15	1
2l ^[f]	4-CF ₃	76	3	21	0
2m	2-Me	49	8	34	3
2n	3-Me	52	12	29	1
20	4-Me	58	5	31	2
2p	4-D	63	23	8	0
2q	2-Ph	81	9	5	0
2r	2-naphthyl	86	9	4	0
2s	9-phenanthryl	67	30	1	0
2t ^[d]	3-thienyl	63	29	8	0
2u ^[d]	2-thienyl	40	31	22	3
2v	l-naphthyl	33	10	52	2
2w	4-vinyl	0	54	43	3
2x	4-Ph	0	40	52	8

Table S3. Investigation of the functional group compatibility in the presence of CsF and B(OMe)₃ as base and additive, respectively (Condition A).^[a]

[a] Reaction condition: benzyl chlorides (0.6 mmol), PCy₃ (20 mol%), CsF (3.0 equiv), B(OMe)₃ (1.5 equiv) in dry 1,4-dioxane (5.0 mL) at 120 °C under N2 atmosphere. [b] Isolated yields. [c] Yields determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. [d] Run for 4 h. [e] Benzyl bromides (0.6 mmol) instead of benzyl chlorides. [f] Run for 12 h.

47

53

43

50

44

55

3

3

2

0

0

0

4-OMe

4-F

Cinnamyl

2y

2z

2α

	X J	PCy ₃ (20 mol%) NaH (3.0 equiv)		
	$R\frac{1}{1}$	1,4-dioxane (5.0 mL)	R	
	1	120 °C, 24 h	2	
Product	R	Yield [%] ^[b]	Dechlorination product [%] ^[c]	Alkyl-alkyl coupling product [%] ^[c]
2a	3-F	16	79	1
2b	3-Br	51(45 ^[d])	32 (43 ^[d])	8(5 ^[d])
2c	2-Br	49(42 ^[d])	37(47 ^[d])	5(3 ^[d])
2d ^[e]	4-Br	0	85	15
2e	3-Cl	35	56	2
2 f	2-Cl	80	15	2
2g	4-Cl	75	21	1
2h	4-H	70	27	1
2i ^[e]	4-CN	0	82	18
2j ^[e]	4-OOCMe	0	65	35
2k	3-OMe	89	9	0
21	4-CF ₃	82	11	2
2m	2-Me	74	12	6
2n	3-Me	84	7	3
$\mathbf{2o}^{[\mathrm{f},\mathrm{g}]}$	4-Me	86	10	2
2p	4-D	74	22	0
2q	2-Ph	66	21	6
2r	2-naphthyl	33	51	8
2s ^[e]	9-phenanthryl	0	89	11
2t ^[e]	3-thienyl	0	27	73
2u ^[e]	2-thienyl	0	31	69
$2v^{[h]}$	1-naphthyl	88	9	0
$2\mathbf{w}^{[e]}$	4-vinyl	0	98	2
2x ^[e]	4-Ph	0	91	9
2y ^[e]	4-OMe	0	78	22
2z ^[e]	4-F	0	82	18
2α ^[e]	Cinnamyl	0	92	8

Table S4. Investigation of the functional group compatibility in the presence of NaH as a base (Condition B).^[a]

[a] Reaction condition: benzyl chlorides (0.6 mmol), PCy₃ (20 mol%), NaH (3.0 equiv) in dry 1,4dioxane (5.0 mL) at 120 °C under N₂ atmosphere for 24 h. [b] Isolated yields. [c] Yields determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. [d] benzyl bromides (0.6 mmol) instead of benzyl chlorides. [e] Run for 12 h. [f] 1,3,5-trimethoxybenzene (1.5 equiv) was used as the additive. [g] 1,4-Dioxane (2.0 mL) was used for 12 h. [h] THF (2.0 mL) was used instead of 1,4dioxane for 12 h.

5. General Procedure for Phosphine-Catalyzed Coupling of Benzylic Halides

Condition A

An oven-dried 25-mL Schlenk tube was charged with a mixture of benzyl chloride (1, 0.6 mmol, 1.0 equiv), PCy₃ (34 mg, 0.12 mmol, 20 mol%), CsF (273 mg, 1.8 mmol, 3.0 equiv), B(OMe)₃ (100 μ L, 0.9 mmol, 1.5 equiv) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for a certain period, and then cooled to room temperature. The solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography with *n*-hexane as eluent to afford the desired product **2**.

Condition B

An oven-dried 25-mL Schlenk tube was charged with a mixture of benzyl chloride (1, 0.6 mmol, 1.0 equiv), PCy₃ (34 mg, 0.12 mmol, 20 mol%), NaH (44 mg, 1.8 mmol, 3.0 equiv) and dry 1,4-dioxane (5.0 mL) or dry THF (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for a certain period, and then cooled to room temperature. The solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography with *n*-hexane as eluent to afford the desired product **2**.

6. Mechanistic Studies

1) Synthesis of phosphonium salts and ylide and ³¹P NMR spectra

An oven-dried 25-mL Schlenk tube was charged with a mixture of tricyclohexylphosphine (0.99 g, 3.53 mmol, 1.0 equiv), acetonitrile (4.0 mL) and benzyl chloride **1** (3.55 mmol, 1.0 equiv) under N₂ atmosphere. The reaction mixture was

stirred at 80 °C for 3 days. The solvent was removed under reduced pressure, the pale yellow sticky residue was dissolved in chloroform (2.0 mL), and diethyl ether (15 mL) was added dropwise. At the beginning, a sticky precipitate was formed at the bottom of the bottle, and after a few minutes of shaking, a large amount of white powder was precipitated. The powder was separated by filtration and dried in vacuum at room temperature for 4 h. Phosphonium salts **3a**, **3h**, **3k**, **3v**, and **3w** were obtained and ³¹P NMR spectra were shown as below, respectively (Figures S1-S6).

³¹P NMR, 162 MHz, CDCl₃

Figure S1. ³¹P NMR spectrum of **3a** in CDCl₃.

³¹P NMR, 162 MHz, 1,4-dioxane

Figure S2. ³¹P NMR spectrum of **3a** in 1,4-dioxane.

Figure S3. ³¹P NMR spectrum of **3h**.

Figure S4. ³¹P NMR spectrum of **3k**.

An oven-dried 25-mL Schlenk tube was charged with a mixture of 3v (68.5 mg, 0.15 mmol) and THF (3.0 mL) under N₂ atmosphere. And *n*-BuLi (2.5 M, 17 µL, 0.15 mmol) was added dropwise at 0 °C, after the dropwise addition, the reaction solution was slowly returned to room temperature for 30 min. 0.1 mL of solution was transferred

from the Schlenk tube to N₂-filled NMR tube through syringe under N₂ atmosphere, and diluted with 0.4 mL of dry THF. Then the NMR tube was subjected to a 31 P NMR test. The result was shown in Figure S7.

Figure S7. The formation of ylide 5v from benzyl phosphonium salt 3v.

2) ³¹P NMR tracking on the transformation of 1a under Condition A

An oven-dried 25-mL Schlenk tube was charged with a mixture of 1-(chloromethyl)-3-fluorobenzene (72 μ L, 0.6 mmol), PCy₃ (34 mg, 0.12 mmol), CsF (273 mg, 1.8 mmol), B(OMe)₃ (100 μ L, 0.9 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere, and 0.1 mL of solution was transferred from the Schlenk tube to N₂-filled NMR tube through syringe under N₂ atmosphere, and diluted with 0.4 mL of dry 1,4-dioxane. Then the NMR tube was subjected to a ³¹P NMR test and spectrum (t = 0 h) was obtained. The reaction mixture was stirred at 120 °C, subsequently, sampling was performed by taking 0.1 mL of solution from Schlenk tube and diluting with 0.4 mL of dry 1,4-dioxane each time, and ³¹P NMR spectra were collected at 1.5 h, 3 h, and 4 h. The results were shown in Figure S8.

