Supporting Information

Efficient Catalyst-Free Direct Amidation of Non-Activated Carboxylic Acids from Carbodiimides

Mehmet Mart^a, Janusz Jurczak^a*, Idris Karakaya^b*

^aInstitute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka, 44/52, 01-224, Warsaw, Poland
^bDepartment of Chemistry, College of Basic Sciences, Gebze Technical University, 41400 Gebze, Turkey
Email: karakaya@gtu.edu.tr; jjurczak@icho.edu.pl

General considerations

All substrates were purchased commercially and used without purification. NMR measurements were carried out on a 400 MHz Bruker or 500 or 600 MHz Varian Mercury spectrometer. High-resolution mass spectra were performed using a Mariner mass spectrometry device from PerSeptive Biosystem. Thin-layer chromatography (TLC) was carried out using Merck silica gel 60 F254 precoated aluminum-backed plates (0.25 mm). Flash chromatography was applied on silica gel (230–400 mesh).

Synthesis of N, N'-diphenylcarbodiimide $(2c)^1$

A 100 mL round bottom flask was filled with diphenylthiourea (2.19 mmol, 500 mg) and AgNO₃ (1.05 equiv., 2.30 mmol, 390 mg). Then, 30 mL of the mixed solvent (ACN/DCM, 1:1) were added and the reaction mixture cooled in a dry ice bath. Subsequently, Et₃N (1.05 equiv., 2.30 mmol, 0.32 mL) were added. The resulted mixture was stirred for 16 h at ambient temperature. Afterwards, the mixed solvent was removed, the desired product was collected by column chromatography purification. Obtained as a yellowish liquid (212 mg, 50%), ¹H NMR (DMSO, 400 MHz): δ 7.44 – 7.34 (m, 4H), 7.31 – 7.18 (m, 6H).

General procedure of amidation

$$R' \rightarrow OH + R_N = C^{=N}R \xrightarrow{\text{pyrrolidine (2.0 equiv.)}} DMSO, 80 °C, 16 h R' \xrightarrow{O} R' \xrightarrow{O} R'$$

A 100 mL round-bottom flask was filled with acid (0.5 mmol) and carbodiimide (0.6 mmol). Then, 4 mL of the DMSO was added. The resulted solution was stirred for 2 h at 80 °C. Afterwards, pyrrolidine (1.0 mmol) was added. The resulted solution was stirred for 16 h at 80 °C. Subsequently, 20 mL of H₂O was added and products were extracted with 3x10 mL DCM, the desired product was collected by column chromatography purification.

N-Cyclohexyl-2-(6-methoxynaphthalen-2-yl)propanamide (3a): Obtained as a white solid (143 mg, 92%), mp = 104-106 °C, ¹H NMR (CDCl₃, 500 MHz): δ 7.71 – 7.69 (m, 2H), 7.65 (s, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 8.9 Hz, 1H), 7.12 (s, 1H), 5.27 (d, *J* = 6.1 Hz, 1H), 3.91 (s, 3H), 3.77 – 3.70 (m, 1H), 3.64 (q, *J* = 6.8 Hz, 1H), 1.90 – 1.75 (m, 3H), 1.57 (d, *J* = 7.1 Hz, 3H), 1.34 – 1.27 (m, 3H), 1.07 – 0.88 (m, 4H); ¹³C NMR (101 MHz, CDCl₃): δ 173.32, 157.73, 136.84, 133.70, 129.23, 129.01, 127.45, 126.31, 126.04, 119.06, 105.71, 55.32, 48.21, 47.15, 32.97, 32.90, 25.47, 24.80, 24.73, 18.64; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₆NO₂, 312.1964; found 312.1969.

N-Cyclohexyl-2-(*p*-tolyl)acetamide $(3b)^2$: Obtained as a white solid (101 mg, 88%), ¹H NMR (CDCl₃, 400 MHz): δ 7.13 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 5.30 (s, 1H), 3.77 – 3.68 (m, 1H), 3.48 (s, 2H), 2.32 (s, 3H), 1.84 – 1.76 (m, 2H), 1.63 – 1.50 (m, 3H), 1.33 – 1.27 (m, 2H), 1.10 – 1.04 (m, 1H), 1.02 – 0.96 (m, 2H).

