Experimental Supporting Information

Synthesis and Biological Evaluation of N-Alkyl Sulfonamides Derived from Polycyclic Hydrocarbon Scaffolds Using a Nitrogen-Centered Radical Approach

Megan D. Hopkins, Ryan C. Witt, Ann Marie E. Flusche, John E. Philo, Garett L. Ozmer, Gordon H. Purser, Robert J. Sheaff*, and Angus A. Lamar*

Department of Chemistry and Biochemistry, The University of Tulsa, 800 S. Tucker Dr., Tulsa, OK 74104, USA. robert-sheaff@utulsa.edu
angus-lamar@utulsa.edu
Index

Construction of white LED chamber

Figure S1 - Luciferase control experimentsS-2

Table S1 - CellTiter-Glo assays of 2-18 S-2
Figure S2 - Calibration curve for LogP determination S-3
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products 2-23 \quad (Figures S3 through S46) S-4

Construction of LED Chambers:

Visible-light photocatalytic reactions were set up in a light bath which was constructed in our laboratory by coiling LED strips around an evaporating dish according to our previous reports: ${ }^{1-4}$

Waterproof 5050 LED strips (12 V with power adapter, 18 LEDs/foot, approximately 0.24 Watt per LED - 72 Watt per strip) are coiled around the interior of evaporating dish ($170 \mathrm{~mm} \times 90 \mathrm{~mm}$) using the adhesive backing of the LED strip. A Petri dish ($150 \times 20 \mathrm{~mm}$) is placed upside down at the bottom of the dish to serve as an elevated glass "floor" to ensure that a round-bottom flask receives maximum light exposure. The ambient temperature inside the dish is monitored and is generally maintained (air-cooled or fan) between $19-22^{\circ} \mathrm{C}$ (the temperature has not been observed above $25^{\circ} \mathrm{C}$).

Figure S1 - Control experiments performed at 5 h exposure of $50 \mu \mathrm{M}$ of compounds using CellTiter-Glo assay with exogenous ATP added. No inhibition of the luciferase-producing assay itself was observed by the compounds (2-23). TU$100,{ }^{5}$ a known inhibitor of the luciferase assay, was used as a positive control.

	Cell Lines (Values are shown as Percent of DMSO Control)				
Compounds	HDF	H293	HeLa	PC3	BxPC3
DMSO	$100 \pm 3.4 \%$	$100.0 \pm 4.7 \%$	$100.0 \pm 10.8 \%$	$100.0 \pm 1.0 \%$	$100.0 \pm 8.2 \%$
$\mathbf{2}$	$54.3 \pm 2.2 \%$	$80.9 \pm 2.8 \%$	$57.6 \pm 21.1 \%$	$55.3 \pm 1.3 \%$	$55.5 \pm 3.1 \%$
$\mathbf{3}$	$10.1 \pm 0.1 \%$	$67.9 \pm 0.2 \%$	$27.0 \pm 2.4 \%$	$46.4 \pm 1.7 \%$	$38.0 \pm 1.8 \%$
$\mathbf{4}$	$97.7 \pm 0.3 \%$	$86.0 \pm 3.9 \%$	$92.8 \pm 4.6 \%$	$73.9 \pm 7.3 \%$	$90.5 \pm 0.7 \%$
$\mathbf{5}$	$20.8 \pm 1.7 \%$	$76.0 \pm 1.5 \%$	$40.5 \pm 0.4 \%$	$43.9 \pm 9.0 \%$	$52.3 \pm 0.2 \%$
$\mathbf{6}$	$39.8 \pm 3.9 \%$	$63.6 \pm 3.0 \%$	$54.9 \pm 2.7 \%$	$41.7 \pm 0.7 \%$	$46.5 \pm 4.1 \%$
$\mathbf{7}$	$67.8 \pm 11.7 \%$	$94.0 \pm 1.8 \%$	$79.9 \pm 0.0 \%$	$67.5 \pm 4.2 \%$	$68.7 \pm 1.3 \%$
$\mathbf{8}$	$25.6 \pm 12.8 \%$	$61.1 \pm 0.6 \%$	$46.8 \pm 9.3 \%$	$74.9 \pm 8.4 \%$	$56.7 \pm 8.7 \%$
$\mathbf{9}$	$1.1 \pm 0.1 \%$	$41.0 \pm 4.9 \%$	$4.6 \pm 0.6 \%$	$17.5 \pm 7.8 \%$	$1.9 \pm 1.2 \%$
$\mathbf{1 0}$	$20.6 \pm 1.1 \%$	$80.0 \pm 4.4 \%$	$40.4 \pm 10.8 \%$	$37.1 \pm 2.4 \%$	$50.8 \pm 0.4 \%$
$\mathbf{1 1}$	$77.0 \pm 1.6 \%$	$68.1 \pm 1.3 \%$	$71.1 \pm 9.7 \%$	$53.9 \pm 3.3 \%$	$75.5 \pm 2.2 \%$
$\mathbf{1 2}$	$61.0 \pm 11.1 \%$	$82.3 \pm 11.6 \%$	$59.2 \pm 3.2 \%$	$63.2 \pm 5.0 \%$	$69.5 \pm 3.9 \%$
$\mathbf{1 3}$	$107.3 \pm 1.1 \%$	$77.4 \pm 2.4 \%$	$81.9 \pm 4.8 \%$	$76.8 \pm 4.9 \%$	$80.8 \pm 2.9 \%$
$\mathbf{1 4}$	$86.6 \pm 2.4 \%$	$76.0 \pm 6.8 \%$	$81.8 \pm 4.7 \%$	$47.3 \pm 8.3 \%$	$76.7 \pm 6.7 \%$
$\mathbf{1 5}$	$13.4 \pm 0.5 \%$	$46.7 \pm 7.0 \%$	$22.1 \pm 3.0 \%$	$44.5 \pm 6.1 \%$	$42.5 \pm 0.5 \%$
$\mathbf{1 6}$	$19.2 \pm 0.5 \%$	$51.9 \pm 1.9 \%$	$15.8 \pm 0.6 \%$	$9.9 \pm 0.5 \%$	$7.9 \pm 0.2 \%$
$\mathbf{1 7}$	$1.2 \pm 0.1 \%$	$7.8 \pm 4.4 \%$	$1.5 \pm 0.3 \%$	$5.6 \pm 1.6 \%$	$1.0 \pm 0.3 \%$
$\mathbf{1 8}$	$58.3 \pm 1.6 \%$	$67.0 \pm 2.3 \%$	$79.5 \pm 14.2 \%$	$50.1 \pm 1.3 \%$	$48.4 \pm 2.0 \%$

