A Two-sites Reactive Platform in the Synthesis of Aminofunctionalized Amphiphilic Molecules via Sulfenic Acids

Paola Bonaccorsi,^a Chiara Maria Antonietta Gangemi,^a Valentina Greco,^b Giuseppe Gattuso^a and Anna Barattucci^a*

^a Dipartimento di Scienze Chimiche Biologiche Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Sicily, Italy

^b Dipartimento di Scienze Chimiche, Università degli studi di Catania, Sicily, Italy

TABLE OF CONTENTS

PAGE

General information	S2
Computational studies details	S3
General procedure for the synthesis of compounds 7	S5
General procedure for the synthesis of compounds 11	S6
General procedure for the synthesis of compounds 1	S7
General procedure for the synthesis of compounds 12	S9
General procedure for the synthesis of compounds 2	S10
¹ H and ¹³ C NMR of Compounds	S12
Solubility tests	S21

Chemicals. Solvents were purified according to standard procedures. All the syntheses were monitored by TLC on commercially available precoated plates (silica gel 60 F254), and the products were visualized with vanillin [1 g dissolved in MeOH (60 mL) and conc. H_2SO_4 (0.6 mL)] and UV lamp. Silica gel 60 was used for column chromatography.

Instrumentation. Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Varian 500 spectrometer (at 500 MHz for ¹H; and 125 MHz for ¹³C) using CDCl₃ or DMSO-*d*₆ as solvents. Chemical shifts are given in parts per million (ppm) (δ relative to residual solvent peak for ¹H and ¹³C), coupling constants (J) are given in Hertz, and the attributions are supported by heteronuclear single-quantum coherence (HSQC) and correlation spectroscopy (COSY) experiments. Chemical shifts are reported in ppm to residual CHCl₃ peak (7.26 ppm) or residual DMSO *peak* (2.49 ppm). Combustion analyses were carried out on a FISONS EA1108 elemental analyzer, mass analysis for final products (**1a**, **1b**) were performed with a TSQ-Quantum access Triple Quadrupole Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), equipped with a HESI (Heated ElectroSpray Ionization) source; analyses were run in positive mode. Mass spectrometer parameters were: sheath gas flow rate, 30 (arbitrary units); aux gas flow rate, 15 (arbitrary units); spray voltage, 5.00 kV; capillary temperature, 250° C; tube lens voltage, 55 V; heater temperature, 270°C; scan mode: full scan.

Computational Studies

The conformational analysis of compound **7a** was carried out with the classical molecular mechanics force field (MMFF) by using the Monte Carlo method to randomly sample the conformational space. The equilibrium geometries were then calculated at the density functional level of theory (DFT, B3LYP functional) using the 6-311++G(d,p) basis set. All quantum mechanical calculations were performed using Spartan '10 (Wavefunction, Inc., Irvine, CA, USA).

