Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Experimental Supporting Information

Synthesis and Biological Evaluation of N-Alkyl Sulfonamides Derived from Polycyclic Hydrocarbon Scaffolds Using a Nitrogen-Centered Radical Approach

Megan D. Hopkins, Ryan C. Witt, Ann Marie E. Flusche, John E. Philo, Garett L. Ozmer, Gordon H. Purser, Robert J. Sheaff*, and Angus A. Lamar*

Department of Chemistry and Biochemistry, The University of Tulsa, 800 S. Tucker Dr., Tulsa, OK 74104, USA.

robert-sheaff@utulsa.edu

angus-lamar@utulsa.edu

Index

Construction of white LED chamber			
Figure S1 - Luciferase control experiments			
Table S1 - CellTiter-Glo assays of 2-18			
Figure S2 – Calibration curve for LogP determination			
¹ H and ¹³ C NMR Spectra of Products 2-23	(Figures S3 through S46)	S-4	

Construction of LED Chambers:

Visible-light photocatalytic reactions were set up in a light bath which was constructed in our laboratory by coiling LED strips around an evaporating dish according to our previous reports:¹⁻⁴

Waterproof 5050 LED strips (12V with power adapter, 18 LEDs/foot, approximately 0.24 Watt per LED – 72 Watt per strip) are coiled around the interior of evaporating dish (170mm x 90mm) using the adhesive backing of the LED strip. A Petri dish (150 x 20 mm) is placed upside down at the bottom of the dish to serve as an elevated glass "floor" to ensure that a round-bottom flask receives maximum light exposure. The ambient temperature inside the dish is monitored and is generally maintained (air-cooled or fan) between 19-22 °C (the temperature has not been observed above 25 °C).

Figure S1 - Control experiments performed at 5 h exposure of 50 μ M of compounds using CellTiter-Glo assay with exogenous ATP added. No inhibition of the luciferase-producing assay itself was observed by the compounds (**2-23**). TU-100,⁵ a known inhibitor of the luciferase assay, was used as a positive control.

	Cell Lines (Values are shown as Percent of DMSO Control)						
Compounds	HDF	H293	HeLa	PC3	BxPC3		
DMSO	100 ± 3.4%	100.0 ± 4.7%	100.0 ± 10.8%	100.0 ± 1.0%	100.0 ± 8.2%		
2	54.3 ± 2.2%	80.9 ± 2.8%	57.6 ± 21.1%	55.3 ± 1.3%	55.5 ± 3.1%		
3	10.1 ± 0.1%	67.9 ± 0.2%	27.0 ± 2.4%	46.4 ± 1.7%	38.0 ± 1.8%		
4	97.7 ± 0.3%	86.0 ± 3.9%	92.8 ± 4.6%	73.9 ± 7.3%	90.5 ± 0.7%		
5	20.8 ± 1.7%	76.0 ± 1.5%	40.5 ± 0.4%	43.9 ± 9.0%	52.3 ± 0.2%		
6	39.8 ± 3.9%	63.6 ± 3.0%	54.9 ± 2.7%	41.7 ± 0.7%	46.5 ± 4.1%		
7	67.8 ± 11.7%	94.0 ± 1.8%	79.9 ± 0.0%	67.5 ± 4.2%	68.7 ± 1.3%		
8	25.6 ± 12.8%	61.1 ± 0.6%	46.8 ± 9.3%	74.9 ± 8.4%	56.7 ± 8.7%		
9	1.1 ± 0.1%	41.0 ± 4.9%	4.6 ± 0.6%	17.5 ± 7.8%	1.9 ± 1.2%		
10	20.6 ± 1.1%	80.0 ± 4.4%	40.4 ± 10.8%	37.1 ± 2.4%	50.8 ± 0.4%		
11	77.0 ± 1.6%	68.1 ± 1.3%	71.1 ± 9.7%	53.9 ± 3.3%	75.5 ± 2.2%		
12	61.0 ± 11.1%	82.3 ± 11.6%	59.2 ± 3.2%	63.2 ± 5.0%	69.5 ± 3.9%		
13	107.3 ± 1.1%	77.4 ± 2.4%	81.9 ± 4.8%	76.8 ± 4.9%	80.8 ± 2.9%		
14	86.6 ± 2.4%	76.0 ± 6.8%	81.8 ± 4.7%	47.3 ± 8.3%	76.7 ± 6.7%		
15	13.4 ± 0.5%	46.7 ± 7.0%	22.1 ± 3.0%	44.5 ± 6.1%	42.5 ± 0.5%		
16	19.2 ± 0.5%	51.9 ± 1.9%	15.8 ± 0.6%	9.9 ± 0.5%	7.9 ± 0.2%		
17	1.2 ± 0.1%	7.8 ± 4.4%	1.5 ± 0.3%	5.6 ± 1.6%	1.0 ± 0.3%		
18	58.3 ± 1.6%	67.0 ± 2.3%	79.5 ± 14.2%	50.1 ± 1.3%	48.4 ± 2.0%		

