Electronic Supporting Information

Regioselective synthetic approach for key precursors of 6-arylbenzo[c]phenanthridin-10-ol derivatives: A useful compound for selective chromogenic recognition of fluoride[†]

Sabina Yashmin,^a Santa Mondal,^a Riyanka Das,^{b,c} Priyabrata Banerjee,^{b,c} and Abu Taleb Khan^a*

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781 039, Assam, India, E-mail: <u>atk@iitg.ac.in</u>

^bSurface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. E-mail: <u>pr_banerjee@cmeri.res.in</u>, <u>priyabrata_banerjee@yahoo.co.in</u>;

^cAcademy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India

Content	Page No.
General Information and Methods	S2
Crystal data and structure refinement for compound 4t	S3-S4
Optimization of reaction conditions	S4
Control experiments	S5
A plausible mechanism for the synthesis of 6-arylbenzo[<i>c</i>]phenanthridin-10-ol and	S5
6-arylphenanthridin-10-ol derivatives	
NMR and HRMS spectra of all the compounds	S6-S122
HRMS Spectra of the reaction intermediates of compound 41	S123-S126
Stock solutions preparation	S127
Optical data of 4s , 4x , and 4u in different organic solvents	S127
Emission spectral changes of (a) 4s, (b) 4x, and (c) 4u in different organic solvents	S127
UV-Vis absorption spectral changes of (a) 4s, (b) 4x, and (c) 4u in different organic solvents	S128
(a) Selectivity of 4z in presence of diverse anions; UV-Vis titration of (b) 4x and (c) 4z (100 μ M in DMSO) in presence of 60 μ L and 100 μ L F ⁻ in 0.5 mM	S129
$DMSO/H_2O (v/v 7/3)$ respectively.	
UV-Vis spectral data of (a) 4i (100 μ M in DMSO) (b) 4j (100 μ M in DMSO) in presence of F ⁻ in DMSO/H ₂ O (v/v 7/3)	S129-130

Calculation of LOD of (a) 4s, (b) 4x, (c) 4u and (d) 4z towards F ⁻ .			
Comparative literature survey of the recently reported F ⁻ specific chemosensors			
Job's plot of 4s with F ⁻ for the stoichiometry determination monitoring the change of absorbance at 460 nm			
B-H plot of (a) 4s, (b) 4x, (c) 4u and (d) 4z for the association constant determination towards F^-	S134-S135		
UV-Vis spectral response of (a) 4s, (b) 4x and (c) 4u (100 μ M) in presence of different anions in 0.5 mM DMSO/H ₂ O (v/v 7/3) at 460 nm and (d) UV-Vis spectral response of 4z (100 μ M) in presence of different anions in 0.5 mM DMSO/H ₂ O (v/v 7/3).	S136-S137		
UV-Vis spectral response of (a) 4s, (b) 4x and (c) 4u (100 μ M) towards F ⁻ in the co- existence of different anions in 0.5 mM DMSO/H ₂ O (v/v 7/3) at 460 nm and (d) UV-Vis spectral response of 4z (100 μ M) towards F ⁻ in the co-existence of different anions in 0.5 mM DMSO/H ₂ O (v/v 7/3)	S138-S139		
UV-Vis spectral response of 4s (100 μ M, DMSO) towards F ⁻ (0.5 mM in DMSO/H ₂ O (v/v 7/3)) as a function of exposure time	S140		
Cartesian coordinates of geometry optimized structure of 4s			
Cartesian coordinates of geometry optimized structure of 4s with F-	S142-S144		
Cartesian coordinates of geometry optimized structure of 4u	S145-S146		
Cartesian coordinates of geometry optimized structure of 4u with F-	S146-S148		
Reversibility of the sensory probes and proposition of logic circuitry	S148-S149		
Naked eye solid state chromogenic recognition of F ⁻ by 4u (left: only 4u , right: 4u in presence of F ⁻)	S149		
References	S149-150		

General Information and Methods

Melting points were determined on a melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on 400, 500, and 600 MHz and 100, 125, and 150 MHz NMR spectrometers. TMS was used as an internal reference; chemical shifts (δ scale) are reported in parts per million (ppm). ¹H NMR spectra are reported in the order: multiplicity, coupling constant (J value) in hertz (Hz), and no. of protons; signals were characterized as s (singlet), d (doublet), t (triplet), m (multiplet), and bs (broad). IR spectra were recorded on an IR spectrophotometer. HRMS spectra were recorded using ESI and APCI (TOF) mode. The crystal structure was determined using a single crystal XRD diffractometer.

The anionic salts were procured from Sigma Aldrich and were used as obtained. The solvents were of analytical grade and were used without further purification. The UV-Vis spectroscopic studies were carried out in CARY 60 UV-Vis spectrophotometer in the wavelength range of 200-800 nm.

Figure S1. ORTEP Diagrams of compound 4t.