Conformer A (Energy: –2177.66315 au):	Conformer B (Energy: -2177.62679 au):
H 0.220481 -2.437090 0.413239	Н 0.241572 1.644994 -1.839698
C 0.121491 -1.369581 0.241194	C 0.120836 0.927016 -1.037539
C -0.121491 1.369581 -0.241194	C -0.168425 -0.942816 1.005562
C -1.033932 -0.697384 0.661501	C 0.749478 1.148972 0.192109
C 1.140760 -0.677068 -0.408463	C -0.640627 -0.217268 -1.240816
C 1.033932 0.697384 -0.661501	C -0.797472 -1.164487 -0.223875
C -1 140760 0.677068 0.408463	C = 0.592980 = 0.201544 = 1.208944
H 2 027625 -1 214938 -0 728872	H = -1.121366 -0.374068 -2.200605
H = -2.027625 + 1.214938 + 0.728872	H $1.073841 = 0.357874 = 2.168644$
H = 0.220481 = 2.437090 = 0.413239	H $-0.288588 -1.661395 -1.807272$
C = 2.136840 = 1.424155 = 1.378630	$\begin{array}{c} 1 & 0.200000 & 1.001000 & 1.007272 \\ 0 & 1 & 563938 & 2 & 386042 & 0 & 425317 \end{array}$
H = 2,872521 = 0,742748 = 1,815860	H = 1.807876 - 2.500042 - 0.425517
H = 1.766324 = 2.085256 = 2.170231	H = 1.0737/6 = 3.286798 = 0.0/69/7
C = 2.136840 = 1.424155 = 1.278620	$\begin{array}{c} 1 & 1.073740 & 3.280738 & 0.040347 \\ 0 & -1.612988 & -2.400683 & -0.457150 \end{array}$
\square 1 766224 2 095256 2 170221	H = 1.012568 - 2.400065 - 0.457150
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \square & 2.0/2351 \\ \hline 0.143746 \\ \hline 0.242040 \\ \hline 0.242040 \\ \hline \end{array}$	Π -1.630625 -2.330007 -1.306009
3 -3.112025 -2.591301 0.543040	5 5.104051 2.492021 -0.450270 0 2.070612 2.117260 1.862875
	0 2.9/0612 2.11/260 -1.8638/5
	0 3./15624 3.820886 -0.130865
5 3.112825 2.591381 -0.343040	S -3.233620 -2.504566 0.425915
	0 -3.766599 -3.833069 0.099048
0 2.180266 3.549646 0.275041	0 -3.020575 -2.129168 1.831475
C 3.814849 1.551300 0.977274	C -4.336148 -1.261891 -0.354264
C -3.814849 -1.551300 -0.977274	C 4.28/993 1.250060 0.320//0
C -3.441593 -1.866279 -2.221562	C 5.280564 1.765279 1.048546
Н -3.844094 -1.326456 -3.074736	H 6.024461 1.116148 1.497423
H -2.740265 -2.672255 -2.406009	H 5.381985 2.834787 1.182093
C 3.441593 1.866279 2.221562	C -5.329903 -1.776785 -1.080714
H 3.844094 1.326456 3.074736	Н -6.073539 -1.127313 -1.529398
H 2.740265 2.672255 2.406009	Н -5.432409 -2.846388 -1.212895
C 4.716787 0.436117 0.607716	C -4.092912 0.184436 -0.149160
C 6.446459 -1.724931 0.038317	C -3.728066 2.966600 0.160154
C 5.785528 0.593942 -0.292671	C -4.245630 1.058330 -1.238644
C 4.523596 -0.820832 1.210417	C -3.752264 0.726346 1.099894
C 5.374061 -1.884123 0.935849	C -3.576065 2.094701 1.250257
C 6.636910 -0.470072 -0.570238	C -4.069737 2.425822 -1.090712
H 5.952144 1.557533 -0.760613	H -4.486127 0.655686 -2.215811
H 3.690428 -0.959356 1.892857	H -3.624365 0.069793 1.949431
H 5.216023 -2.847924 1.409289	H -3.319696 2.501000 2.221191
H 7.467772 -0.332268 -1.254464	H -4.184597 3.084931 -1.942723
C -4.716787 -0.436117 -0.607716	C 4.045968 -0.196265 0.114310
C -6.446459 1.724931 -0.038317	C 3.681468 -2.978263 -0.197538
C -5.785528 -0.593942 0.292671	C 4.198174 -1.071114 1.203176
C -4.523596 0.820832 -1.210417	C 3.705912 -0.737119 -1.135285
C -5.374061 1.884123 -0.935849	C 3.530038 -2.105342 -1.286985
C -6.636910 0.470072 0.570238	C 4.022329 -2.438500 1.054015
Н -5.952144 -1.557533 0.760613	H 4.438354 -0.669261 2.180766
H -3.690428 0.959356 -1.892857	H 3.578218 -0.079815 -1.984055
H -5.216023 2.847924 -1.409289	H 3.274060 -2.510810 -2.258302
Н -7.467772 0.332268 1.254464	H 4.136395 -3.098216 1.905664
C 7.320217 -2.818275 -0.244960	C -3.532137 4.370690 0.317747
H 8.702308 -4.573264 -0.684573	H -3.216348 6.602173 0.569694
C 8.053127 -3.753110 -0.476504	C -3.363024 5.556194 0.451284
C -7.320217 2.818275 0.244960	C 3.484752 -4.382087 -0.356834
H -8.702308 4.573264 0.684573	H 3.166121 -6.612635 -0.613685
C -8.053127 3.753110 0.476504	C 3.314331 -5.567152 -0.493015

Figure S1 Additional views of conformers A (top) and B (bottom) of compound **7a** highlighting interplanar angles and centroid-centroid distances.