Table S1. Cell viability results from screening of compounds 2-18 ($50 \mu \mathrm{M}$), 24 h incubation, CellTiter-Glo assay (Promega). Compound "hits" ($<50 \%$ percent of DMSO control) are shown in red.

Compound	T_{r}	T_{o} (ethyl acetate)	k	$\log (\mathrm{k})$	$\log (\mathrm{P})$
Nitrobenzene	4.528	3.809	0.1888	-0.7240	1.9
Toluene	6.93	3.814	0.8170	-0.0878	2.7
Naphthalene	8.466	3.827	1.2122	0.0836	3.6
Biphenyl	11.637	3.83	2.0384	0.3093	4.0
Bibenzyl	18.179	3.831	3.7452	0.5735	4.8
DDT	41.243	3.827	9.7768	0.9902	6.5

Figure S2. Calibration curve and raw data for calculation of LogP values of known calibration compounds. This data was obtained by our research group and reported previously. ${ }^{6}$

Product Characterization:

All products were isolated according to general procedure unless otherwise noted and display the characterizational data shown below.

Figure S3. ${ }^{1} \mathrm{H}$ NMR of Product 2.

Figure S4. ${ }^{13} \mathrm{C}$ NMR of Product 2.

Figure S5. ${ }^{1} \mathrm{H}$ NMR of Product 3.

Figure S6. ${ }^{13} \mathrm{C}$ NMR of Product 3.

Figure S7. ${ }^{1} \mathrm{H}$ NMR of Product 4.

Figure S8. ${ }^{13} \mathrm{C}$ NMR of Product 4.

Figure S9. ${ }^{1} \mathrm{H}$ NMR of Product 5.

Figure S10. ${ }^{13} \mathrm{C}$ NMR of Product 5.

Figure S11. ${ }^{1} \mathrm{H}$ NMR of Product 6.

Figure S12. ${ }^{13} \mathrm{C}$ NMR of Product 6.

Figure S13. ${ }^{1} \mathrm{H}$ NMR of Product 7.

Figure S14. ${ }^{13} \mathrm{C}$ NMR of Product 7 .

Figure S15. ${ }^{1} \mathrm{H}$ NMR of Product 8.

Figure S16. ${ }^{13} \mathrm{C}$ NMR of Product 8.

Figure S17. ${ }^{1} \mathrm{H}$ NMR of Product 9.

Figure S18. ${ }^{13} \mathrm{C}$ NMR of Product 9 .

Figure S19. ${ }^{1} \mathrm{H}$ NMR of Product 10.

Figure S21. ${ }^{1} \mathrm{H}$ NMR of Product 11.

file: ...antane, 2-FPh $\backslash \mathrm{MH}-\mathrm{n} 8-51-13 \mathrm{C}$.fid $\backslash \mathrm{fid}$ block\# 1 expt: "s2pul"
transmitter freq.: 100.511715 MHz
time domain size: 63750 points
width: $24509.80 \mathrm{~Hz}=243.8502 \mathrm{ppm}=0.384468 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 17500
freq. of $0 \mathrm{ppm}: 100.501162 \mathrm{MHz}$
processed size: 65536 complex points
LB: 0.500 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 980.392 \mathrm{ppm} / \mathrm{cm}: 9.75401$

Figure S22. ${ }^{13} \mathrm{C}$ NMR of Product 11.

Figure S23. ${ }^{1} \mathrm{H}$ NMR of Product 12.

Figure S24. ${ }^{13} \mathrm{C}$ NMR of Product 12.

Figure S25. ${ }^{1} \mathrm{H}$ NMR of Product 13.