Figure S8. Time-stacked in situ ³¹P NMR spectra (1,4-dioxane) at t = 0 h, 1.5 h, 3 h, and 4 h.

An oven-dried 25-mL Schlenk tube was charged with a mixture of 1-(chloromethyl)-3fluorobenzene (72 µL, 0.6 mmol), PCy₃ (34 mg, 0.12 mmol), CsF (546 mg, 3.6 mmol), B(OMe)₃ (200 µL, 1.8 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 4 h, and then cooled to room temperature. 0.1 mL of solution was transferred from the Schlenk tube to N₂-filled NMR tube through syringe under N₂ atmosphere, and diluted with 0.4 mL of dry 1,4-dioxane. Then the NMR tube was subjected to a ³¹P NMR test and spectrum was obtained in Figure S9. Meanwhile, an aliquot taken from the reaction mixture (4 h) was analyzed by HRMS using electrospray ionization (ESI) method. The result was shown in Figure S10. The cation signal at m/z = 389.2787 would correspond to tricyclohexyl(3fluorobenzyl)phosphonium, combined with ³¹P NMR spectrum, it represents tricyclohexyl(3-fluorobenzyl)phosphonium chloride intermediate 3a. Another cation 497.3150 signal m/z would correspond at to (1, 2-bis(3fluorophenyl)ethyl)tricyclohexylphosphonium, combined with ³¹P NMR spectrum and literature (P. A. Byrne, D. G. Gilheany, Chem. Eur. J. 2016, 22, 9140-9154), it (1,2-bis(3-fluorophenyl)ethyl)tricyclohexylphosphonium represents methanolate intermediate 4aa.

Figure S9. ³¹P NMR spectrum (1,4-dioxane) of **1a** reaction mixture at t = 4 h in the presence of CsF as base.

Figure S10. HRMS analysis of 1a reaction mixture at t = 4 h in the presence of CsF as base.

3) ³¹P NMR tracking on the transformation of 1v under Condition B

An oven-dried 25-mL Schlenk tube was charged with a mixture of 1chloromethylnaphthalene (318 mg, 1.8 mmol), PCy_3 (102 mg, 0.36 mmol), NaH (132 mg, 5.4 mmol) and dry 1,4-dioxane (2.0 mL) under N₂ atmosphere, and 0.1 mL of solution was transferred from the Schlenk tube to N₂-filled NMR tube through syringe

under N₂ atmosphere, and diluted with 0.4 mL of dry 1,4-dioxane. Then the NMR tube was subjected to a ³¹P NMR test and spectrum (t = 0 h) was obtained. The reaction mixture was stirred at 120 °C, subsequently, sampling was performed by taking 0.1 mL of solution from Schlenk tube and diluting with 0.4 mL of dry 1,4-dioxane each time, and ³¹P NMR spectra were collected at 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, 9 h, and 12 h. The spectra were obtained in Figure S11. Then, an aliquot taken from the reaction mixture (4 h) was analyzed by HRMS using atmospheric pressure chemical ionization (APCI) method. The results were shown in Figure S12. The cation signal at m/z = 421.3018 would correspond to the protonated form of tricyclohexyl(naphthalen-1ylmethylene)- λ^5 -phosphane, combined with ³¹P NMR spectrum, it represents naphthylene ylide intermediate **5v**. Another cation signal at m/z = 561.3650 would correspond to the protonated form of tricyclohexyl(1,2-di(naphthalen-1-yl)ethylidene)- λ^5 -phosphane, combined with ³¹P NMR spectrum, it represents ylide intermediate **5v**.

Figure S11. Time-stacked in situ ³¹P NMR spectra (1,4-dioxane) of 1v reaction mixture at t = 0 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, 9 h, and 12 h in the presence of NaH as base.

Figure S12. HRMS analysis of 1v reaction mixture at t = 4 h in the presence of NaH as base.

4) ³¹P NMR spectra of the reaction of 1v with different amounts of phosphine and base under Condition B

The effect of the amounts of phosphine and base on phosphine-catalyzed coupling reaction of 1v was investigated. The results were shown in Table S5. After 12 h, the reaction system was examined by ³¹P NMR spectroscopy and the spectra was shown in Figure S13. Obviously, the amount of base and catalyst has a great influence on the reaction, and the formation of ylide intermediate 5v is the key step of phosphine-catalyzed coupling reaction of 1v in the presence of NaH as a base.

ĺ	CI PCy ₃ (X mol%) NaH (Y equiv) THF (2.0 mL) 120 °C, 12 h		
Entry	Phosphine (mol%)	NaH (equiv)	Yield[%] ^[b]
1	20	2.0	60
2	10	3.0	45
3	5	3.0	15

Table S5. The reaction of 1v with different amounts of phosphine and base.^[a]

[a] Reaction condition: 1-(chloromethyl)naphthalene (1v, 0.6 mmol), phosphine (X mol%) and NaH (Y equiv) in dry THF (2.0 mL) at 120 °C under N₂ atmosphere for 12 h. [b] Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Figure S13. ³¹P NMR spectra (1,4-dioxane) of 1v reaction mixture at t = 12 h under different conditions.

5) ³¹P NMR tracking on the transformation of 1v in the presence of catalytic amount of 3v under Condition A

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1v** (106 mg, 0.6 mmol), **3v** (55 mg, 0.12 mmol), CsF (273 mg, 1.8 mmol), B(OMe)₃ (100 μ L, 0.9 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere, and 0.1 mL of solution was transferred from the Schlenk tube to N₂-filled NMR tube through syringe under N₂ atmosphere, and diluted with 0.4 mL of dry 1,4-dioxane. Then the NMR tube was subjected to a ³¹P NMR test. The reaction mixture was stirred at 120 °C, subsequently, sampling was performed by taking 0.1 mL of solution from Schlenk tube and diluting with 0.4 mL of dry 1,4-dioxane each time, and ³¹P NMR spectra were collected at 0 h, 2 h, 6 h, 12 h and 18 h. The results were shown in Figure S14. Then, two aliquots taken from the reaction mixture (2 h and 12 h) were analyzed by HRMS using APCI method, respectively. The results were shown in Figure S15 and S16. Interestingly, different peaks appear in ³¹P NMR spectrum at 2 hours and 12 hours, but the same cation signal

appears. The cation signals at m/z = 561.3620 and 561.3622 would correspond to tricyclohexyl(1,2-di(naphthalen-1-yl)ethyl)phosphonium, combined with reaction conditions and the reported literature (P. A. Byrne, D. G. Gilheany, *Chem. Eur. J.* **2016**, 22, 9140-9154), they represent tricyclohexyl(1,2-di(naphthalen-1-yl)ethyl)phosphonium chloride intermediate **3vv** (δ 34.45 ppm in ³¹P NMR) and tricyclohexyl(1,2-di(naphthalen-1-yl)ethyl)phosphonium methanolate **4vv** (δ 47.76 ppm in ³¹P NMR), respectively.

Figure S14. Time-stacked in situ ³¹P NMR spectra (1,4-dioxane) of 1v reaction mixture at t = 0 h, 2 h, 6 h, 12 h and 18 h in the presence of catalytic amount of 3v under Condition A.