To a solution of the diastereomeric mixtures of **6a** or **6b** (1 eq.) in DCM, a solution of *m*-CPBA (2.5 eq. 80 wt %) in DCM was slowly added at 0°C and under argon atmosphere. The reaction mixture was warmed at r. t. and monitored by TLC (*n*-Hexane/DCM 10:90) until the disappearance of the reagent. The reaction was quenched with the addition of an equal volume of aqueous solution of Na₂S₂O₃ (10%w/w) and the organics washed with sat. solution of NaHCO₃ (3 times) and brine (twice). The organic phase was dried with Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (n-Hexane/DCM 10:90) and **7a** or **7b** obtained as a white solid.

1,4-Bis{[1-(4ethynylphenyl)ethenylsulfonyl]meth yl}-benzene (7a)

Yield: 98%. White solid. TLC: R_f 0.72 (*n*-Hexane/Ethyl Acetate 50:50). δ H (500 MHz; CDCl₃) 7.55 (8H, m, 2x H-2', 2x H-3', 2x H-5', 2x H-6'), 7.12 (4H,

s, H-2, H-3, H-5, H-6), 6.32 and 6.00 (4H, two s, $2x = CH_2$), 4.10 (4H, s, $2x SCH_2$), 3.21 (2H, s, $2x \equiv CH$). δC (125 MHz; $CDCI_3$) 147.3 (q), 132.6 (q), 132.5 and 128.6 (C-2', C-3', C-5', C-6'), 131.1 (C-2, C-3, C-5, C-6), 128.7 and 123.9 (q), 128.2 (=CH₂), 82.6 (q), 79.4 (=CH), 58.5 (SCH₂). Anal. Calcd. for $C_{28}H_{22}O_4S_2$ (486,60): C, 69.11;

H, 4.56. Found: C, 69.07; H, 4.55.

1,3-Bis{[1-(4ethynylphenyl)ethenylsulfonyl]meth yl}-benzene (7b)

Yield: 98%. White solid. TLC: R_f 0.70 (*n*-Hexane/Ethyl Acetate 50:50). δ H (500 MHz; CDCl₃) 7.64 (2H, s, 2x H-2'), 7.59 and 7.56 (4H, dd, $J_{4',5'}=J_{5',6'}=7.9$, 2x H-4', 2x H-6'), 7.39 (2H, t, $J_{2',3'}=J_{3',4'}=7.9$, 2x H-5'), 7.13 (4H, s, H-2, H-3, H-5, H-6), 6.32 and 5.99 (4H, two s, 2x =CH₂), 4.10 (4H, s, 2x SCH₂), 3.15 (2H, s, 2x ≡CH). δ C (125 MHz; CDCl₃) 147.2 (q), 133.4 and 129.0 (C-4', C-5', C-6'), 132.7 (q), 132.2 (C-2'), 131,1 (C-2, C-3, C-5, C-6), 129.0 and 123.0 (q), 128.2(=CH₂), 82.6 (q), 79.4 (≡CH), 58.5 (SCH₂). Anal. Calcd. for C₂₈H₂₂O₄S₂ (486,60): C, 69.11; H, 4.56. Found: C, 68.98; H, 4.54.

A solution of compound **11a** or **11b** (1 eq.), compound **10** (2.5 eq.) and $[Pd(PPh_3)]_4$ (0.1 eq.) in dry DMF and NEt₃ (1:1 *ratio*) was stirred at 60°C, under argon atmosphere for 2h, until the disappearance of the reagent by TLC (*n*-Hexane/Ethyl Acetate 25:75). The solvent was removed under reduced pressure, the crude product was purified by column chromatography (DCM 100) and the desired product was obtained as a white solid.