N-Cyclohexyl-2-phenylbutanamide (3c)³: Obtained as a white solid (98 mg, 80%), ¹H NMR (CDCl₃, 400 MHz): δ 7.35 – 7.23 (m, 5H), 5.27 (d, *J* = 5.7 Hz, 1H), 3.79 – 3.70 (m, 1H), 3.18 (t, *J* = 7.6 Hz, 1H), 2.24 – 2.13 (m, 1H), 1.92 – 1.84 (m, 1H), 1.81 – 1.72 (m, 2H), 1.65 – 1.54 (m, 3H), 1.39 – 1.25 (m, 2H), 1.16 – 0.94 (m, 3H), 0.89 (t, *J* = 7.4 Hz, 3H).

N-Isopropyl-2-(6-methoxynaphthalen-2-yl)propanamide (3d): Obtained as a white solid (118 mg, 87%), mp = 133-135 °C, ¹H NMR (CDCl₃, 600 MHz): δ 7.70 (dd, *J* = 8.6, 3.4 Hz, 2H), 7.64 (s, 1H), 7.35 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.15 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.12 (d, *J* = 2.1

Hz, 1H), 5.13 (d, J = 5.1 Hz, 1H), 4.07 – 4.01 (m, 1H), 3.91 (s, 3H), 3.62 (q, J = 7.1 Hz, 1H), 1.57 (d, J = 7.2 Hz, 3H), 1.04 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.32, 157.69, 136.70, 133.65, 129.19, 128.95, 127.46, 126.26, 126.04, 119.07, 105.62, 55.30, 47.11, 41.39, 22.60, 22.53, 18.60; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₂₂NO₂, 294.1470; found 294.1469.

N-Isopropyl-2-(*p*-tolyl)acetamide (3e)⁴: Obtained as a white solid (79 mg, 82%), ¹H NMR (CDCl₃, 400 MHz): δ 7.16 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 5.19 (s, 1H), 4.12 – 4.00 (m, 1H), 3.50 (s, 2H), 2.35 (s, 3H), 1.07 (d, *J* = 6.6 Hz, 6H).

N-Isopropyl-2-phenylbutanamide $(3f)^5$: Obtained as a white solid (79 mg, 77%), ¹H NMR (CDCl₃, 400 MHz): δ 7.35 – 7.23 (m, 5H), 5.27 (s, 1H), 4.09 – 4.01 (m, 1H), 3.17 (t, *J* = 7.6 Hz, 1H), 2.23 – 2.12 (m, 1H), 1.81 – 1.72 (m, 1H), 1.10 (d, *J* = 6.6 Hz, 3H), 1.03 (d, *J* = 6.6 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 3H).

2-(3-Benzoylphenyl)-*N*-cyclohexylpropanamide (**3**g)⁶: Obtained as a white solid (119 mg, 71%), ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, *J* = 7.4 Hz, 2H), 7.73 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.53 – 7.41 (m, 3H), 5.31 (d, *J* = 7.1 Hz, 1H), 3.78 – 3.69 (m, 1H), 3.57 (q, *J* = 7.1 Hz, 1H), 1.89 – 1.79 (m, 2H), 1.67 – 1.57 (m, 3H), 1.53 (d, *J* = 7.1 Hz, 3H), 1.38 – 1.27 (m, 2H), 1.16 – 0.96 (m, 3H).

N-Cyclohexyl-2-(4-isobutylphenyl)propanamide (3h)⁷: Obtained as a white solid (101 mg, 70%), mp = 90-93 °C, ¹H NMR (CDCl₃, 400 MHz): δ 7.18 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.1 Hz, 2H), 5.19 (d, *J* = 6.3 Hz, 1H), 3.81 – 3.66 (m, 1H), 3.49 (q, *J* = 7.2 Hz, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.91 – 1.76 (m, 3H), 1.61 – 1.53 (m, 3H), 1.50 (d, *J* = 7.2 Hz, 3H), 1.38 – 1.26 (m, 2H), 1.15 – 0.96 (m, 3H), 0.90 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.48, 140.55, 138.84, 129.54, 127.29, 47.98, 46.84, 45.01, 32.87, 32.78, 30.15, 25.50, 24.64, 24.60, 22.34, 18.49; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₃₀NO, 288.2327; found 288.2336.

N-Cyclohexyl-2,2-diphenylacetamide (3i)⁸: Obtained as a white solid (98 mg, 67%), ¹H NMR (CDCl₃, 400 MHz): δ 7.35 – 7.25 (m, 10H), 5.44 (s, 1H), 4.90 (s, 1H), 3.93 – 3.77 (m, 1H), 1.89 (d, *J* = 9.3 Hz, 2H), 1.69 – 1.53 (m, 3H), 1.43 – 1.28 (m, 2H), 1.19 – 1.01 (m, 3H).