Figure S15. HRMS (APCI) of 1v reaction mixture at t = 2 h in the presence of catalytic amount of 3v under Condition A.

Figure S16. HRMS (APCI) of 1v reaction mixture at t = 12 h in the presence of catalytic amount of 3v under Condition A.

6) ³¹P NMR tracking on the transformation of 1v in the presence of catalytic amount of 3v under Condition B

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1v** (109 mg, 0.6 mmol), **3v** (55 mg, 0.12 mmol), NaH (44 mg, 1.8 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere, and 0.1 mL of solution was transferred from the Schlenk tube to N₂-filled NMR tube through syringe under N₂ atmosphere, and diluted with 0.4 mL of dry 1,4-dioxane. Then the NMR tube was subjected to a ³¹P NMR test. The reaction mixture was stirred at 120 °C, subsequently, sampling was performed by taking 0.1 mL of solution from Schlenk tube and diluting with 0.4 mL of dry 1,4-dioxane each time, and ³¹P NMR spectra were collected at t = 20 min, 2 h, 6 h, 12 h, 18 h and 24 h. The results were shown in Figure S17.

Figure S17. Time-stacked in situ ³¹P NMR spectra (1,4-dioxane) of **1v** reaction mixture at t = 20 min, 2 h, 6 h, 12 h, 18 h and 24 h in the presence of catalytic amount of **3v** under Condition B.

7) ³¹P NMR tracking on the transformation of 1v in the presence of catalytic amount of 3w under Condition B

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1v** (109 mg, 0.6 mmol), **3w** (52 mg, 0.12 mmol), NaH (44 mg, 1.8 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere, and 0.1 mL of solution was transferred from the Schlenk tube to N₂-filled NMR tube through syringe under N₂ atmosphere, and diluted with 0.4 mL of dry 1,4-dioxane. Then the NMR tube was subjected to a ³¹P NMR test. The reaction mixture was stirred at 120 °C, subsequently, sampling was performed by taking 0.1 mL of solution from Schlenk tube and diluting with 0.4 mL of dry 1,4-dioxane each time, and ³¹P NMR spectra were collected at t = 20 min, 2 h, 6 h, 12 h, 18 h, and 24 h. The results were shown in Figure S18.

Figure S18. Time-stacked in situ ³¹P NMR spectra (1,4-dioxane) of **1v** reaction mixture at t = 20 min, 2 h, 6 h, 12 h, 18 h, and 24 h in the presence of catalytic amount of **3w** under Condition B.

8) ³¹P NMR tracking on the transformation of 1k in the presence of catalytic amount of 3v under Condition B

An oven-dried 25-mL Schlenk tube was charged with a mixture of 1-(chloromethyl)-3methoxybenzene (**1k**, 94 mg, 0.6 mmol), **3v** (55 mg, 0.12 mmol), NaH (44 mg, 1.8 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere, and 0.1 mL of solution was transferred from the Schlenk tube to N₂-filled NMR tube through syringe under N₂ atmosphere, and diluted with 0.4 mL of dry 1,4-dioxane. Then the NMR tube was subjected to a ³¹P NMR test. The reaction mixture was stirred at 120 °C, subsequently, sampling was performed by taking 0.1 mL of solution from Schlenk tube and diluting with 0.4 mL of dry 1,4-dioxane each time, and ³¹P NMR spectra were collected at 20 min, 2 h, 6 h, 12 h, 18 h, and 24 h. The spectra were obtained in Figure S19. Then, an aliquot taken from the reaction mixture (24 h) was analyzed by GC-MS using EI method. The results were shown in Figure S20. The cation signal at m/z = 260.1 would correspond to the cross-coupling product **2kv**.

Figure S19. Time-stacked in situ ³¹P NMR spectra (1, 4-dioxane) of **1k** reaction mixture at t = 20 min, 2 h, 6 h, 12 h, 18 h, and 24 h in the presence of catalytic amount of **3v** under Condition B.

Figure S20. The GC-MS (EI) of 1k reaction mixture at t = 24 h in the presence of catalytic amount of 3v under Condition B.

9) Research on the synthesis of unsymmetrical stilbenes by GC-MS

Figure S21. The GC-MS (EI) of the reaction mixture of 1k and 3w at t = 24 h.

Figure S22. The GC-MS (EI) of the reaction mixture of 1x and catalytic amount of 3w at t = 24 h.

Figure S23. The GC-MS (EI) of the reaction mixture of 1a and catalytic amount of 3v at t = 24 h.

Figure S24. The GC-MS (EI) of the reaction mixture of 1k and 1x at t = 24 h.

10) Kinetic isotope effect studies of phosphine–catalyzed transformation of benzyl chloride in the presence of CsF and B(OMe)₃ as base and additive, respectively

An oven-dried 5-mL Schlenk tube was charged with a mixture of **1q** or **1q**-*d*² (244 mg, 1.2 mmol), CsF (546 mg, 3.6 mmol), B(OMe)₃ (200 μ L, 1.8 mmol), PCy₃ (68 mg, 0.24 mmol), mesitylene (12.2 mg, 0.1 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 4 h. Samples (0.04 mL solution of the Schlenk tube is added in 0.23 mL dry 1,4-dioxane) were taken 7 times at 0 min, 20 min, 40 min, 1 h, 2 h, 3 h, and 4 h for GC. The results were shown in S26.

Figure S26. Studies for kinetic isotopic effect: parallel experiments. 30

11) Hammett plots for the reaction of *meta*-and *para*-substituted benzyl chlorides under Condition B

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1** (0.6 mmol), PCy₃ (34 mg, 0.12 mmol), NaH (44 mg, 1.8 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 1 h, and then cooled to room temperature. The salt was removed quickly by flash column chromatography on a silica gel column to give crude products. The yield was determined by the ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard.

Figure S27. Hammett plot of *m*-ArCH₂Cl.

Table S6. Hammett plot of 1.				
1	σ	Yield of 2	kx/kH	log(k _X /k _H)
3-Н	0	12.4	1	0
3-F	0.337	2.4	0.193	-0.71
3-OMe	0.115	10.0	0.805	-0.09
3-Me	-0.69	19.5	1.574	0.20
3-Cl	0.37	5.4	0.277	-0.36

Figure S28. Hammett plot of *p*-ArCH₂Cl.

		1		
1	σ	Yield of 2	kx/k _H	log(k _X /k _H)
4-H	0	12.4	1	0
4-CN	0.66	1.8	0.143	-0.85
4-Me	-0.17	11.5	0.930	-0.03
4-Cl	0.227	3.5	0.281	-0.55
4-CF ₃	0.54	2.4	0.190	-0.72

Table S7. Hammett plot of 1.

12) The reactivity of different kinds of phosphines

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1a** (87 μ L, 0.6 mmol), PR₃ (0.12 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 4 h, and then cooled to room temperature. CsF (273 mg, 1.8 mmol), B(OMe)₃ (100 μ L, 0.9 mmol) was added, and then stirred at 120 °C for 4 h, and then cooled to room temperature. The corresponding reaction mixture was purified by flash column chromatography on a silica gel column to give the mixture products. The yield was determined by the ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard.

		Two step	s method	One step method
	PR ₃	Conv. of 1a ^[a]	Yield of 2a ^[a]	Yield of 2a ^[b]
_	PPh ₃	10%	11%	20%
	PEt ₃	15%	3%	8%
	PCy ₃	18%	63%	84%

Table S8. The data of the conversion of phosphines and the yield of 2a under Condition A.

[a] Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. [b] Isolated yields.