Compound 11a

Yield: 49%. White solid. R_f 0.65 (DCM/Ethyl Acetate 80:20). δH (500 MHz; CDCl₃) 7.59 (8H, m, 2x H-2', 2x H-3', 2x H-5', 2x H-6'), 7.10 (4H, s, H-2, H-3, H-5, H-6), 7.02 and 6.95 (4H, two s, 2x H-3'', 2x H-6''), 6.30 e 6.01 (4H, two s, 2x =CH₂), 5.25 (2H, t, $J_{2'',3'''} = J_{3'',4'''} = 9.8$, 2x H-3'''), 5.11 (2H, t, $J_{3'',4'''} = J_{4''',5'''} = 9.8$, 2x H-4'''), 5.04 (2H, dd, $J_{1''',2'''} = 8.3$, $J_{2''',3'''} = 9.8$, 2x H-2'''), 4.90 (2H, d, $J_{1''',2'''} = 8.3$, 2x H-1'''), 4.65 (4H, s, 2x CH₂C≡), 4.26 and 4.16 (2H, split AB system, $J_{5''',6'''A} = 4.4$, $J_{6'''A,6'''B} = 12.8$, 2x H₂-6'''), 4.10 (4H, s, 2x SCH₂), 3.89 and 3.88 (12H, two s, 4x -OCH₃), 3.75 (2H, m, 2x H-5'''), 2.07, 2.04, 2.02, and 2.01 (24H, four s, 8x CH₃CO). δC (125 MHz; CDCl₃) 170.6, 170.3, 169.4 and 169.3 (4x CO), 154.1 (q), 147.3 (q), 132.1 (q), 132.0 and 128.6 (C-2', C-3', C-5', C-6'), 131,0 (C-2, C-3, C-5, C-6), 128,4 and 124.9 (q), 128.2 (=CH₂), 115.7 and 115.5 (C-3'', C-6''), 113.3 and 112.7 (q), 98.3 (C-1'''), 94.0, 89.2, 87.6 and 83.3 (q), 72.8 (C-3'''), 71.9 (C-5'''), 71.1 (C-2'''), 68.3 (C-4'''), 61.8 (C-6'''), 58.5 (SCH₂), 57.0 (CH₂C≡), 56.4 and 56.3 (-OCH₃), 20.7, 20.6 and 20.5 (CH₃CO). Anal. Calcd. for C₇₈H₇₈O₂₈S₂ (1527,57): C, 61.33; H, 5.15. Found: C, 61.27; H, 5.17.

Compound 11b

Yield: 46%. White solid. R_f 0.65 (DCM/Ethyl Acetate 80:20). δ H (500 MHz; CDCl₃) 7.74 (2H, s, 2x H-2'), 7.62 and 7.52 (4H, two d, $J_{4',5'}=J_{5',6'}=7.5$, 2x H-4', 2x H-6'), 7.40 (2H, t, $J_{4',5'}=J_{5',6'}=7.5$, 2x H-5'), 7.13 (4H, s, H-2, H-3, H-5, H-6), 7.04 and 6.96

(4H, two s, 2x H-3", 2x H-6"), 6.34 and 6.02 (4H, two s, 2x =CH₂), 5.27 (2H, t, $J_{2'',3'''} = J_{3''',4'''} = 9.5$, 2x H-3"'), 5.12 (2H, t, $J_{3''',4'''} = J_{4'',5'''} = 9.6$, 2x H-4"'), 5.05 (2H, d, $J_{1''',2'''} = 8.0$, $J_{2''',3'''} = 9.8$, 2x H-2"'), 4.91 (2H, d, $J_{1''',2'''} = 8.0$, 2x H-1"'), 4.66 (4H, s, 2x CH₂C≡), 4.29 and 4.17 (2H, split AB system, $J_{5''',6'''A} = 4.5$, $J_{6'''A,6'''B} = 12.5$, 2x H₂-6"'), 4.13 (4H, s, 2x SCH₂), 3.89 (12H, s, 4x OCH₃), 3.76 (2H, m, 2x H-5'''), 2.08, 2.05, 2.03, and 2.01 (24H, four s, 8x CH₃CO). δ C (125 MHz; CDCl₃) 170.7, 170.3, 169.5 and 169.4 (4 x CO), 154.1 and 153.9 (q), 147.4 (q), 132.9, 128.9 and 128.8 (C-4', 5', 6'), 132.7 (q), 131.6 (C-2'), 131.1 (C-2, C-3, C-5, C-6), 128,7 and 124.0 (q), 128.2 (=CH₂), 115.7 and 115.6 (C-3'', C-6''), 113.3 and 112.6 (q), 98.3 (C-1'''), 93.9, 89.2, 86.6 and 83.3 (q), 72.8 (C-3'''), 71.9 (C-5'''), 71.1 (C-2'''), 68.3 (C-4'''), 61.8 (C-6'''), 58.6 (SCH₂), 57.0 (CH₂C≡), 56.5 and 56.4 (-OCH₃), 20.7, 20.6 and 20.5 (CH₃CO). Anal. Calcd. for C₇₈H₇₈O₂₈S₂ (1527,57): C, 61.33; H, 5.15. Found: C, 61.55; H, 5.13.