Figure S27. ${ }^{1} \mathrm{H}$ NMR of Product 14.

file: ...ne, 2,4-diFPh\MH-n9-07-13C.fid\fid block\# 1 expt: "s2pul" transmitter freq.: 100.511715 MHz
time domain size: 63750 points
width: $24509.80 \mathrm{~Hz}=243.8502 \mathrm{ppm}=0.384468 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 2448
freq. of 0 ppm: 100.501163 MHz
processed size: 65536 complex points
LB: 0.500 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 980.392 \mathrm{ppm} / \mathrm{cm}: 9.75401$

Figure S28. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of Product 14.

Figure S29. ${ }^{1} \mathrm{H}$ NMR of Product 15.

Figure S30. ${ }^{13} \mathrm{C}$ NMR of Product 15.

Figure S31. ${ }^{1} \mathrm{H}$ NMR of Product 16.

Figure S32. ${ }^{13} \mathrm{C}$ NMR of Product 16.

Figure S33. ${ }^{1} \mathrm{H}$ NMR of Product 17.

file: ...ntane, 4-ClPh $\backslash M H-n 9-02-13 C . f i d \backslash f i d ~ b l o c k \# 1 ~ e x p t: ~ " s 2 p u l " ~$ transmitter freq.: 100.511715 MHz
time domain size: 63750 points
width: $24509.80 \mathrm{~Hz}=243.8502 \mathrm{ppm}=0.384468 \mathrm{~Hz} / \mathrm{pt}$
number of scans: 15000
freq. of $0 \mathrm{ppm}: 100.501162 \mathrm{MHz}$
processed size: 65536 complex points
LB: 0.500 GF: 0.0000
$\mathrm{Hz} / \mathrm{cm}: 980.392 \mathrm{ppm} / \mathrm{cm}: 9.75401$

Figure S34. ${ }^{13} \mathrm{C}$ NMR of Product 17.

Figure S35. ${ }^{1} \mathrm{H}$ NMR of Product 18.

Figure S36. ${ }^{13} \mathrm{C}$ NMR of Product 18.

Figure S37. ${ }^{1} \mathrm{H}$ NMR of Product 19.

Figure S38. ${ }^{13} \mathrm{C}$ NMR of Product 19.

Figure S39. ${ }^{1} \mathrm{H}$ NMR of Product 20.

Figure S40. ${ }^{13} \mathrm{C}$ NMR of Product 20.

Figure S41. ${ }^{1} \mathrm{H}$ NMR of Product 21.

Figure S42. ${ }^{13} \mathrm{C}$ NMR of Product 21.

Figure S43. ${ }^{1} \mathrm{H}$ NMR of Product 22.

Figure S44. ${ }^{13} \mathrm{C}$ NMR of Product 22.

Figure S45. ${ }^{1} \mathrm{H}$ NMR of Product 23.

Figure S46. ${ }^{13} \mathrm{C}$ NMR of Product 23.

References:

1. Rogers, D. A.; Brown, R. G.; Brandeburg, Z. C.; Ko, E. Y.; Hopkins, M. D.; LeBlanc, G.; Lamar, A. A., Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using N-Bromosuccinimide. ACS Omega 2018, 3 (10), 12868-12877.
2. Rogers, D. A.; Bensalah, A. T.; Espinosa, A. T.; Hoerr, J. L.; Refai, F. H.; Pitzel, A. K.; Alvarado, J. J.; Lamar, A. A., Amplification of Trichloroisocyanuric Acid (TCCA) Reactivity for Chlorination of Arenes and Heteroarenes via Catalytic Organic Dye Activation. Organic Letters 2019, 21 (11), 4229-4233.
3. Rogers, D. A.; Gallegos, J. M.; Hopkins, M. D.; Lignieres, A. A.; Pitzel, A. K.; Lamar, A. A., Visible-light photocatalytic activation of N -chlorosuccinimide by organic dyes for the chlorination of arenes and heteroarenes. Tetrahedron 2019, 75 (36), 130498.
4. Rogers, D. A.; Hopkins, M. D.; Rajagopal, N.; Varshney, D.; Howard, H. A.; LeBlanc, G.; Lamar, A. A., U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics. ACS Omega 2020, 5 (13), 7693-7704.
5. Bedford, R.; LePage, D.; Hoffmann, R.; Kennedy, S.; Gutschenritter, T.; Bull, L.; Sujijantarat, N.; DiCesare, J. C.; Sheaff, R. J., Luciferase inhibition by a novel naphthoquinone. J. Photochem. Photobiol. B 2012, 107, 55-64.
6. Hopkins, M. D.; Ozmer, G. L.; Witt, R. C.; Brandeburg, Z. C.; Rogers, D. A.; Keating, C. E.; Petcoff, P. L.; Sheaff, R. J.; Lamar, A. A., $\mathrm{Phl}(\mathrm{OAc})_{2}$ and iodine-mediated synthesis of N -alkyl sulfonamides derived from polycyclic aromatic hydrocarbon scaffolds and determination of their antibacterial and cytotoxic activities. Organic \& Biomolecular Chemistry 2021, 19 (5), 1133-1144.