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1a** (87 μ L, 0.6 mmol), PR₃ (0.12 mmol), NaH (44 mg, 1.8 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 4 h, and then cooled to room temperature. The corresponding reaction mixture was purified by flash column chromatography on a silica gel column to give the mixture products. The yield was determined by the ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard.

PR ₃	Yield of 2a ^[a]
PPh ₃	0%
PEt ₃	2%
PCy ₃	16%

Table S9. The data of the yield of 2a under Condition B.

[a] Determined by ¹H-NMR using 1,3,5-trimethoxybenzene as an internal standard.

13) ¹¹B NMR tracking on the transformation of B(OMe)₃ in the presence of CsF as base

An oven-dried 5-mL Schlenk tube was charged with a mixture of **1a** (0.6 mmol), CsF (273mg, 1.8 mmol), B(OMe)₃ (100 μ L, 0.9 mmol), PCy₃ (34 mg, 0.12 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 4 h. Samples (0.1 mL solution of the Schlenk tube is added in 0.4 mL dry CDCl₃) were taken 4 times at 0 h, 0.5 h, 2 h and 4 h for ¹¹B NMR. The results were shown in Figure S29.

Figure S29. ¹¹B NMR tracking on the transformation of B(OMe)₃ in the presence of CsF as base.

14) The study of β -H elimination

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1q** and **1q**-*d*₂ (244 mg, 0.3 mmol), CsF (273 mg, 1.8 mmol), B(OMe)₃ (100 μ L, 0.9 mmol), PCy₃ (34 mg, 0.12 mmol) and dry 1,4-dioxane (5.0 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 4 h, and then cooled to room temperature. The corresponding reaction mixture was purified by flash column chromatography on a silica gel column to give the mixture products, which was detected by GC-MS (Figure S30).

Figure S30. The study of β -H elimination by GC-MS.

7. Procedures for the Further Derivatizations

1) Gram-scale experiment

An oven-dried 25-mL Schlenk tube was charged with a mixture of **1b-d** (1.22 g, 6 mmol), PCy_3 (340 mg, 1.2 mmol), CsF (2.73 mg, 18 mmol), $B(OMe)_3$ (1.0 mL, 9 mmol) and dry 1,4-dioxane (50 mL) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 24 h, and then cooled to room temperature. The solvent was removed under reduced pressure and the crude product was purified by silica gel column

chromatography with *n*-hexane to afford the desired product **2b-d**.

2) Synthesis of 6b-d^[3]

[a] Substrates **2b**–**2d** (0.1mmol), (4-(diphenylamino)-phenyl)boronic acid (4.0 equiv), $Pd(PPh_3)_4$ (20 mol%) and NaOH (6.0 equiv) in toluene/ethanol/H₂O (vv 3/2/1, 18 mL) at 110 °C under N₂ atmosphere for 72 h.

To an oven-dried Schlenk tube were added 0.9 mL of toluene, 0.6 mL of ethanol and 0.3 mL of distilled water. The resultant mixture was degassed thoroughly by bubbling N_2 gas for 10 min. Subsequently, **2b-d** (0.1 mmol, 1.0 equiv), (4-(diphenylamino)-phenyl)boronic acid (120 mg, 0.4 mmol, 4.0 equiv), NaOH (24 mg, 0.6 mmol, 6.0 equiv) and Pd(PPh₃)₄ (22 mg, 0.02 mmol, 20 mol%) were added and the Schlenk tube was capped tightly under N_2 gas. The mixture was stirred at 110 °C for 72 h. At the end of the period, the mixture solution was cooled to room temperature, and toluene and ethanol were removed by evaporation under vacuum. The residue was extracted three times with chloroform and the combined organic extracts were dried over Na₂SO₄. Evaporation of the organic solvents led to the crude product, which was subjected to silica gel column chromatography to afford **6b-d**.

White solid (28.7 mg, 43% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.74–7.68 (m, 5H), 7.53–7.45 (m, 6H), 7.43–7.35 (m, 7H), 7.29–7.21 (m, 7H), 7.18–7.12 (m, 9H), 7.08–
6.99 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz) δ 147.7, 147.4, 141.2, 137.8, 135.2, 135.0, 129.3, 129.1, 129.0, 127.9, 126.1, 125.0, 124.5, 123.9, 123.0; IR (KBr): v_{max} 3535, 3418, 1584, 1507, 1491, 1454, 1335, 1280, 1251, 1230, 1181, 825, 751, 694 cm⁻¹; HRMS (APCI) m/z calcd for C₅₀H₃₉N₂⁺ [M+H]⁺: 667.3108, found: 667.3083.

White solid (27.3mg, 41% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.56–7.50 (m, 2H), 7.37–7.26 (m, 16H), 7.19–7.15 (m, 8H), 7.14–7.09 (m, 6H), 7.08–6.98 (m, 6H); ¹³C NMR (CDCl₃, 101 MHz) δ 147.7, 146.9, 140.8, 135.9, 134.8, 130.6, 130.1, 129.3, 128.7, 127.4, 127.2, 126.1, 124.6, 123.0, 122.9; IR (KBr): ν_{max} 3058, 3033, 2923, 2853, 1589, 1509, 1493, 1448, 1315, 1277, 1176, 1028, 839, 753, 696, 623 cm⁻¹; HRMS (ESI) m/z calcd for C₅₀H₃₉N₂⁺ [M+H]⁺: 667.3108, found: 667.3116.

Yellow solid (25.3 mg, 38% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.58 (s, 8H), 7.53–7.49 (m, 4H), 7.30–7.26 (m, 8H), 7.17–7.12 (m, 14H), 7.06–7.02 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz) δ 146.6, 146.4, 138.7, 134.9, 133.5, 128.3, 127.0, 126.5, 125.9, 125.8, 123.5, 122.8, 122.0; IR (KBr): υ_{max} 2959, 2923, 2853, 1588, 1493, 1456, 1260, 1094, 1020, 966, 800, 748, 693 cm⁻¹; HRMS (ESI) m/z calcd for C₅₀H₃₉N₂⁺ [M+H]⁺: 667.3108, found: 667.3092.

3) UV-vis Absorption and Fluorescence Spectra of 6b, 6c and 6d

Figure S31. (A) The UV-Vis absorption spectra of 6b, 6c and 6d (1 μ M) in THF. (B) The emission spectra of 6b, 6c and 6d (1 μ M) in THF, $\lambda_{ex} = 300$ nm, slit: 5/5 nm. (C) The emission spectra of 6b, 6c and 6d (solid), $\lambda_{ex} = 290$ nm, slit: 5/2.5 nm. (D) The picture of 6b, 6c and 6d under the light λ =365nm.

Compound	UV-Vis (THF) λ_{abs} (nm)	Fluorescence (THF) $\lambda_{em} (nm)$	Fluorescence (Solid) λ_{em} (nm)	$\Phi_{FL}{}^{[a]}$
6b	310	382、460	/	0.129
6с	300	380	450	0.039
6d	300	385、460	350	0.073

Table S10. Summaries of photophysical properties of 6b, 6c and 6d

[a] Measure in THF.

4) Cyclic voltamograms of 6b, 6c and 6d^[1]

Figure S32. Cyclic voltamograms of 6b, 6c and 6d.