Entry	Identification Code	Compound 4t
01	Empirical formula	C ₂₇ H ₂₅ NO ₂
02	Formula weight	395.48
03	Temperature	296 K
04	Wavelength	0.71073
05	Radiation type	Mo K\a
06	Radiation system	Fine-focus sealed tube
07	Crystal system	Monoclinic
08	Space group	P 21/c
09	Cell length	a 16.672(6) b 11.449(4) c 11.109(4)
10	Cell angle	$\begin{array}{c} \alpha \ 90 \\ \beta 94.864(10) \\ \gamma \ 90 \end{array}$
11	Cell volume	2112.7(12)

12	Density	1.243
13	Completeness to theta	99.7
14	Absorption correction	multi-scan
15	Refinement method	Full-matrix least-squares on F2
16	Index ranges	-19<=h<=19, -13<=k<=13, -13<=l<=13
17	Reflection number	3640
18	Theta range	24.829
19	Cell formula units Z	4
20	CCDC no	2060048

	Table S2.	Optimization	of Reaction	Conditions. ^{<i>a,b</i>}
--	-----------	--------------	-------------	-----------------------------------

^{*a*}All reactions were carried out with 1-naphthylamine 1 (0.143 g, 1 mmol), benzaldehyde 2a (0.106 g, 1 mmol), and cyclohexanone 3a (0.098 g, 1 mmol) in 1 mL of solvent at different temperatures mentioned above. ^{*b*}Yield of the isolated product.

Control Experiment

Scheme S1. Control experiment to establish reaction mechanism for the formation of 4 or 6.

Scheme S2. A plausible mechanism for the synthesis of 6-arylbenzo[*c*]phenanthridin-10-ol & 6arylphenanthridin-10-ol derivatives.

¹H NMR Spectrum of Compound 4a

¹³C NMR Spectrum of Compound 4a

HRMS Spectrum of compound 4a

¹H NMR Spectrum of Compound 4b

¹³C NMR Spectrum of Compound 4b

HRMS Spectrum of Compound 4b

¹H NMR Spectrum of Compound 4c

¹³C NMR Spectrum of Compound 4c

HRMS Spectrum of Compound 4c

¹H NMR Spectrum of Compound 4d

¹³C NMR Spectrum of Compound 4d

HRMS Spectrum of Compound 4d

¹H NMR Spectrum of Compound 4e

HRMS Spectrum of Compound 4e

¹H NMR Spectrum of Compound 4f

¹³C NMR Spectrum of Compound 4f

HRMS Spectrum of Compound 4f

¹H NMR Spectrum of Compound 4g

¹³C NMR Spectrum of Compound 4g

HRMS Spectrum of Compound 4g

¹H NMR Spectrum of Compound 4h

¹³C NMR Spectrum of Compound 4h

HRMS Spectrum of compound 4h

¹H NMR Spectrum of Compound 4i

¹³C NMR Spectrum of Compound 4i

HRMS Spectrum of Compound 4i

¹H NMR Spectrum of Compound 4j

¹³C NMR Spectrum of Compound 4j

HRMS Spectrum of compound 4j

¹H NMR Spectrum of Compound 4k

¹³C NMR Spectrum of Compound 4k

HRMS Spectrum of Compound 4k

¹H NMR Spectrum of Compound 4l

¹³C NMR Spectrum of Compound 41

HRMS Spectrum of Compound 41

¹H NMR Spectrum of Compound 4m

¹³C NMR Spectrum of Compound 4m

HRMS Spectrum of compound 4m

¹H NMR Spectrum of Compound 4n

¹³C NMR Spectrum of Compound 4n

HRMS Spectrum of compound 4n

¹H NMR Spectrum of Compound 40

¹³C NMR Spectrum of Compound 40

HRMS Spectrum of Compound 40

¹H NMR Spectrum of Compound 4p

¹³C NMR Spectrum of Compound 4p

HRMS Spectrum of Compound 4p

¹H NMR Spectrum of Compound 4q

¹³C NMR Spectrum of Compound 4q

HRMS Spectrum of Compound 4q

¹H NMR Spectrum of Compound 4r

¹³C NMR Spectrum of Compound 4r

HRMS Spectrum of Compound 4r

¹H NMR Spectrum of Compound 4s

¹³C NMR Spectrum of Compound 4s

HRMS Spectrum of Compound 4s

¹H NMR Spectrum of Compound 4t

S63

¹³C NMR Spectrum of Compound 4t

HRMS Spectrum of Compound 4t

¹H NMR Spectrum of Compound 4u

¹³C NMR Spectrum of Compound 4u

¹H NMR Spectrum of Compound 4u

¹H NMR Spectrum of Compound 4v

¹³C NMR Spectrum of Compound 4v

HRMS Spectrum of Compound 4v

¹H NMR Spectrum of Compound 4w

¹³C NMR Spectrum of Compound 4w

HRMS Spectrum of Compound 4w

¹H NMR Spectrum of Compound 4x

¹³C NMR Spectrum of Compound 4x

HRMS Spectrum of Compound 4x

¹H NMR Spectrum of Compound 4y

¹³C NMR Spectrum of Compound 4y

HRMS Spectrum of Compound 4y

¹H NMR Spectrum of Compound 4z

¹³C NMR Spectrum of Compound 4z

HRMS Spectrum of Compound 4z

¹H NMR Spectrum of Compound 4aa

¹³C NMR Spectrum of Compound 4aa

HRMS Spectrum of Compound 4aa

¹H NMR Spectrum of Compound 6a

3.02 3.01 3.01 2.85 2.83 2.83 2.15 2.15 2.13 2.13 2.13 2.13 2.13

¹³C NMR Spectrum of Compound 6a

HRMS Spectrum of Compound 6a

¹H NMR Spectrum of Compound 6b

¹³C NMR Spectrum of Compound 6b

HRMS Spectrum of Compound 6b

¹H NMR Spectrum of Compound 6c

8	95	6	91	6	8	82	81	2	69	68	67	18	17	15	14	13
4	N	N.	2	N.	N.	N.	N									
5										1	\sim	5		2	_	