General procedure for the synthesis of compounds 1

Compound **11a** or **11b** (0.2 mmol) was dissolved in THF-MeOH (1:1, 40 mL). A large excess of aqueous ammonia (12 mL) was added, and the reaction was maintained under continuous stirring at r.t. overnight, until the disappearance of the starting product by TLC (*n*-Hexane/Ethyl Acetate 40:60). Solvents were removed under reduced pressure and several washings with Et_2O were performed to purify the product from the undesired acetamide.[1]

Compound 1a

Yield: 98%. White solid. R_f 0.01 (Ethyl Acetate 100). δ H (500 MHz; DMSO- d_6) 7.57 and 7.44 (8H, two d, J= 8.4, 2x H-2', 2x H-3', 2x H-5', 2x H-6'), 7.33 (4H, s, H-2, H-3, H-5, H-6), 7.16 and 7.08 (4H, two s, 2x H-3'', 2x H-6''), 5.12 (2H, d, J =4.8, 2x -OH), 4.96 (2H, d, J =4.4, 2x -OH), 4.91 (2H, d, J =5.4, 2x -OH), 4.67 (2H, part A of AB system, d, J =15.5, 2x CH₂C=), 4.6-4.5 (6H, m, 2x CH₂C=, 2x CH₂S; 2x -OH-6'''), 4.44 (2H, dd, J_{vic} =5.5, J_{vic} =4.1, 2x -CHCH₂NH₂), 4.38-4.32 (4H, m, 2x -CH₂S and 2x H-1'''), 3.82 and 3.81 (12H, two s, 4x -OCH₃), 3.71-2.95 (16H, m, 2x H₂-6''', 2x H-5''', 2x H-4''', 2x H-3''', 2x H-2''', 2x -CHCH₂NH₂). δ C (125 MHz; DMSO- d_6) 154.1 and 153.9 (q), 133.3 (q), 131.9 and 130.9 (C-2', C-3', C-5', C-6'), 131.7 (C-2, C-3, C-5, C-6), 128.4 and 123.0 (q), 116.3 and 116.0 (C-3'', C-6''), 112.9 and 112.7 (q), 101.6 (C-1'''), 94.6, 91.7, 87.1 and 82.5 (q), 77.5, 77.1, 73.7 and 70.5 (C-2''', C-1'')

3^{'''}, C-4^{'''}, C-5^{'''}), 69.9 (-<u>C</u>HCH₂NH₂), 61.6 (C-6^{'''}), 57.6 (-CH₂S), 56.6 and 56.2 (-OCH₃), 56.2 (-CH₂C≡), 41.8 (-CHCH₂NH₂). Anal. Calcd. for $C_{62}H_{68}N_2O_{20}S_2$ (1225,34): C, 60.77; H, 5.59; N, 2.29. Found: C, 60.82; H, 5.60; N, 2.29. ESI(+)-MS m/z calcd. for $C_{62}H_{68}N_2O_{20}S_2$ ([M+H]⁺) 1226.35, found 1226.32 and 613.23 ([M+2H]²⁺).