2-(3-Benzoylphenyl)-*N*-isopropylpropanamide (**3**j)⁹: Obtained as a white solid (115 mg, 78%), ¹H NMR (CDCl₃, 400 MHz): δ 7.82 – 7.77 (m, 2H), 7.73 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.50 – 7.43 (m, 3H), 5.32 (d, *J* = 6.3 Hz, 1H), 4.09 – 4.01 (m, 1H), 3.56 (q, *J* = 7.1 Hz, 1H), 1.52 (d, *J* = 7.1 Hz, 3H), 1.11 (d, *J* = 6.6 Hz, 3H), 1.05 (d, *J* = 6.6 Hz, 3H).

2-(4-Isobutylphenyl)-*N***-isopropylpropanamide** (**3k**)¹⁰**:** Obtained as a white solid (95 mg, 77%), ¹H NMR (CDCl₃, 600 MHz): δ 7.16 (d, *J* = 7.4 Hz, 2H), 7.10 (d, *J* = 7.4 Hz, 2H), 5.08 (s, 1H), 4.04 – 3.99 (m, 1H), 3.46 (q, *J* = 6.8 Hz, 1H), 2.44 (d, *J* = 7.0 Hz, 2H), 1.86 – 1.82 (m, 1H), 1.48 (d, *J* = 6.9 Hz, 3H), 1.05 (d, *J* = 6.2 Hz, 3H), 1.00 (d, *J* = 6.3 Hz, 3H), 0.88 (d, *J* = 6.3 Hz, 6H).

N-Isopropyl-2,2-diphenylacetamide (31)⁸: Obtained as a white solid (79 mg, 62%), ¹H NMR (CDCl₃, 400 MHz): δ 7.38 – 7.30 (m, 4H), 7.26 (d, *J* = 7.3 Hz, 6H), 5.41 (s, 1H), 4.88 (s, 1H), 4.19 – 4.11 (m, 1H), 1.12 (d, *J* = 6.6 Hz, 6H).

N-Cyclohexylpivalamide (3m)¹¹: Obtained as a white solid (62 mg, 68%), ¹H NMR (CDCl₃, 400 MHz): δ 5.44 (s, 1H), 3.78 – 3.69 (m, 1H), 1.94 – 1.83 (m, 2H), 1.74 – 1.55 (m, 3H), 1.43 – 1.30 (m, 2H), 1.17 (s, 9H), 1.12 – 1.08 (m, 3H).

N-Isopropylpivalamide (3n)¹²: Obtained as a white solid (52 mg, 73%), ¹H NMR (CDCl₃, 400 MHz): δ 5.37 (s, 1H), 4.08 – 4.04 (m, 1H), 1.18 (s, 9H), 1.14 (d, *J* = 6.4 Hz, 6H).

N-Cyclohexylcinnamamide (3o)¹³: Obtained as a white solid (70 mg, 61%), ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, *J* = 15.6 Hz, 1H), 7.50 – 7.48 (m, 2H), 7.43 – 7.29 (m, 3H), 6.40 (d, *J* = 15.6 Hz, 1H), 5.67 (d, *J* = 7.1 Hz, 1H), 3.97 – 3.88 (m, 1H), 2.05 – 1.98 (m, 2H), 1.81 – 1.68 (m, 2H), 1.70 – 1.59 (m, 1H), 1.48 – 1.34 (m, 2H), 1.28 – 1.12 (m, 3H).

N-Isopropylcinnamamide (3p)¹⁴: Obtained as a white solid (61 mg, 64%), ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, *J* = 15.6 Hz, 1H), 7.51 – 7.30 (m, 5H), 6.40 (d, *J* = 15.6 Hz, 1H), 5.77 (s, 1H), 4.31 – 4.18 (m, 1H), 1.22 (d, *J* = 6.5 Hz, 6H).

2-(6-methoxynaphthalen-2-yl)-*N*-phenylpropanamide (**3**q)¹⁵: Obtained as a white solid (137 mg, 90%), ¹H NMR (CDCl₃, 500 MHz): δ 7.69 – 7.65 (m, 3H), 7.37 – 7.32 (m, 3H), 7.19 – 7.16 (m, 2H), 7.10 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.07 (d, *J* = 2.2 Hz, 1H), 7.04 (s, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 3.85 (s, 3H), 3.78 (q, *J* = 7.1 Hz, 1H), 1.60 (d, *J* = 7.1 Hz, 3H).