Table S1. Cell viability results from screening of compounds **2-18** (50 μ M), 24 h incubation, CellTiter-Glo assay (Promega). Compound "hits" (<50% percent of DMSO control) are shown in red.

Compound	Tr	T _o (ethyl acetate)	k	Log(k)	Log(P)
Nitrobenzene	4.528	3.809	0.1888	-0.7240	1.9
Toluene	6.93	3.814	0.8170	-0.0878	2.7
Naphthalene	8.466	3.827	1.2122	0.0836	3.6
Biphenyl	11.637	3.83	2.0384	0.3093	4.0
Bibenzyl	18.179	3.831	3.7452	0.5735	4.8
DDT	41.243	3.827	9.7768	0.9902	6.5

Figure S2. Calibration curve and raw data for calculation of LogP values of known calibration compounds. This data was obtained by our research group and reported previously.⁶

Product Characterization:

All products were isolated according to general procedure unless otherwise noted and display the characterizational data shown below.

Figure S3. ¹H NMR of Product **2**.

Figure S5. ¹H NMR of Product 3.

Figure S6. ¹³C NMR of Product 3.

Figure S7. ¹H NMR of Product **4**.

Figure S8. ¹³C NMR of Product 4.

Figure S9. ¹H NMR of Product **5**.

Figure S10. ¹³C NMR of Product 5.

Figure S11. ¹H NMR of Product 6.

Figure S12. ¹³C NMR of Product 6.

Figure S13. ¹H NMR of Product **7**.

Figure S14. ¹³C NMR of Product 7.

Figure S15. ¹H NMR of Product **8**.

Figure S16. ¹³C NMR of Product 8.

Figure S17. ¹H NMR of Product 9.

Figure S18. ¹³C NMR of Product 9.

Figure S19. ¹H NMR of Product 10.

Figure S20. ¹³C NMR of Product 10.

Figure S21. ¹H NMR of Product 11.

Figure S22. ¹³C NMR of Product **11**.

Figure S23. ¹H NMR of Product **12**.

width: 24509.80 Hz = 243.8502 ppm = 0.384468 Hz/pt number of scans: 17000

LB: 0.500 GF: 0.0000 Hz/cm: 980.392 ppm/cm: 9.75401

Figure S24. ¹³C NMR of Product 12.

Figure S25. ¹H NMR of Product 13.

Figure S26. ¹³C NMR of Product 13.

Figure S27. ¹H NMR of Product 14.

Figure S28. ¹H NMR and ¹³C NMR of Product 14.

Figure S29. ¹H NMR of Product 15.

time domain size: 63750 points

width: 24509.80 Hz = 243.8502 ppm = 0.384468 Hz/pt number of scans: 1360

Processed size: 65536 complex points LB: 0.500 GF: 0.0000 Hz/cm: 980.392 ppm/cm: 9.75401

Figure S30. ¹³C NMR of Product 15.