Compound 1b

Yield: 98%. White solid. R_f 0.01 (Ethyl Acetate 100). δH (500 MHz; DMSO- d_6) 7.54 (4H, br s, 2x H-2', 2x H-5'), 7.47-7.43 (4H, m, 2x H-4', 2x H-6'), 7.34 (4H, s, H-2, H-3, H-5, H-6), 7.17 and 7.09 (4H, two s, 2x H-3", 2x H-6"), 5.14 (2H, br s, 2x OH), 4.92 (2H, br s, 2x OH), 4.69 (2H, br s, 2x OH), 4.68 (2H, part A of AB system, d, J =15.5, 2x CH₂C≡), 4.60-4.53 (6H, m, 2x CH₂C≡, 2x CH₂S; 2x -OH-6"'), 4.44 (2H, br t, J =5.5; 2x -CHCH₂NH₂), 4.38-4.31 (4H, m, 2x -CH₂S and 2x H-1"''), 3.82 and 3.81 (two s, 12H, 4x -OCH₃), 3.72-2.98 (16H, m, 2x H₂-6"'', 2x H-5"'', 2x H-4"'', 2x H-3"'', 2x H-2"'', 2x -CHCH₂NH₂). δC (125 MHz; DMSO- d_6) 153.7 and 153.4 (q), 132.7 (q), 131.4 and 131.3 (C-2', C-5', C-2, C-5), 129.1 (C-4', C-6') 127.9 and 122.6 (q), 115.8 and 115.6 (C-3", C-6"'), 112.4 and 112.3 (q), 101.1 (C-1"'') 94.1, 91.2, 86.3 and 82.0 (q), 77.0, 76.7, 73.3 and 70.1 (C-2"'', C-3"'', C-4"'', C-5"''), 69.3 (-CHCH₂NH₂). Anal. Calcd. for C₆₂H₆₈N₂O₂₀S₂ (1225,34): C, 60.77; H, 5.59; N, 2.29. Found: C, 60.84; H, 5.57; N, 2.29. ESI(+)-MS m/z calcd. for C₆₂H₆₈N₂O₂₀S₂ ([M+H]⁺) 1226.35, found 1226.26 and 613.24 ([M+2H]²⁺).

To a solution of **7a** or **7b** (1eq.) in MeOH, piperidine (3.2 eq.) was added and the reaction mixture was stirred at r.t., under argon atmosphere, until the disappearance of the starting product by TLC (*n*-Hexane/Ethyl Acetate 50:50). The solvent was evaporated under reduced pressure. The desired product **12a** or **12b** was obtained without needing any further purification, after removing of piperidine excess under vacuum.

Compound 12a

Yield: 98%. White solid. R_f 0.43 (*n*-Hexane/Ethyl Acetate 50:50). δ H (500 MHz; CDCl₃) 7.48 and 7,27 ((H, two d, J_{orto} =7.8, 2 x H-2', 2x H-3', 2x H-5', 2x H-6'), 7.41 (4H, s, H-2, H-3, H-5, H-6), 4.47 and 4.38 (4H, AB system, J_{gem} =13.2, 2x SCH₂), 4.19 (2H, part X of ABX system, J_{vic1} =7.3, J_{vic2} =4.4, 2x -

CHCH₂Pi), 3.50 and 2.84 (4H, part A and B of ABX system, $J_{gem} = 13.6 J_{vic1} = 7.3 J_{vic2} = 4.4$, 2x -CHCH₂Pi), 3.11 (2H, s, 2x \equiv CH), 2.47 (8H, m, 2x H₂-2p, 2x H₂-6p), 1.43 (8H, m, 2x H₂-3p, 2x H₂-5p), 1.26 (4H, m, 2x H₂-4p) . δ C (125 MHz; CDCl₃) 132.8 (q), 132.5 and 129.7 (C-2', C-3', C-5', C-6'), 131.5 (C-2, C-3, C-5, C-6), 128,4 and 122.8 (q), 82.9 (q), 78.3 (\equiv CH), 65.2 (-CHCH₂Pi), 59.2 and 59.1 (SCH₂, -CHCH₂Pi), 54.8 (C-2p, C-6p), 26.0 (C-3p, C-5p), 24.0 (C-4p). Anal. Calcd. for C₃₈H₄₄N₂O₄S₂ (656,90): C, 69.48; H, 6.75; N, 4.26. Found: C, 69.33; H, 6.73; N, 4.25.

Compound 12b

Yield: 98%. White solid. R_f 0.41 (*n*-Hexane/Ethyl Acetate 50:50). δ H (500 MHz; CDCl₃) δ 7.52-7.20 (8H, m, 2x H-2', 2x H-4', 2x H-5', 2x H-6'), 7.42 (4H, s, H-2, H-3, H-5, H-6), 4.48 and 4.41 (4H, AB system, J_{gem} =14.2, 2x SCH₂), 4.19 (2H, part X of ABX system , J_{vic1} =7.8, J_{vic2} =4.6, 2x -CHCH₂Pi), 3.50 and