Table S11. Summaries of the data of cyclic voltamograms of 6b, 6c and 6d

Compound	$E_{1/2}{}^{[a]}/V$	
6b	0.38、0.59	
6с	0.54	
6d	0.39、0.70	

[a] $E_{1/2}$ vs Fc/Fc⁺ was estimated by cyclic voltammetric method using carlxm elcctrcxle as a working electrode, platinum wire as a counter electrode, and Ag/AgCl electrode as a reference electrode with the solution dissolved in CH₂Cl₂ (0.01 M) using 0.1 M of Bu₄NPF₆ as a supporting electrolyte with a scan rate of 100 mV/s and all the potentials were calibrated with ferrocene, ($E_{1/2}$ (Fc/Fc+) = 0.63 V vs NHE) as an external standard.

8. Characterization Data of Compounds

(E)-3,3'-Difluorostilbene (2a)^[4]

White solid (54 mg, 84% yield). mp 86–87 °C, (lit. mp 86–88 °C). ¹H NMR (CDCl₃, 600 MHz) δ 7.35–7.28 (m, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.23–7.16 (m, 2H), 7.05 (s, 2H), 7.01–6.92 (m, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 164.0, 162.4, 139.24, 139.18, 130.22, 130.17, 128.8, 122.6, 114.9, 114.7, 113.0, 112.9.

(E)-3,3'-Dibromostilbene (2b)^[5]

White solid (95 mg, 94% yield) (**X** = **Cl**), (57 mg, 57% yield) (**X** = **Br**). mp 100–101 °C, (lit. mp 101–102 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.67 (d, *J* = 1.8 Hz, 2H), 7.45–7.39 (m, 4H), 7.25 (dd, *J*₁ = *J*₂ = 7.8 Hz, 2H), 7.01 (s, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 139.0, 130.9, 130.3, 129.4, 128.5, 125.4, 123.0.

(E)-2,2'-Dibromostilbene (2c)^[5]

White solid (62 mg, 62% yield) (**X** = **Cl**), (62 mg, 61% yield) (**X** = **Br**). mp 107–108 °C, (lit. mp 108–108.4 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.57 (dd, *J* = 8.1, 1.3 Hz, 2H), 7.39 (s, 2H), 7.32 (dd, *J*₁ = *J*₂ = 7.6 Hz, 2H), 7.13 (dd, *J* = 7.7, 1.7 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz) δ 136.9, 133.1, 130.2, 129.3, 127.7, 127.2, 124.3.

(E)-4,4'-Dibromostilbene (2d)^[5]

White solid (41 mg, 41% yield). mp 208–210 °C, (lit. mp 209–211 °C). ¹H NMR (CDCl₃, 600 MHz) δ 7.48 (d, J = 8.4 Hz, 4H), 7.36 (d, J = 8.4 Hz, 4H), 7.02 (s, 2H); ¹³C NMR (CDCl₃, 101 MHz) δ 135.9, 131.9, 128.1, 128.0, 121.7.

(E)-3,3'-Dichlorostilbene (2e)^[6]

White solid (56 mg, 75% yield). mp 93–94 °C, (lit. mp 90.4–93 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.50 (s, 2H), 7.36 (d, J = 7.4 Hz, 2H), 7.32–7.22 (m, 4H), 7.03 (s, 2H); ¹³C NMR (CDCl₃, 101 MHz) δ 138.7, 134.8, 130.0, 128.7, 127.9, 126.5, 124.9.

(E)-2,2'-Dichlorostilbene (2f)^[7]

White solid (60 mg, 80% yield). mp 83–84 °C, (lit. mp 83–84 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (dd, J = 7.8, 1.6 Hz, 2H), 7.49 (s, 2H), 7.44–7.36 (m, 2H), 7.31–7.26 (m, 2H), 7.25–7.18 (m, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 135.2, 133.7, 129.9, 129.0, 127.3, 127.0, 126.9.

(E)-4,4'-Dichlorostilbene (2g)^[6]

White solid (56 mg, 75% yield). mp 172–173 °C, (lit. mp 171.5–172.4 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.41 (d, J = 7.9 Hz, 4H), 7.32 (d, J = 7.8 Hz, 4H), 7.00 (s, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 135.5, 133.5, 128.9, 128.0, 127.7.

(E)-1,2-Diphenyl-ethene (2h)^[8]

White solid (38 mg, 70% yield). mp 121–122 °C, (lit. mp 122–124 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.49 (d, J = 7.7 Hz, 4H), 7.33 (dd, J_1 = J_2 = 7.5 Hz, 4H), 7.27–7.21 (m, 2H), 7.09 (s, 2H); ¹³C NMR (CDCl₃, 101 MHz) δ 137.4, 128.8, 128.7, 127.7, 126.6.

(E)-4,4'-Dicyanostilbene (2i)^[5]

White solid (28 mg, 41% yield). mp 284–285 °C, (lit. mp 286–288 °C). ¹H NMR (CDCl₃, 600 MHz) δ 7.68 (d, J = 8.1 Hz, 4H), 7.62 (d, J = 7.8 Hz, 4H), 7.20 (s, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 140.7, 132.7, 130.3, 127.3, 118.7, 111.7.

Dimethyl 4,4'-stilbene-(E)-dicarboxylate (2j)^[5]

White solid (60 mg, 67% yield). mp 230–232 °C, (lit. mp 231–233 °C). ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, J = 7.9 Hz, 4H), 7.61 (d, J = 7.9 Hz, 4H), 7.25 (s, 2H), 3.95 (s, 6H); ¹³C NMR (CDCl₃, 151 MHz) δ 166.8, 141.2, 130.11, 130.05, 129.5, 126.6, 52.2.

(E)-3,3'-Dimethoxystilbene (2k)^[9]

White solid (64 mg, 89% yield). mp 95–97 °C, (lit. mp 98–100 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.30–7.25 (m, 2H), 7.11 (d, J = 7.7 Hz, 2H), 7.07 (s, 2H), 7.06–7.03 (m, 2H), 6.82 (dd, J = 8.2, 1.9 Hz, 2H), 3.84 (s, 6H); ¹³C NMR (CDCl₃, 151 MHz) δ 159.9, 138.7, 129.7, 128.9, 119.3, 113.4, 111.8, 55.3.

(E)-4,4'-Di(trifluoromethyl)-ethylen (21)^[5]

White solid (78 mg, 82% yield). mp 130–131 °C, (lit. mp 131–133 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.63 (s, 8H), 7.20 (s, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 140.1, 129.9 (q, *J* = 31.5 Hz), 129.6, 126.9, 125.8 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 269.7 Hz).

(E)-2,2'-Dimethylstilbene (2m)^[7]

White solid (46 mg, 74% yield). mp 78–79 °C, (lit. mp 75–77 °C)¹⁰. ¹H NMR (CDCl₃, 400 MHz) δ 7.59 (d, J = 7.2 Hz, 2H), 7.20–7.16 (m, 8H), 2.42 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz) δ 136.9, 135.9, 130.4, 128.1, 127.6, 126.2, 125.6, 20.0.

(E)-3,3'-Dimethylstilbene (2n)^[7]

White solid (52 mg, 84% yield). mp 47–48 °C, (lit. mp 47–49 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.35 (d, J = 10.0 Hz, 4H), 7.29 (d, J = 7.2 Hz, 2H), 7.11 (d, J = 4.2 Hz, 4H), 2.41 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz) δ 138.2, 137.4, 128.62, 128.57, 128.4, 127.2, 123.7, 21.5.

(E)-3,3'-Dimethylstilbene (20)^[5]

White solid (54 mg, 86% yield). mp 172–175 °C, (lit. mp 179–181 °C). ¹H NMR (CDCl₃, 600 MHz) δ 7.39 (d, J = 7.9 Hz, 4H), 7.15 (d, J = 7.8 Hz, 4H), 7.03 (s, 2H), 2.35 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz) δ 137.3, 134.8, 129.4, 127.7, 126.3, 21.3.