2-(4-isobutylphenyl)-N-phenylpropanamide (**3r**)¹⁶: Obtained as a white solid (107 mg, 76%), ¹H NMR (CDCl₃, 600 MHz): δ 7.39 (d, *J* = 7.9 Hz, 2H), 7.27 – 7.23 (m, 4H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 7.4 Hz, 1H), 7.01 (s, 1H), 3.68 (q, *J* = 7.2 Hz, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.90 – 1.81 (m, 1H), 1.58 (d, *J* = 7.2 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H).

N,2-diphenylbutanamide (3s)¹⁷: Obtained as a white solid (105 mg, 88%), ¹H NMR (CDCl₃, 500 MHz): δ 7.36 (d, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 4.4 Hz, 4H), 7.24 – 7.16 (m, 3H), 7.05 (s, 1H), 6.99 (t, *J* = 7.4 Hz, 1H), 3.32 (t, *J* = 7.5 Hz, 1H), 2.26 – 2.16 (m, 1H), 1.85 – 1.75 (m, 1H), 0.86 (t, *J* = 7.4 Hz, 3H).

N-Cyclohexyl-4-methoxybenzamide (5a)¹⁸: Obtained as a white solid (85 mg, 73%), ¹H NMR (CDCl₃, 400 MHz): δ 7.72 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 5.95 (d, *J* = 5.3 Hz,

1H), 4.04 – 3.89 (m, 1H), 3.84 (s, 3H), 2.02 (d, *J* = 9.4 Hz, 2H), 1.80 – 1.61 (m, 3H), 1.47 – 1.38 (m, 2H), 1.30 – 1.13 (m, 3H).

N-Isopropyl-4-methoxybenzamide (5b)¹⁹: Obtained as a white solid (85 mg, 88%), ¹H NMR (CDCl₃, 600 MHz): δ 7.70 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 5.85 (s, 1H), 4.30 – 4.20 (m, 1H), 3.83 (s, 3H), 1.24 (d, *J* = 6.2 Hz, 6H).

N-Cyclohexyl-4-nitrobenzamide $(5c)^{20}$: Obtained as a white solid (93 mg, 75%), ¹H NMR (CDCl₃, 400 MHz): δ 8.29 (d, J = 8.9 Hz, 2H), 7.92 (d, J = 8.9 Hz, 2H), 6.00 (d, J = 5.7 Hz, 1H), 4.05 – 3.95 (m, 1H), 2.08 – 2.04 (m, 2H), 1.84 – 1.64 (m, 3H), 1.53 – 1.39 (m, 2H), 1.34 – 1.18 (m, 3H).

N-Isopropyl-4-nitrobenzamide (5d)²¹: Obtained as a white solid (84 mg, 81%), ¹H NMR (CDCl₃, 400 MHz): δ 8.29 (d, J = 8.8 Hz, 2H), 7.92 (d, J = 8.8 Hz, 2H), 5.98 (s, 1H), 4.40 – 4.30 (m, 1H), 1.31 (d, J = 6.6 Hz, 6H).

4-Chloro-N-cyclohexylbenzamide (**5e**)¹³: Obtained as a white solid (113 mg, 95%), ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 5.97 (s, 1H), 4.01 – 3.92 (m, 1H), 2.05 – 2.01 (m, 2H), 1.81 – 1.71 (m, 2H), 1.68 – 1.64 (m, 1H), 1.49 – 1.35 (m, 2H), 1.30 – 1.16 (m, 3H).

4-Chloro-*N***-isopropylbenzamide** (**5f**)²²**:** Obtained as a white solid (84 mg, 86%), ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 6.01 (s, 1H), 4.31 – 4.22 (m, 1H), 1.26 (d, *J* = 6.6 Hz, 6H).

N-Cyclohexyl-3-methoxybenzamide (5g)²³: Obtained as a white solid (90 mg, 77%), ¹H NMR (CDCl₃, 400 MHz): δ 7.35 – 7.29 (m, 2H), 7.28 – 7.24 (m, 1H), 7.05 – 6.98 (m, 1H), 6.00 (s, 1H), 4.03 – 3.91 (m, 1H), 3.85 (s, 3H), 2.05 – 2.01 (m, 2H), 1.78 – 1.64 (m, 3H), 1.50 – 1.36 (m, 2H), 1.29 – 1.19 (m, 3H).

N-Isopropyl-3-methoxybenzamide (5h)²⁴: Obtained as a white solid (80 mg, 83%), ¹H NMR (CDCl₃, 400 MHz): δ 7.37 – 7.23 (m, 3H), 7.03 – 7.00 (m, 1H), 6.00 (s, 1H), 4.34 – 4.21 (m, 1H), 3.84 (s, 3H), 1.26 (d, *J* = 6.6 Hz, 6H).