2.83 (4H, part A and B of ABX system, $J_{gem} = 13.2$, $J_{vic1} = 7.8$, $J_{vic2} = 4.6$, $2x - CHCH_2Pi$), 3.17 (2H, s, $2x \equiv CH$), 2.47 (8H, m, $2x H_2$ -2p, $2x H_2$ -6p), 1.43 (8H, m, $2x H_2$ -3p, $2x H_2$ -5p), 1.25 (4H, m, $2x H_2$ -4p). δC (125 MHz; CDCl₃) 133.3, 132. 6, 130.1 and 128.8 (C-2', C-4', C-5', C-6'), 132.5 (q), 131.5 (C-2, C-3, C-5, C-6), 128.5 and 122.8 (q), 82.9 (q), 78.0 ($\equiv CH$), 65.0 (- $\underline{C}HCH_2Pi$), 59.4 and 59.2 (SCH₂ and -CH $\underline{C}H_2Pi$), 54.8 (C-2p, C-6p), 26.0 (C-3p, C-5p), 24.0 (C-4p). Anal. Calcd. for $C_{38}H_{44}N_2O_4S_2$ (656,90): C, 69.48; H, 6.75; N, 4.26. Found: C, 69.55; H, 6.76; N, 4.27.

Compounds **2** were obtained following the general procedure for the synthesis of compounds **11**. The mixture was reacted until the disappearance of compounds **12** by TLC (*n*-Hexane/Ethyl Acetate 40:60). The solvents were removed under reduced pressure and the reaction crudes purified by column chromatography (*n*-Hexane/Ethyl Acetate 40:60). The desired products **2** were obtained as white solids.

Compound 2a

Yield: 55%. White solid. R_f 0.12 (*n*-Hexane/Ethyl Acetate 40:60). δ H (500 MHz; CDCl₃) 7.55 and 7,33 (8H, AA'XX' system, J_{orto} =8.0, 2x H-2', 2x H-3', 2x H-5', 2x H-6'), 7.41 (4H, s, H-2, H-3, H-5, H-6), 7.00 and 6.93 (4H, two s, 2x H-3", 2x H-6"), 5.26 (t, J_{2", 3}" = J_{3", 4}" = 9.0, 2x H-3""), 5.11 (2H, t, J_{3", 4}" = J_{4", 5}" = 9.0, 2x H-4'''), 5.04 (2H, t, $J_{1''', 2'''} = J_{2''', 3'''} = 9.0$, 2x H-2'''), 4.90 (2H, d, $J_{1''', 2'''} = 9$, 2x H-1'''), 4.64 (4H, s, 2x CH₂C≡), 4.48-4.15 (10H, m, 2x SCH₂, 2x -CHCH₂Pi, 2x H₂-6^{'''}), 3.87 (12H, s, 4x OCH₃), 3.76 (2H, m, 2x H-5"), 3.54 and 2.90 (4H, m AB of an ABX system, 2x -CHCH₂Pi), 2.49 (8H, m, 2x H₂-2p, 2x H₂-6p), 2.07, 2.04, 2.02 and 2.00 (24H, four s, 8x CH₃CO), 1.57 (8H, m, 2x H₂-3p, 2x H₂-5p), 1.42 (4H, m, 2 x H₂-4p). δC (125 MHz; CDCl₃) 170.7, 170.3, 169.5 and 169.4 (4 x -CO), 154.1 and 154.0 (q), 132.1 and 129.9 (C-2', C-3', C-5', C-6'), 131.6 (C-2, C-3, C-5, C-6), 128.7, 128.3 and 124.1 (q), 115.7 and 115.6 (C-3", C-5"), 114.6 and 112.4 (q), 98.2 (C-1""), 94.3, 89.1, 86,7 and 83.3 (q), 72.8 (C-3"), 71.9 (C-5"), 71.0 (C-2"), 68.1 (C-4"), 65.3 (-CHCH₂Pi), 61.8 (C-6''') 59.0 and 58.9 (SCH₂, -CHCH₂Pi), 57.1 (-CH₂C=), 56.5 and 56.3 (-OCH₃), 54.8 (C-2p, C-6p), 25.5 (C-3p, C-5p), 23.6 (C-4p), 20.8, 20.7, 20.6 and 20.5 (CH₃CO). Anal. Calcd. for C₈₈H₁₀₀N₂O₂₈S₂ (1697,86): C, 62.25; H, 5.94; N, 1.65. Found: C, 62.31; H, 5.93; N, 1.65.