¹³C NMR Spectrum of Compound 6c

HRMS Spectrum of Compound 6c

ATK-SY-P48T-B-1H.6(file, % 8.04 8.03 8.02 8.02 7.72 7.70 7.50 7.50 7.49 7.49 33 MeO в Muh 40.9 1.00-1.18 2.25 1.11-1.11-1.24<u>⊤</u> 0.76<u>−</u> 2.95-≖ 1.22<u>-</u> 1.18-0.87.T 9.31_T 0.94 = 0.93-10.0 5.0 f1 (ppm) 4.0 1.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 3.5 3.0 2.5 2.0 1.5

¹H NMR Spectrum of Compound 6d

¹³C NMR Spectrum of Compound 6d

HRMS Spectrum of Compound 6d

			Display	Report					
Analysis Info Analysis Name Method Sample Name	D:\Data\user d low mass bruk	ata\HPLC\DR LOF er.m	(MAN\PRABH	Acquisition Date 1/27/2022 1:33:50 PM BU_RC1_01_1495.d Operator vidhi					
Comment	01140100				motiumont	input inp	1010000.00		
Acquisition Pa Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 1500 m/z	lon Pola Set Capi Set End Set Chai Set Corc	rity illary Plate Offset rging Voltage ona	Positive 4500 V -500 V 2000 V 0 nA	Se Se Se Se	et Nebulizer et Dry Heater et Dry Gas et Divert Valve et APCI Heater	1.8 Bar 200 °C 6.0 l/min Waste 0 °C		
Intens. x10 ⁶ 2.5 2.0 1.5 1.0 0.5				MeO		k ©			
0.0	0.5 1.0	1.5	2.0	2.5 3	3.0 3.5	4.0	4.5 Time	e [min]	
BF	PC +All MS								
Intens. x10 ⁴ 3 2-			438.1(068 440.	SY-P48-TBU	_RC1_01_1495.d:	+MS, 0.6-1.6min i	#33-94	
1 0 4	433.1421 32.2389 434 32 434	435.1386 436.140 436	437.1942	439.1105	441.1086	1128 443.2737 2 4	445.1214 ,	m/z	

¹H NMR Spectrum of Compound 7i

S99

S100

HRMS Spectrum of Compound 7i

			Display	Report						
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\user data\HPI low mass bruker.m ATK-SY-P7-I	_C\DR LO	KMAN\30.10.2	Acquisition -P7-I_RB2_01_ Operator Instrument	Acquisition Date 11/2/2021 8:26:03 AM 7-I_RB2_01_1144.d Operator vidhi Instrument impact HD 1819696.00197					
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Active 50 m/z 1500 m/z	lon Pola Set Cap Set End Set Cha Set Cord	rity illary Plate Offset rging Voltage ona	Positive 4500 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater		1.8 Bar 200 °C 6.0 l/min Waste 0 °C			
Intens. x10 ⁶ 6 4 2 0 0 0	0.5 1.0	<u></u> 1.5	2.0	2.5	HO	N () 4.0	4.5 Time	• [min]		
Intens.	C +All MS				ATK-SY-P7	7-I_RB2_01_1144.d:	+MS, 0.6-1.5min #	‡35-87		
6			350.1541							
2-	+				351.1574	· · · · · · · · · · · · · · · · · · ·	M			

¹H NMR Spectrum of Compound 7j

¹³C NMR Spectrum of Compound 7j

HRMS Spectrum of Compound 7j

¹H NMR Spectrum of Compound 7q

HRMS Spectrum of Compound 7q

¹H NMR Spectrum of Compound 7t

¹³C NMR Spectrum of Compound 7t

6 7 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 7 7 7		
0 1 0 1 4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	101	0 O
バイ408671077774474748874	4	0 0
- $ -$	NN 9	- U
	ファフ	n n

ATK-SY-PGRO-D-13C.3.fid ATK-SY-PGRO-D-13C

HRMS Spectrum of Compound 7t

		Displa	y Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\user data\HP low mass bruker.m ATK-SY-PGRO-D	LC\DR LOKMAN\30.1().2021\ATK-SY-	Acquisition Date 11/2/20 PGRO-D_RA2_01_1137.d Operator vidhi Instrument impact HD	021 7:40:26 AM 1819696.00197
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 ∨ -500 ∨ 2000 ∨ 0 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	1.8 Bar 200 °C 6.0 I/min Waste 0 °C
Intens. x107 1.5 1.0 0.5		~		HO N HO	<
0.0	0.5 1.0	1.5 2.0	2.5	3.0 3.5 4.0	4.5 Time [min]
BP	C +All MS				
Intens. x10 ⁶			394.1797	ATK-SY-PGRO-D_RA2_01_1137.c	l: +MS, 0.6-1.5min #33-85
6-					
4 -					
2-					
0 375	380	385 390	395	400 405	410 m/z