Figure S31. ¹H NMR of Product 16.

Figure S32. ¹³C NMR of Product 16.

Figure S33. ¹H NMR of Product **17**.

Figure S34. ¹³C NMR of Product **17**.

Figure S35. ¹H NMR of Product **18**.

Figure S36. ¹³C NMR of Product **18**.

Figure S37. ¹H NMR of Product 19.

width: 24509.80 Hz = 243.8582 ppm = 0.384468 Hz/pt number of scans: 750

LB: 0.500 GF: 0.0000 Hz/cm: 980.392 ppm/cm: 9.75433

Figure S38. ¹³C NMR of Product 19.

Figure S39. ¹H NMR of Product 20.

Figure S40. ¹³C NMR of Product 20.

Figure S41. ¹H NMR of Product 21.

time domain size: 63750 points width: 24509.80 Hz = 243.8582 ppm = 0.384468 Hz/pt number of scans: 750

LB: 0.500 GF: 0.0000 Hz/cm: 980.392 ppm/cm: 9.75433

Figure S42. ¹³C NMR of Product 21.

Figure S43. ¹H NMR of Product 22.

file: ...R Data\NMR Fids\RCW-75-13C.fid\fid block# 1 expt: "s2pul" transmitter freq.: 100.508439 MHz time domain size: 63750 points width: 24509.80 Hz = 243.8582 ppm = 0.384468 Hz/pt number of scans: 750 freq. of 0 ppm: 100.497881 MHz processed size: 65536 complex points LB: 0.500 GF: 0.0000 Hz/cm: 980.392 ppm/cm: 9.75433

Figure S44. ¹³C NMR of Product 22.

Figure S45. ¹H NMR of Product 23.

Figure S46. ¹³C NMR of Product 23.

References:

1. Rogers, D. A.; Brown, R. G.; Brandeburg, Z. C.; Ko, E. Y.; Hopkins, M. D.; LeBlanc, G.; Lamar, A. A., Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using N-Bromosuccinimide. *ACS Omega* **2018**, *3* (10), 12868-12877.

2. Rogers, D. A.; Bensalah, A. T.; Espinosa, A. T.; Hoerr, J. L.; Refai, F. H.; Pitzel, A. K.; Alvarado, J. J.; Lamar, A. A., Amplification of Trichloroisocyanuric Acid (TCCA) Reactivity for Chlorination of Arenes and Heteroarenes via Catalytic Organic Dye Activation. *Organic Letters* **2019**, *21* (11), 4229-4233.

3. Rogers, D. A.; Gallegos, J. M.; Hopkins, M. D.; Lignieres, A. A.; Pitzel, A. K.; Lamar, A. A., Visible-light photocatalytic activation of N-chlorosuccinimide by organic dyes for the chlorination of arenes and heteroarenes. *Tetrahedron* **2019**, *75* (36), 130498.

4. Rogers, D. A.; Hopkins, M. D.; Rajagopal, N.; Varshney, D.; Howard, H. A.; LeBlanc, G.; Lamar, A. A., U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics. *ACS Omega* **2020**, *5* (13), 7693-7704.

5. Bedford, R.; LePage, D.; Hoffmann, R.; Kennedy, S.; Gutschenritter, T.; Bull, L.; Sujijantarat, N.; DiCesare, J. C.; Sheaff, R. J., Luciferase inhibition by a novel naphthoquinone. *J. Photochem. Photobiol. B* **2012**, *107*, 55-64.

6. Hopkins, M. D.; Ozmer, G. L.; Witt, R. C.; Brandeburg, Z. C.; Rogers, D. A.; Keating, C. E.; Petcoff, P. L.; Sheaff, R. J.; Lamar, A. A., PhI(OAc)₂ and iodine-mediated synthesis of N-alkyl sulfonamides derived from polycyclic aromatic hydrocarbon scaffolds and determination of their antibacterial and cytotoxic activities. *Organic & Biomolecular Chemistry* **2021**, *19* (5), 1133-1144.