Compound 2b

Yield: 62%. White solid. R_f 0.13 (*n*-Hexane/Ethyl Acetate 40:60). δ H (500 MHz; CDCl₃) δ 7.67-7.28 (8H, m, 2 x H-2', 2x H-4', 2x H-5', 2x H-6'), 7.45 (4H, s, H-2, H-3, H-5, H-6), 7.01 and 6.94 (4H, two s, 2x H-3", 2x H-6"), 5.27 (2H, t, $J_{2''', 3'''} = J_{3''', 3''}$ ₄^{'''} =9.0, 2x H-3^{'''}), 5.12 (2H, t, J_{3^{'''}, 4^{'''}} = J_{4^{'''}, 5^{'''}} =9.0, 2x H-4^{'''}), 5.05 (2H, br t, 2x H-2""), 4.91 (2H, d, J₁" 2" =8.0, 2x H-1""), 4.65 (4H, s, 2x CH₂C≡), 4.53-4.12 (10H, m, 2x SCH₂, 2x -CHCH₂Pi, 2x H₂-6""), 3.87 (12H, s, 4x OCH₃), 3.77 (2H, m, 2x H-5""), 3.57 and 3.1 (4H, m AB of an ABX system, 2x -CHCH₂Pi), 2.53 (8H, m, 2x H₂-2p, 2x H₂-6p), 2.08, 2.05, 2.03 and 2.01 (24H, four s, 8x CH₃CO), 1.66 (8H, m, 2x H₂-3p, 2x H₂-5p), 1.42 (4H, m, 4H, 2x H₂-4p). δC (125 MHz; CDCl₃) 170.8, 170.4, 169.6 and 169.5 (4 x -CO), 154.1 and 153.9 (q), 132.3, 131.8, 128.7 and 128.5 (C-2', C-3', C-5', C-6', C-2, C-3, C-5, C-6), 130.6, 128.4 and 124.3 (g), 115.9 and 115.8 (C-3", C-6"), 113.6 and 112.6 (q), 98.2 (C-1""), 94.3, 89.3, 86,6 and 83.5 (q), 72. 9 (C-3""), 72.0 (C-5""), 71.3 (C-2""), 68.4 (C-4""), 62.0 (-CHCH₂Pi), 61.9 (C-6""), 59.9 (SCH₂), 57.1 (CH₂C≡), 56.6 and 56.5 (-OCH₃), 55.1 (C-2p, C-6p), 46.1 (-CHCH₂Pi), 29.6 (C-3p, C-5p), 23.5 (C-4p), 21,1 and 20.1 (CH₃CO). Anal. Calcd. for C₈₈H₁₀₀N₂O₂₈S₂ (1697,86): C, 62.25; H, 5.94; N, 1.65. Found: C, 62.49; H, 5.92; N, 1.65.

Figure S2. ¹H-NMR of compound 7a

Figure S3. ¹³C-NMR of compound 7a

Figure S4. ¹H-NMR of compound 7b

Figure S5. ¹³C-NMR of compound 7b

Figure S7. ¹³C-NMR of compound **11a**

Figure S8. ¹H-NMR of compound **11b**

Figure S9. ¹³C-NMR of compound **11b**

Figure S11. ¹³C-NMR of compound 1a

Figure S12. ¹H-NMR of compound 12a

Figure S13. ¹³C-NMR of compound **12a**

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 fl (ppm)

Figure S14. ¹H-NMR of compound 12b

Figure S17. 13C-NMR of compound 2a

Figure S19. ¹³C-NMR of compound 2b

Solubility tests

- Solubility in water
- 1a: 2mM; 1b: 1.5mM; deacetylated 2a: 0.8mM; deacetylated 2b: 0.7mM
- Solubility in 1-octanol
 1a: 5mM; 1b: 2.3mM; deacetylated 2a: 1.2mM; deacetylated 2b: 1.2mM

Figure S20. Solutions of 1a, in water (vial a), in 1-octanol (vial c) and in both the solvents (vial b).

References

[1] G. B. Giovenzana, L. Lay, D. Monti, G. Palmisano and L. Panza, Synthesis of carboranyl derivatives of alkynyl glycosides as potential BNCT agents, *Tetrahedron*, 1999, **55**, 14123–14136.