S110

¹H NMR Spectrum of Compound 7v

¹³C NMR Spectrum of Compound 7v

HRMS Spectrum of Compound 7v

2 <u></u>			Display	Repo	rt			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\user data\HPI low mass bruker.m ATK-SY-P35-DA	_C\DR LOK	MAN\30.10.2	2021\ATK-	Acquisitio SY-P35-DA_RA6 Operator Instrumen	n Date 11/2/20. 5_01_1141.d vidhi it impact HD	21 8:06:33 A 1819696.	.M .00197
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Active 50 m/z 1500 m/z	lon Polari Set Capill Set End F Set Charg Set Coror	ty ary Plate Offset jing Voltage na	Positive 4500 V -500 V 2000 V 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	1.8 Bar 200 °C 6.0 l/min Waste 0 °C	n
Intens. x107 0.8 0.6 0.4 0.2 0.0 0.0	0.5 1.0	7-7-7-7-7 1.5	2.0	2.5	HO , 3.0 3			ime [min]
BP	C +All MS				60 48 2			
Intens.] x105- 4-		386.0940			ATK-SY-P35	-DA_RA6_01_1141.d:	+MS, 0.6-1.5m	in #35-84
3-								
1-			387.0968	388.0916	389.0940			
o ¹	385.084	386	,M	388	390	,	392	m/z

S113

¹H NMR Spectrum of Compound 7w

HRMS Spectrum of Compound 7w

		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\user data\HP low mass bruker.m ATK-SY-PG5-D	LC\DR LOKMAN\30.10.2	021\ATK-SY-F	Acquisition Date 11/2/20 PG5-D_RA5_01_1140.d Operator vidhi Instrument impact HD	21 8:00:04 AM 1819696.0019
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona	Positive 4500 V -500 V 2000 V 0 nA	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater	1.8 Bar 200 °C 6.0 I/min Waste 0 °C
Intens. x10 ⁶ 4 3 2 1 1 0 0		1.5 2.0	HC	CI HO 3.5 4.0	4.5 Time [m
Intens. x10 ⁵ -	C +AII MS	400.1108		ATK-SY-PG5-D_RA5_01_1140.d:	+MS, 0.6-1.5min #34
6-					
1					
4-		402.10	085		

¹H NMR Spectrum of Compound 8b

¹³C NMR Spectrum of Compound 8b

HRMS Spectrum of Compound 8b

¹H NMR Spectrum of Compound 8d

¹³C NMR Spectrum of Compound 8d

HRMS Spectrum of Compound 8d

Detection of intermediates in HRMS

2-naphthylamine (1 mmol), benzaldehyde (1 mmol), and 4-*tert* butylcyclohexanone (1 mmol), 20 mol% CSA (46 mg) were taken in a r.b and dissolved in 1 mL DMSO. The reaction mixture was stirred at 120 °C temperature in a preheated oil-bath. After 2 h, reaction was stopped and a very little amount of it was subjected to ESI-MS mass experiment, and the intermediates **E**, **F**, **H** and **K** were detected by HRMS values. The spectra and observed m/z values for the intermediates are given below.

HRMS Spectrum of Intermediate E or F of compound 41

HRMS (ESI) Calcd for C₂₇H₃₀N 368.2373 (M + H⁺); Found 368.2302

HRMS Spectrum of Intermediate H of compound 41

HRMS (ESI) Calcd for C₂₇H₂₉NO 383.2249 (M + H⁺); Found 383.2218

HRMS Spectrum of Intermediate K of compound 41

HRMS (ESI) Calcd for C₂₇H₂₈NO 382.2166 (M + H⁺); Found 382.2174

1

Stock solutions preparation

The stock solutions of the chemosensors (4s, 4x and 4u) were prepared in DMSO at 10^{-3} M and the solutions were diluted as per experimental requirements. The anionic salts (with tetrabutylammonium counterion), like F⁻, HSO₄⁻, PO₄³⁻, OAc⁻, Cl⁻, Br⁻, I⁻, CN⁻, CO₃²⁻, ClO₄⁻, NO₃⁻, N₃⁻*etc.* were prepared in 10^{-2} M in DMSO/H₂O (v/v 7/3) and were similarly diluted as per requirement.

Table S3. Optical data of 4s, 4x, and 4u in different organic solvents.

Solvents	$\lambda_{\rm Em}$ /nm		
	4s	4x	4 u
Hexane	430	434	440
Dichloromethane (DCM)	435	434	448
Methanol (MeOH)	448	438	460
Acetonitrile (MeCN)	437	438	447
Dimethyl sulfoxide (DMSO)	442	450	454

Figure S2. Emission spectral changes of (a) 4s, (b) 4x and (c) 4u in different organic solvents.

Figure S3. UV-Vis absorption spectral changes of (a) 4s, (b) 4x and (c) 4u in different organic solvents.

Figure S4. (a) Selectivity of 4z in presence of diverse anions; UV-Vis titration of (b) 4x and (c) 4z (100 μ M in DMSO) in presence of 60 μ L and 100 μ L F⁻ in 0.5 mM DMSO/H₂O (v/v 7/3) respectively.

Figure S5. UV-Vis spectral data of (a) 4i (100 μ M in DMSO) (b) 4j (100 μ M in DMSO) in presence of F in DMSO/H₂O (v/v 7/3).

Figure S6. Calculation of LOD of (a) 4s, (b) 4x, (c) 4u and (d) 4z towards F⁻.