(E)-1,2-Diphenyl-ethene-4,4'- d_2 (2p)^[19]

White solid (38 mg, 69% yield). mp 120–121 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.52 (d, J = 8.1 Hz, 4H), 7.36 (d, J = 7.9 Hz, 4H), 7.11 (s, 2H). ¹³C NMR (CDCl₃, 101 MHz) δ 137.4, 128.7, 128.6, 128.5, 128.3, 126.5.

(E)-1,2-Di(2-phenylphenyl)-ethene (2q)^[10]

White solid (81 mg, 81% yield). mp 123–125 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.57–7.41 (m, 12H), 7.38–7.30 (m, 6H), 7.10 (s, 2H); ¹³C NMR (CDCl₃, 101 MHz) δ 141.1, 141.0, 135.7, 130.3, 129.9, 128.5, 128.2, 127.6, 127.4, 127.1, 126.0.

(E)-1,2-Di(naphthalen-2-yl)ethene (2r)^[5]

White solid (72 mg, 86% yield). mp 256.0–256.5 °C, (lit. mp 256–257 °C). ¹H NMR (CDCl₃, 600 MHz) δ 7.91 (s, 2H), 7.88–7.77 (m, 8H), 7.52–7.43 (m, 4H), 7.41 (s, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 134.9, 133.8, 133.1, 129.1, 128.4, 128.1, 127.7, 126.7, 126.4, 126.0, 123.5.

(E)-1,2-Di(9-phenanthryl)-ethylen (2s)^[11]

Yellow solid (76 mg, 67% yield). mp 270–271 °C, (lit. mp 271–273 °C). ¹H NMR (CD₂Cl₂, 400 MHz) δ 8.85 (d, J = 7.9 Hz, 2H), 8.78 (d, J = 7.9 Hz, 2H), 8.42 (dd, J = 8.0, 1.3 Hz, 2H), 8.22 (s, 2H), 8.09 (s, 2H), 8.06 (dd, J = 7.8, 1.4 Hz, 2H), 7.80–7.68 (m, 8H); ¹³C NMR (CD₂Cl₂, 151 MHz) δ 134.2, 131.9, 130.8, 130.4, 129.7, 128.8, 127.0, 126.8, 126.74, 126.69, 124.9, 124.7, 123.2, 122.6.

(E)-1,2-Di(thiophen-3-yl)ethene (2t)^[12]

White solid (40 mg, 69% yield). mp 165–167 °C, (lit. mp 166.5–167 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.34 (d, J = 2.1 Hz, 4H), 7.26–7.24 (m, 2H), 7.00 (s, 2H); ¹³C NMR (CDCl₃, 101 MHz) δ 140.1, 126.2, 124.8, 123.0, 121.9.

(E)-1,2-Di(thiophen-2-yl)ethene (2u)^[13]

White solid (23 mg, 40% yield). mp 132–133 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.20 (d, J = 5.0 Hz, 2H), 7.07 (s, 2H), 7.06 (dd, J = 3.6, 1.1 Hz, 2H), 7.01 (dd, J = 5.0, 3.6 Hz, 2H); ¹³C NMR (CDCl₃, 151 MHz) δ 141.4, 126.6, 125.0, 123.3, 120.4.

(E)-1,2-Di(naphthalen-1-yl)ethene (2v)^[7]

White solid (74 mg, 88% yield). mp 158–160 °C, (lit. mp 156–157 °C). ¹H NMR (CDCl₃, 600 MHz) δ 8.26 (d, J = 8.1 Hz, 2H), 7.92 (s, 2H), 7.90 (d, J = 7.7 Hz, 2H), 7.86 (dd, J = 10.3, 7.9 Hz, 4H), 7.57–7.51 (m, 6H); ¹³C NMR (CDCl₃, 101 MHz) δ 135.4, 133.8, 131.5, 129.1, 128.7, 128.3, 126.2, 126.0, 125.8, 124.0, 123.9.

(E)-1,2-Di(2-phenylphenyl)-ethene-1,2-*d*₂(2q-*d*₂)

White solid (80 mg, 80% yield). mp 121–123 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.51–7.33 (m, 12H), 7.32–7.24 (m, 6H); ¹³C NMR (CDCl₃, 151 MHz) δ 141.2, 141.0, 135.7, 135.6, 130.3, 130.0, 128.4, 128.3, 127.6, 127.5, 127.2, 126.1, 126.0; HRMS (EI) m/z calcd for C₂₆H₁₈D₂ [M]⁺: 334.1691, found: 334.1685.

Tricyclohexyl(3-fluorobenzyl) phosphonium chloride (3a)

¹H NMR (400 MHz, CDCl₃) δ 7.39–7.29 (m, 2H), 7.24–7.18 (m, 1H), 7.06–6.99 (m, 1H), 4.48 (d, *J* = 14.5 Hz, 2H), 2.80–2.63 (m, 3H), 2.06–1.97 (m, 6H), 1.93–1.85 (m, 6H), 1.81–1.74 (m, 3H), 1.54–1.22 (m, 15H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (dd, *J* = 248.3, 2.8 Hz), 132.2 (t, *J* = 7.9 Hz), 130.9 (dd, *J* = 8.3, 2.2 Hz), 127.3–124.5 (m), 117.3 (dd, *J* = 22.1, 4.7 Hz), 115.2 (dd, *J* = 20.9, 2.9 Hz), 30.8 (d, *J* = 38.6 Hz), 27.0 (d, *J* = 3.9 Hz), 26.5 (d, *J* = 11.8 Hz), 25.3 , 22.6 (d, *J* = 40.7 Hz); HRMS (ESI) m/z calcd for C₂₅H₃₉FP⁺ [M]⁺: 389.2768, found: 389.2762; ³¹P NMR (162 MHz, CDCl₃) δ 30.0.

Tricyclohexylbenzylphosphonium chloride (3h)^[14]

¹H NMR (400 MHz, CDCl₃) δ 7.48–7.41 (m, 2H), 7.41–7.30 (m, 3H), 4.35 (d, *J* = 14.3 Hz, 2H), 2.88–2.63 (m, 3H), 2.03–1.97 (m, 6H), 1.93–1.85 (m, 6H), 1.83–1.74 (m, 3H), 1.56–1.34 (m, 12H), 1.25 (qt, *J* = 12.8, 3.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 130.3 (d, *J* = 4.7 Hz), 129.4 (d, *J* = 2.9 Hz), 128.3 (d, *J* = 3.2 Hz), 30.8 (d, *J* = 38.7 Hz),

27.0 (d, J = 4.3 Hz), 26.5 (d, J = 11.7 Hz), 25.4, 23.0 (d, J = 41.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 29.3.

Tricyclohexyl(3-methoxybenzyl)phosphonium chloride (3k)

¹H NMR (400 MHz, CDCl₃) δ 7.28–7.23 (m, 1H), 7.14–7.08 (m, 1H), 7.01–6.94 (m, 1H), 6.91–6.82 (m, 1H), 4.30 (d, J = 14.3 Hz, 2H), 3.84 (s, 3H), 2.89–2.72 (m, 3H), 2.01 (t, J = 8.2 Hz, 6H), 1.95–1.85 (m, 6H), 1.84–1.75 (m, 3H), 1.57–1.36 (m, 12H), 1.27 (tt, J = 12.5, 3.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.2 (d, J = 2.3 Hz), 131.0 (d, J = 8.0 Hz), 130.3 (d, J = 2.7 Hz), 122.4 (d, J = 5.1 Hz), 116.0 (d, J = 5.1 Hz), 114.1, 55.7, 31.1 (d, J = 38.7 Hz), 27.3 (d, J = 4.2 Hz), 26.7 (d, J = 11.8 Hz), 25.6, 23.2 (d, J = 41.3 Hz); HRMS (ESI) m/z calcd for C₂₆H₄₂OP⁺ [M]⁺: 401.2968, found: 401.2969; ³¹P NMR (162 MHz, CDCl₃) δ 29.3.