Table S4. Comparative literature survey of the recently reported F⁻ specific chemosensors

Sl. No.	Sensing materials	LOD	Response time	Solid state	Application in molecular	Ref.
1	Porphyrin-based recentor	10 uM		NO	NO	<u>S1</u>
2.	Bispyrenyl thioureas- polyethylene glycol (PEG)conjugatesbased receptor	2.43 μM	-	NO	NO	\$1 \$2
3.	Schiff base chemosensor	0.12µM	-	NO	YES	S3
4.	Triphenylphosphoniumsa lt based receptor	0.2 ppm	-	NO	NO	S4
5.	Nickel-POCOP Pincer Receptors	5.66 µM	-	NO	NO	S5
6.	Copper(II)bis(terpyridine) complex	5.07 µM	-	NO	NO	S 6
7.	Carbon dotsbased receptor	1.26 μM	-	NO	NO	S7
8.	CdTe quantum dots	0.285 μM	15 min	YES	NO	S 8

	based receptor					
9.	2,3-dipyrrol-2'-yl- quinoxaline based receptor	0.15 ppm	-	NO	NO	S9
10.	6-aryl-8,9- dihydrobenzo[c]phenan thridine-10(7H)-ones based receptor	4s: 2.5 μM (0.65 ppm), 4x: 1.3 μM (0.34 ppm) and 4u: 2.3 μM (0.6 ppm) 4z: 6.9 μM (2.2 ppm)	~18 s	YES	YES	Present work

Figure S7. Job's plot of **4s** with F⁻for the stoichiometry determination monitoring the change of absorbance at 460 nm.

Figure S8. B–H plot of (a) 4s, (b) 4x, (c) 4u and (d) 4z for the association constant determination towards F^- .

S136

Figure S9. UV-Vis spectral response of (a) 4s, (b) 4x and (c) 4u (100 μ M) in presence of different anions in 0.5 mM DMSO/H₂O (v/v 7/3) at 460 nm and (d) UV-Vis spectral response of 4z (100 μ M) in presence of different anions in 0.5 mM DMSO/H₂O (v/v 7/3).

1,254,x4, 1,x4,x4, 0, x4, 0, 1,x4, 0, 1,x4, 0, 1,x4, 1, x4, 1, x4, 0, 1, x4,

0.02

0

AX (I)

Figure S10. UV-Vis spectral response of (a)4s, (b) 4x and (c) 4u (100 μ M) towards F-in the coexistence of different anions in 0.5 mM DMSO/H₂O (v/v 7/3) at 460 nm and (d) UV-Vis spectral response of 4z (100 μ M) towards F- in the co-existence of different anions in 0.5 mM DMSO/H₂O (v/v 7/3).

Response time study of the chemosensors towards fluoride sensing

Response time of any sensing event is another important thing to be considered for real time applications. Therefore, to check the reaction kinetics of the chemosensors, 50 μ L 0.5 mM F⁻ in DMSO/H₂O (v/v 7/3) was taken in **4s** (100 μ M, DMSO) and the absorption spectral changes were recorded as a function of time. From **Figure S11**, ESI, it has been observed that the absorbance at 460 nm reached maximum within ~18 s and then remained almost constant. The photostability of the chemosensor was also confirmed by the almost constant absorbance values of the bare chemosensor at 460 nm. Thus, this kinetic study revealed that the interaction of the chemosensors with F⁻ rapidly reached the equilibrium condition, which indicates the real time applicability of the chemosensors for quantitative detection of F⁻ without any sample pretreatment.

Figure S11. UV-Vis spectral response of 4s (100 μ M, DMSO) towards F⁻ (0.5 mM in DMSO/H₂O (v/v 7/3)) as a function of exposure time.

 Table S5. Cartesian coordinates of geometry optimized structure of 4s.

Atoms	Cartes		
1 n	9.54997186921020	-17.57924663153041	-20.15730795284442
2 c	9.28942672426034	-18.05768499321611	-17.65961568286206

S140

3 c	9.33539266771600	-20.69158236723568	-16.87034758276627
4 c	9.16391590834480	-21.27564797345726	-14.24404673184330
5 c	8.90065006836767	-19.24870975367521	-12.46586123330883
6 c	8.78199258427475	-16.77873135666376	-13.21267667566615
7 c	8.96342031677341	-16.07817557723723	-15.83684510564680
8 c	8.87310961811985	-13.53161216669644	-16.76436554333382
9 c	9.09789423538214	-13.15982732791385	-19.43888951433157
10 c	9.42265670397734	-15.26264555914701	-21.12177736304065
11 c	9.50937452144650	-22.71068032830836	-18.62422647948858
12 c	9.56207601810067	-25.20047768367432	-17.80786434086882
13 c	9.43598025882467	-25.77040570277283	-15.20352487531487
14 c	9.23087075155267	-23.83318184854578	-13.45262910518412
15 c	8.57017863976910	-11.28340908915006	-14.99015026581731
16 c	9.04841651799151	-10.56929297866518	-20.06911031490018
17 h	8.77185458047885	-19.71498931722476	-10.45480375371329
18 h	8.55530597492697	-15.29484719699943	-11.81458748107387
19 h	9.56149489917596	-22.30769796789949	-20.64469913051578
20 h	9.69044098626594	-26.73019624988554	-19.19291642114805
21 h	9.48284120756206	-27.73963960804390	-14.57432377711186
22 h	9.10746690300088	-24.25583117487626	-11.43187046376825
23 c	8.97524889158499	-12.80426771138479	-25.21168741154283
24 c	9.27994302502813	-12.56013168629363	-27.81224049192355
25 c	10.32710437600287	-14.56790439398477	-29.19638935757900
26 c	9.68721100282903	-15.01776924408622	-23.89448136265208
27 c	10.68563936641889	-17.06729346906724	-25.35227767161351

28 c	11.01825106770361	-16.79224186881771	-27.97687538068037
29 o	11.36450501124589	-19.27289349428588	-24.29929916796454
30 h	8.11828259844832	-11.24024404210402	-24.17166355060946
31 h	8.69114958671990	-10.82232517483034	-28.76259878027936
32 h	10.58335463683730	-14.39956880611170	-31.24221208404002
33 h	11.81388055470164	-18.38899486077599	-29.01983437031287
34 c	8.52317833480767	-8.63931233980823	-16.02278717972553
35 c	8.77745820484510	-8.73362090933310	-18.59679665159326
36 o	8.35191768534723	-11.51084107351546	-12.67587502808771
37 c	8.22115548702270	-6.45410239282567	-14.27372410363494
38 h	10.83546766677597	-19.16144820994414	-22.46584913471898
39 h	9.77854588232125	-6.41118307937204	-12.88026939243045
40 h	6.45309744381431	-6.63606896655139	-13.17449921204908
41 h	8.19423582789242	-4.65747920694014	-15.32129830950963

Table S6. Cartesian coordinates	of geometry	^v optimized	structure	of 4 s	with F ⁻ .
---------------------------------	-------------	------------------------	-----------	---------------	-----------------------

Atoms	Cartes		
1 n	9.20556179385480	-17.14880388706549	-20.94335612232867
2 c	8.95217302253863	-17.93933110548009	-18.53723771970571
3 c	8.86716495123301	-20.66485405247724	-18.15445529363961
4 c	8.46214547109820	-21.64521026210130	-15.67979338070157
5 c	8.18812114553340	-19.90372625578453	-13.61650102860803
6 c	8.33601575700649	-17.34458447595005	-13.95301026258689
7 c	8.74040297273815	-16.25369395806720	-16.41648252510095
8 c	8.96206746899418	-13.60282700847361	-16.92340070158949
9 c	9.33873388922465	-12.87711302251704	-19.50710793026495

10 c	9.37594311674667	-14.71848450672537	-21.49964112511438
11 c	9.20320236838760	-22.35803244931850	-20.20324545345162
12 c	9.10717848406941	-24.94875493856735	-19.79813336118674
13 c	8.67235884465835	-25.92833442260473	-17.35240314926936
14 c	8.35949174305594	-24.29780091060280	-15.32313038511262
15 c	8.86238895298701	-11.63334017909509	-14.83994322330012
16 c	9.67938644107856	-10.23901567712718	-19.76172494515347
17 c	8.18274852437679	-11.88349650874032	-25.09609723987009
18 c	8.23668461324557	-11.16432457927201	-27.63250354683531
19 c	9.73029337127760	-12.56729062908296	-29.32410613930026
20 c	9.56214969815797	-13.97676050549546	-24.18508209525388
21 c	11.13551927749314	-15.41605515619471	-25.89420642895341
22 c	11.13015662596727	-14.62450618934668	-28.47612727086571
23 o	12.55467718669803	-17.27270982958936	-25.15125129645504
24 c	9.24403911330336	-8.88864825190915	-15.46172693976677
25 c	9.58889628972812	-8.63692703248570	-18.01398466090863
26 o	8.47188351796145	-12.16409208974162	-12.59448846731553
27 c	9.15748425336868	-6.96057031327545	-13.40772760767202
28 h	7.86919381915059	-20.66754336274222	-11.71995238647079
29 h	8.14305287607263	-16.08318148623071	-12.34442118558183
30 h	9.57269889533749	-21.59833758690790	-22.08966995462085
31 h	9.37982489564314	-26.24308503747599	-21.38914580789428
32 h	8.59427342463954	-27.97453102198926	-17.05803395344750
33 h	8.03756705924285	-25.04241540123622	-13.41982807976976
34 h	6.96373820201045	-10.84202360396820	-23.78875598447607