Tricyclohexyl(naphthalen-1-yl)phosphonium chlorid (3v)

White solid (98% yield). ¹H NMR (CDCl₃, 400 MHz) δ 8.46 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.70–7.62 (m, 1H), 7.62–7.57 (m, 1H), 7.56–7.49 (m, 1H), 7.47–7.39 (m, 1H), 4.68 (d, J = 14.4 Hz, 2H), 2.85 (q, J = 12.5 Hz, 3H), 1.89 (s, 6H), 1.80 (d, J = 11.4 Hz, 6H), 1.71 (d, J = 12.5 Hz, 3H), 1.44 (q, J = 12.3 Hz, 6H), 1.30 (q, J = 12.6 Hz, 6H), 1.21–1.12 (m, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ 134.0 (d, J = 2.1 Hz), 132.2 (d, J = 4.2 Hz), 129.1 (d, J = 4.4 Hz), 128.8 (d, J = 5.6 Hz), 127.1, 126.4, 126.3, 126.2, 125.4 (d, J = 3.3 Hz), 124.2, 31.6 (d, J = 37.9 Hz), 27.2 (d, J = 4.1 Hz), 26.5 (d, J = 11.8 Hz), 25.4, 20.5 (d, J = 41.4 Hz); HRMS (ESI) m/z calcd for C₂₉H₄₂P⁺ [M]⁺: 421.3019, found: 421.3017; ³¹P NMR (CDCl₃, 162 MHz) δ 30.45.

Tricyclohexyl(4-vinylbenzyl)phosphonium chloride (3w)^[15]

White solid (98% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.39 (s, 4H), 6.68 (dd, J = 17.6, 10.9 Hz, 1H), 5.77 (d, J = 17.6 Hz, 1H), 5.30 (d, J = 10.9 Hz, 1H), 4.28 (d, J = 14.3 Hz,

2H), 2.70 (q, J = 12.7 Hz, 3H), 2.08–1.96 (m, 6H), 1.94–1.86 (m, 6H), 1.79 (d, J = 11.9 Hz, 3H), 1.55–1.35 (m, 12H), 1.30–1.21 (m, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ 137.6, 135.9, 130.6 (d, J = 5.1 Hz), 128.9 (d, J = 8.5 Hz), 127.1 (d, J = 2.8 Hz), 114.9, 31.0 (d, J = 38.8 Hz), 27.2 (d, J = 3.9 Hz), 26.6 (d, J = 11.7 Hz), 25.5, 22.9 (d, J = 41.1 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ 29.31.

(E)-4-(3-Methoxystyryl)-1,1'-biphenyl (2xk)^[16]

White solid (77 mg, 91% yield). mp 111–112 °C, (lit. mp 114–116 °C). ¹H NMR (CDCl₃, 400 MHz) δ 7.65–7.58 (m, 6H), 7.47–7.42 (m, 2H), 7.38–7.32 (m, 1H), 7.31–7.26 (m, 1H), 7.16–7.11 (m, 3H), 7.09–7.05 (m, 1H), 6.86–6.80 (m, 1H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ 160.0, 140.7, 140.4, 138.8, 136.3, 129.7, 128.8, 128.7, 128.6, 127.4, 127.0, 126.9, 119.3, 113.4, 111.8, 55.3.

(E)-4-Phenylstilbene (2xh)^[17]

White solid (68.3 mg, 89% yield). mp 217–218 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.64–7.58 (m, 6H), 7.55–7.51 (m, 2H), 7.44 (dd, $J_1 = J_2 = 7.6$ Hz, 2H), 7.40–7.31 (m, 3H), 7.29–7.23 (m, 1H), 7.15 (s, 2H); ¹³C NMR (CDCl₃, 101 MHz) δ 140.7, 140.4, 137.4, 136.4, 128.8, 128.7, 128.2, 127.7, 127.38, 127.35, 127.0, 126.9, 126.6.

(E)-1-(4-Phenyl-styryl)-naphthalin (2xv)^[18]

White solid (82.6 mg, 90% yield). mp 141–143 °C. ¹H NMR (CDCl₃, 600 MHz) δ 8.23 (dd, J = 8.5, 2.7 Hz, 1H), 7.91 (dd, J = 16.0, 3.0 Hz, 1H), 7.87–7.83 (m, 1H), 7.80–7.72 (m, 2H), 7.68–7.57 (m, 6H), 7.54–7.39 (m, 5H), 7.37–7.31 (m, 1H), 7.16 (dd, J = 16.0, 3.0 Hz, 1H); ¹³C NMR (CDCl₃, 151 MHz) δ 140.7, 140.6, 136.7, 135.1, 133.8, 131.5, 131.3, 128.9, 128.7, 128.1, 127.5, 127.4, 127.3, 127.0, 126.2, 125.90, 125.88, 125.8, 123.8, 123.7.

(E)-3-Methoxystilbene (2yh)^[17]

White solid (57.9 mg, 92% yield). mp 135–136 °C. ¹H NMR (CDCl₃, 600 MHz) δ 7.51–7.41 (m, 4H), 7.37–7.29 (m, 2H), 7.27–7.17 (m, 1H), 7.08–6.93 (m, 2H), 6.92–6.85 (m, 2H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ 159.4, 137.7, 130.2, 128.7, 128.3, 127.8, 127.3, 126.7, 126.3, 114.2, 55.4.

(E)-4-Fluorostilbene (2zh)^[17]

White solid (38.7 mg, 65% yield). mp 123–124 °C.¹H NMR (CDCl₃, 400 MHz) δ 7.52–7.39 (m, 4H), 7.38–7.30 (m, 2H), 7.28–7.21 (m, 1H), 7.08–6.95 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz) δ 162.4 (d, *J* = 247.0 Hz), 137.3, 133.6 (d, *J* = 3.5 Hz), 128.8, 128.6 (d, *J* = 2.8 Hz), 128.1 (d, *J* = 8.0 Hz), 127.7, 127.5, 126.5, 115.7 (d, *J* = 21.7 Hz).

9. X-Ray Crystallographic Analysis

The absolute configuration of 2j was determined based on single-crystal X-ray analysis. The detail procedure was shown as following: The 2j solid was dissolved in CH₂Cl₂ (5.0 mL) in glovebox. Then, the solvent was allowed to slowly evaporated into the atmosphere. The crystals of 2j were grown from solution, which is suitable for X-ray diffraction analysis.

Figure S33. X-ray structure of 2j. Hydrogen atoms are omitted for clarity.

CCDC No. 2098125 (2j) contains the supplementary crystallographic data for this paper. The crystal data can be obtained free of charge from the Cambridge Crystallographic Data Centre through www.ccdc.cam.ac.uk/data request/cif.