35 h	7.11105604685271	-9.55926753406784	-28.29050073014938		
36 h	9.79250011162040	-12.04727037478495	-31.32857676844558		
37 h	12.31178108040053	-15.71060482256741	-29.78388137214916		
38 h	11.59791739696074	-19.57868924255146	-25.64216184189746		
39 h	10.49785961797164	-7.44939023365241	-11.88243623617550		
40 h	7.25989608298807	-6.90765124666465	-12.52957822694275		
41 h	9.61054152275377	-5.06695104908931	-14.14086779077245		
42 f	10.78436462409794	-21.32841182139233	-26.04676981339317		
43 n	7.05234671875387	-19.51848401972508	-43.37772147347339		
44 c	9.18611674065189	-18.08370507244376	-42.17070719706069		
45 c	5.55939587962654	-17.76946433801409	-45.04494234575699		
46 c	8.10503208623228	-21.64562941532696	-44.93826495805211		
47 c	5.35911525353117	-20.57501767715429	-41.35623984581529		
48 h	4.60426678230814	-19.00131887036587	-40.23028680877241		
49 h	6.47361871624539	-21.84920125249823	-40.15267831625147		
50 h	3.80886246137845	-21.61727178165421	-42.26407405672620		
51 h	6.52662518659619	-22.67704979224590	-45.80947166471496		
52 h	9.18985700862308	-22.90870131451110	-43.69661082820348		
53 h	9.33912718911639	-20.84751662829169	-46.40598626758224		
54 h	4.80241064414744	-16.22456375969206	-43.88116644777080		
55 h	4.00684976667954	-18.84125401826328	-45.91399117627599		
56 h	6.81895864980422	-17.01221301961979	-46.51260965033367		
57 h	8.39052657782681	-16.53452994563551	-41.03896619516538		
58 h	10.40856756115213	-17.32365025110674	-43.66814105670360		
59 h	10.26012248357353	-19.38282473677058	-40.95710800013284		
Atoms	Cartesian coordinates				
-------	-----------------------	--------------------	--------------------	--	--
1 n	9.50514077574996	-17.71026161083915	-20.15880765209527		
2 c	9.26673214274833	-18.16643999582583	-17.66335681823626		
3 c	9.32430484271339	-20.77777487937581	-16.80756545820717		
4 c	9.14823986200343	-21.28727265329839	-14.16528923693049		
5 c	8.88664658339323	-19.21887165728603	-12.42852109476822		
6 c	8.77267592947308	-16.76640134731154	-13.22907276262716		
7 c	8.95359379437365	-16.15230547744866	-15.87001525745779		
8 c	8.94114462946756	-13.64160799453724	-16.83495617512133		
9 c	9.35316312060773	-13.24640234274523	-19.45772637291772		
10 c	9.49649656898450	-15.38398168436257	-21.11227700630490		
11 c	9.51949196825556	-22.83583965442007	-18.50854002573579		
12 c	9.58185085510031	-25.30317817006786	-17.62636816200699		
13 c	9.44266392238427	-25.80343691241326	-15.00905681941178		
14 c	9.22127659844125	-23.82299717789465	-13.30860688027910		
15 c	8.36660354344161	-11.35808014145610	-15.15076990620835		
16 c	9.92840403941629	-10.69360442186672	-20.21302210825731		
17 c	8.91398405088381	-12.81607780236532	-25.05104053265600		
18 c	9.25859330923524	-12.45713289155387	-27.63377666176486		
19 c	10.33015045321022	-14.36872995165950	-29.11941489463890		
20 c	9.66929056904764	-15.08478195267093	-23.86667342448514		
21 c	10.66610467722264	-17.06755127134316	-25.40449993445436		
22 c	11.01827410971460	-16.65078999363763	-28.00293305829262		
23 o	11.32355645076255	-19.31688405273319	-24.44048321640758		

 Table S7. Cartesian coordinates of geometry optimized structure of 4u.

24 c	9.27911199275764	-9.03106152460894	-16.41431136872085
25 c	8.86186396532310	-8.89817330394806	-18.81829658881705
26 o	7.27940919923954	-11.46388875109551	-13.13370366596336
27 cl	8.27218817570254	-9.62335463920540	-29.04443933740578
28 h	8.76655796305379	-19.64278501908112	-10.40814411932220
29 h	8.54319269203319	-15.24740567871056	-11.86318057948403
30 h	9.58264291352867	-22.48060846922560	-20.53838253295420
31 h	9.72985035989340	-26.86852031877643	-18.96866499615755
32 h	9.49340860106103	-27.75518879975629	-14.32836428945970
33 h	9.09359613007204	-24.19513653282809	-11.27851013627145
34 h	7.93261580638009	-11.35283749961070	-23.97189097258454
35 h	10.58578442393215	-14.08521892154133	-31.14880864209191
36 h	11.82688092634155	-18.17498621849714	-29.13844875729322
37 h	10.79680642201717	-19.30383486986685	-22.61662674271322

Table S8.	Cartesian	coordinates	of g	geometry	optimize	ed structure	of 4u	ı with F⁻	
				/					

Atoms	Cartesi		
1 n	9.79971094883987	-16.98321194009421	-21.35010908386724
2 c	9.72335286891313	-17.81436849076757	-18.95561401067922
3 c	10.17826255770352	-20.49724455251539	-18.53426172420323
4 c	10.08042370707435	-21.47496149636885	-16.02672028817478
5 c	9.55569894181544	-19.78179653963569	-13.96722735538765
6 c	9.14784209544847	-17.25803883305629	-14.33946176679810
7 c	9.21924463612863	-16.18057231468538	-16.83652955317933
8 c	8.90205831963991	-13.56921997078083	-17.37469511621308
9 c	9.21985497848518	-12.73395623831172	-19.90819181695180

10 c	9.53697407471434	-14.55392460870856	-21.89696126839192
11 c	10.71982388254394	-22.14319761717299	-20.57334937824578
12 c	11.14615623563657	-24.69383480144542	-20.12611096261826
13 c	11.04237054713577	-25.67438609996525	-17.64583358379883
14 c	10.51740441809945	-24.08608160878563	-15.62652574213236
15 c	8.09899318121890	-11.66396469896762	-15.35949110237626
16 c	9.41913481600069	-10.04535615730453	-20.32626201470023
17 c	7.91697847090549	-11.66137933746545	-25.20635762053628
18 c	7.90595260071654	-10.67790816464985	-27.64637184161505
19 c	9.49370902498020	-11.71417617200815	-29.49695439314468
20 c	9.50595898812453	-13.70406699179031	-24.53812674397828
21 c	11.15994650112150	-14.83256567479152	-26.41142538213953
22 c	11.06422831747024	-13.72620766445861	-28.87599510417434
23 o	12.71911276041537	-16.63836481297540	-25.91759716214321
24 c	8.67060554001281	-9.04446419815253	-16.22195658730081
25 c	8.20599716910588	-8.68121725376866	-18.59095403848652
26 o	7.07864866461547	-12.21352519115939	-13.37608139306402
27 cl	5.84259122841971	-8.18146393857111	-28.42655760208380
28 h	9.49504517009810	-20.55645586044789	-12.05001160565459
29 h	8.75263219335792	-16.03202052528846	-12.73615887822904
30 h	10.79899574111725	-21.37764141741652	-22.49158909671217
31 h	11.56700807483875	-25.95467219713086	-21.71139775212912
32 h	11.37834007207762	-27.68878097534003	-17.31716671061928
33 h	10.43832554954262	-24.83260475327166	-13.69895460256208
34 h	6.54898125426558	-10.93207962055395	-23.83815641296725

S147

35 h	9.47206676509300	-10.94670148706505	-31.41682842603243
36 h	12.32855432645488	-14.53947153776186	-30.29696332918883
37 h	11.85998090578140	-19.07894422379897	-26.20708018158905
38 f	11.20629296598200	-20.88276895652986	-26.50714421388057
39 n	15.17242429356049	-15.20460937368791	-38.09342055919366
40 c	15.48405044279240	-13.86122631376034	-35.61156108989780
41 c	15.02689199669863	-13.29491727195365	-40.19196983647819
42 c	17.39574040340679	-16.92036112795960	-38.52502384674649
43 c	12.78496775830361	-16.74316942660015	-38.04468322173987
44 h	12.58040981104549	-17.71490591650063	-39.86879594256348
45 h	11.17513820477071	-15.46817928389999	-37.73164058246183
46 h	12.91771137454724	-18.13239437627046	-36.50626416633516
47 h	17.47959229017735	-18.30352320178946	-36.97771175134688
48 h	17.14293515054953	-17.89063002171477	-40.34385447768022
49 h	19.12598613777755	-15.77184614313537	-38.55697045596778
50 h	14.79951992937985	-14.30301443738166	-41.99363777595072
51 h	16.78293505130516	-12.18598520618451	-40.20530424478367
52 h	13.39599438588674	-12.05444632867643	-39.85170665768003
53 h	13.85265727466974	-12.60747390921755	-35.32315473995585
54 h	17.23385710338471	-12.74389762075911	-35.66884709438902
55 h	15.59233617276048	-15.27794079136166	-34.09600008098064

Reversibility of the sensory probes and proposition of logic circuitry

As discussed in the main text, initially in absence of any input (*i.e*, both IN 1 and IN 2 are 0) the chemosensor, $4\mathbf{u}$ was pale yellow colored and the absorbance of $4\mathbf{u}$ at 460 nm is below the threshold value, which will keep OUT 1 in *OFF* state. However, in presence of F⁻ (*i.e* IN 1 is 1),

the color of the chemosensor changed to orange, which led to the generation of new peak at 460 nm. Therefore OUT 1 will be in the *ON* state. The presence of H⁺ (*i.e* IN 2 is 1) in **4u** could not induce any subtle variation in the spectral behaviour. So, OUT 1 would be remained in *OFF* state. The sequential addition of F⁻ and H⁺, the inherent spectral behaviour of **4u** was reverted back. Thus, the absorbance at 460 nm would be again below the threshold value, which led the OUT Y1 to stay in *OFF* state. The corresponding spectral outcomes have been shown in **Figure 4b**, **c** which is useful for INHIBIT logic circuit formulation.

Figure S12. Naked eye solid state chromogenic recognition of F⁻ by**4u** (left: only **4u**, right: **4u** in presence of F⁻).

References

S1. V. V. Kumar, D.Ramadevi, V. M.Ankathi, T. K. Pradhan, K. Basavaiah, *Microchem. J.*2020, 157, 105028.

S2. D. Thongkum, T. Tuntulani, *Tetrahedron*2011, 67, 8102–8109.

S3. S. P. Mahanta, R.Das, S. P. Bharati, A. Borborah, P. J. Sarma, B. Das, S. Choudhury, G. Chakraborty, *New J. Chem.***2018**,*42*, 3758–3764.

S4. Madhuprasad, D. R. Trivedi, ChemPlusChem2014, 79, 1001–1008.

S5. D. Morales-Morales, A. Dorazco-Gonzalez, M. A. Garcia, J. J. Guerra-Garcia, M. K. Salomón-Flores, I. J. Bazany-Rodríguez, D. Martínez-Otero, *Dalton Trans.* **2017**, *46*, 4950–4959.

S6. A. K. Purohit, S. K.Padhan, J. R. Mohanty, P. K. Kar, *Photochem. Photobiol. Sci.*2018, 17, 815–821.

S7. S.Kainth, N. Goel, S.Basu, B.Maity, New J. Chem. 2022, 46, 686–694.

S8. X. Yu, L. Yang, T. Zhao, R. Zhang, L. Yang, C. Jiang, J. Zhao, B. Liu, Z. Zhang, *RSC Adv*. 2017, 7, 53379–53384.

S9. S. P. Mahanta, R. Das, P. J. Sarma, A. Borborah, S. P. Bharati, New J. Chem. 2019, 43, 3447–3453.