5	3	
CCDC number	2098125	
Empirical formula	$C_{18}H_{16}O_4$	
Formula weight	29.02	
Temperature	295.9 К	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 6.0447(17) Å	$\alpha = 90^{\circ}$
	b = 7.273(2) Å	$\beta = 90.036(12)^{\circ}$
	c = 33.480(10) Å	$\gamma = 90^{\circ}$
Volume	1471.9(8) Å ³	
Ζ	43	
Density (calculated)	1.408 g/cm^3	
Absorption coefficient	0.130 mm ⁻¹	
<i>F</i> (000)	645	
Crystal size	0.2 x 0.2 x 0.2 mm ³	
Theta range for data	2.433 to 27.660°	
collection		
Index ranges	-7<=h<=7,-8<=k<=9,-	
	43<=1<=42	
Reflections collected	15071	
Independent reflections	6029 [R(int) = 0.0953]	
Completeness to theta =	91.7 %	
25.242		
Absorption correction	None	
Refinement method	Full-matrix least-squares on	
	F^2	
Data / restraints /	6029/0/401	
parameters		
Goodness-of-fit on F^2	1.029	
indices $[I > 2\delta(I)]$	R1 = 0.0739, wR2 = 0.1645	
R indices (all data)	R1 = 0.1814, wR2 = 0.2054	
Largest diff. peak and hole	0.309 and -0.232 e.Å ⁻³	

Table S12. Crystal data and structure refinement for 2j.

The absolute configuration of 2m was determined based on single-crystal X-ray analysis. The detail procedure was shown as following: The 2m solid was dissolved in CH₂Cl₂ (5.0 mL) in glovebox. Then, the solvent was allowed to slowly evaporated into the atmosphere. The crystals of 2m were grown from solution, which is suitable for X-ray diffraction analysis.

Figure S34. X-ray structure of 2m. Hydrogen atoms are omitted for clarity.

CCDC No. 2097865 (**2m**) contains the supplementary crystallographic data for this paper. The crystal data can be obtained free of charge from the Cambridge Crystallographic Data Centre through www.ccdc.cam.ac.uk/data request/cif.

CCDC number	2097865	
Empirical formula	$C_{16}H_{16}$	
Formula weight	208.29	
Temperature	295.9 К	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 8.6739(13) Å	$\alpha = 90^{\circ}$
	b = 6.6929(11) Å	$\beta = 98.484(5)^{\circ}$
	c = 10.8860(13) Å	$\gamma = 90^{\circ}$
Volume	625.06(16) Å ³	
Ζ	2	
Density (calculated)	1.107 g/cm^3	
Absorption coefficient	0.062 mm^{-1}	
<i>F</i> (000)	224	
Crystal size	0.35 x 0.3 x 0.3 mm ³	
Theta range for data	2.809 to 27.462°	
collection		
Index ranges	-11<=h<=10,-8<=k<=8,-	
	14<=1<=14	
Reflections collected	8508	
Independent reflections	1432 [R(int) = 0.0607]	

Table S13. Crystal data and structure refinement for 2m.

99.9 %
Semi-empirical from
equivalents
Full-matrix least-squares on
F^2
1432/0/74
1.041
R1 = 0.0594, wR2 = 0.1578
R1 = 0.0773, wR2 = 0.1705
0.161 and -0.223 e.Å ⁻³

10. References

- 1. Albone, E. S. J. Am. Chem. Soc. 1968, 90, 4663-4666.
- 2. E. R. LYNC. Campbell and Way J. 1961, 2133.
- 3. Samik Jhulki, Abhaya Kumar Mishra, Avijit Ghosh, Tahsin J. Chow, Jarugu Narasimha Moorthy. J. Mater. Chem. C. 2016, 4, 9310–9315.
- 4. Akeel S. Saiyed, Krupa N. Patel, Bola V. Kamath, Ashutosh V. Bedekar. *Tetrahedron Lett.* **2012**, *53*, 4692–4696.
- 5. Tianzeng Huang, Tieqiao Chen, Li-Biao Han. J. Org. Chem. 2018, 83, 2959–2965.
- 6. Yan Zhang, Mingze Xia, Min Li, Qian Ping, Zhenbo Yuan, Xuanzhong Liu, Huimin Yin, Shuping Huang, Yijian Rao. J. Org. Chem. **2021**, *86*, 15284–15297.
- 7. Yuanyuan Zhang, Wenjing Ye, Hui Zhang, Xiao Xiao. *Eur. J. Org. Chem.* **2019**, *33*, 5720–5724.
- 8. Ahmed Kamal, Vunnam Srinivasulu, B. N. Seshadri, Nagula Markandeya, A. Alarifib, Nagula Shankaraiahc. *Green Chem.* **2012**, *14*, 2513–2522.
- 9. Felix R. Fischer, Colin Nuckolls. Angew. Chem. Int. Ed. 2010, 49, 7257-7260.
- 10. Vivek Rauniyar, Huimin Zhai, Dennis G. Hall. J. Am. Chem. Soc. 2008, 130, 8481–8490.
- Yasuhira Takbuchi, Akio Yasuhara, Shuzo Akiyama, Masazumi Nakagawa. *Bull. Chem. Soc. Jpn.* **1973**, *46*, 909–915.
- 12. Takanori Matsuda, Kentaro Suzuki, Norio Miura. *Adv. Synth. Catal.* **2013**, *355*, 3396–3400.
- Nemal S. Gobalasingham, Robert M. Pankow, Seyma Ekiz, Barry C. Thompson. J. Mater. Chem. A, 2017, 5, 14101–14113.
- 14. G. P. Schiemenz. J. Magn. Reson. 1972, 6, 291–297.
- Sebastian Torker, Daniel Merki, Peter Chen. J. Am. Chem. Soc. 2008, 130, 4808– 4814.

- 16. Manas Das, Atul Manvar, Mai^wenn Jacolot, Marco Blangetti, Roderick C. Jones, Donal F. O'Shea. *Chem. Eur. J.* **2015**, *21*, 8737–8740.
- 17. Javier F. Guastavino, María E. Budén, Roberto A. Rossi. J. Org. Chem. 2014, 79, 9104–9111.
- 18. A. E. Siegrist, P. Liechti, H. R. Meyer, K. Weber. *Helv. Chim. Acta* **1969**, *52*, 2521–2554.
- 19. Zlatko Meic and Drazen Vikic-Topic. Organic Magnetic Resonance **1984**, *22*, 237–244.

11. Copies of NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 0 -10 70 60

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 101 MHz, CDCl₃

¹³C NMR, 101 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm)

7.0 6.5 6.0 5.5 f1 (ppm)

¹³C NMR, 101 MHz, CDCl₃

145 140 135 130 125 120 115 110 105 f1 (ppm) 160 155 150 55 ... 90 85 80 75 70 65 60 100 95

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 101 MHz, CDCl₃

67

¹³C NMR, 101 MHz, CDCl₃

68

¹³C NMR, 101 MHz, CDCl₃

¹³C NMR, 101 MHz, CDCl₃

¹³C NMR, 101 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

¹H NMR, 400 MHz, CD₂Cl₂

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 f1 (ppm) 2.0 1.5 1.0 0.5 0.0 3.0 2.5 5.5 5.0 3.5 4.5

¹³C NMR, 151 MHz, CD₂Cl₂

¹³C NMR, 101 MHz, CDCl₃

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 101 MHz, CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

79

7.28 7.7.24 7.7.24 7.7.24 7.7.24 7.7.24 7.7.24 7.7.14 7.7.24 7.7.14 7.7.14 7.7.14 7.7.14 7.7.14 7.7.14 7.7.24 7.7.14 7.7.14 7.7.14 7.7.24 7.7.14 7.1

¹³C NMR, 101 MHz, CDCl₃

82

¹³C NMR, 101 MHz, CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8 23 8 24 8 24 8 25

¹³C NMR, 151 MHz, CDCl₃

¹³C NMR, 101 MHz, CDCl₃