3-Chloro-*N***-cyclohexylbenzamide** (5i)²³**:** Obtained as a white solid (57 mg, 48%), ¹H NMR (CDCl₃, 400 MHz): δ 7.73 (s, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 5.95 (s, 1H), 3.99 – 3.93 (m, 1H), 2.09 – 1.98 (m, 2H), 1.80 – 1.65 (m, 3H), 1.47 – 1.37 (m, 2H), 1.29 – 1.17 (m, 3H).

3-Chloro-*N***-isopropylbenzamide** (**5j**)²⁵**:** Obtained as a white solid (57 mg, 58%), ¹H NMR (CDCl₃, 400 MHz): δ 7.74 (s, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 1H), 5.90 (s, 1H), 4.33 – 4.24 (m, 1H), 1.28 (d, *J* = 6.6 Hz, 6H).

N-Cyclohexyl-2-iodobenzamide $(5k)^{26}$: Obtained as a white solid (58 mg, 35%), ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.38 (q, *J* = 7.5 Hz, 2H), 7.15 – 7.01 (m, 1H), 5.64 (s, 1H), 4.10 – 3.91 (m, 1H), 2.10 – 2.07 (m, 2H), 1.80 – 1.62 (m, 3H), 1.49 – 1.40 (m, 2H), 1.33 – 1.19 (m, 3H).

2-Iodo-*N***-isopropylbenzamide** (51)²⁵**:** Obtained as a white solid (65 mg, 45%), ¹H NMR (CDCl₃, 400 MHz): δ 7.88 – 7.81 (m, 1H), 7.45 – 7.31 (m, 2H), 7.11 – 7.06 (m, 1H), 5.59 (s, 1H), 4.38 – 4.22 (m, 1H), 1.29 (d, *J* = 6.6 Hz, 6H).

N-Cyclohexylpicolinamide (5m)²⁷: Obtained as a white solid (74 mg, 73%), ¹H NMR (CDCl₃, 400 MHz): δ 8.54 (ddd, *J* = 4.8, 1.6, 0.9 Hz, 1H), 8.25 – 8.17 (m, 1H), 7.96 (s, 1H), 7.84 (td, *J* = 7.7, 1.7 Hz, 1H), 7.41 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 4.04 – 3.92 (m, 1H), 2.07 – 1.97 (m, 2H), 1.82 – 1.71 (m, 2H), 1.71 – 1.61 (m, 1H), 1.52 – 1.18 (m, 5H).

N-Isopropylpicolinamide (5n)²⁸: Obtained as a white solid (67 mg, 82%), ¹H NMR (CDCl₃, 400 MHz): δ 8.55 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.21 (dt, J = 7.8, 1.0 Hz, 1H), 7.89 (s, H), 7.84 (td, J = 7.7, 1.7 Hz, 1H), 7.43 – 7.40 (m, 1H), 4.35 – 4.23 (m, 1H), 1.30 (d, J = 6.6 Hz, 6H).

N-isopropylquinoline-2-carboxamide (5o)²⁹: Obtained as a white solid (72 mg, 67%), ¹H NMR (CDCl₃, 500 MHz): δ 8.35 – 8.29 (m, 2H), 8.14 (d, *J* = 8.5 Hz, 2H), 7.88 (d, *J* = 8.2, Hz, 1H), 7.79 – 7.75 (m, 1H), 7.64 – 7.59 (m, 1H), 4.40 – 4.29 (m, 1H), 1.35 (d, *J* = 6.6 Hz, 6H).

N-isopropyl-3-nitrobenzamide (5p)²: Obtained as a white solid (66 mg, 63%), ¹H NMR (CDCl₃, 500 MHz): δ 8.55 (s, 1H), 8.35 (d, *J* = 8.2 Hz, 1H), 8.15 (d, *J* = 7.5 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 1H), 6.03 (s, 1H), 4.35 - 4.28 (m, 1H), 1.31 (d, *J* = 6.5 Hz, 6H).

N-phenylpyrrolidine-1-carboxamide (urea, 26)³⁰: Obtained as a white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.9 Hz, 2H), 7.01 (t, *J* = 7.3 Hz, 1H), 6.21 (s, 1H), 3.46 (t, *J* = 6.6 Hz, 4H), 1.97 (t, *J* = 6.6 Hz, 4H).

References

- 1. A. M. Camelio, A. Krasovskiy, B. Bailey and A. Davis, *J. Org. Chem.*, 2022, **87**, 2022-2044.
- 2. F. Panahi, F. Jamedi and N. Iranpoor, *Eur. J. Org. Chem.*, 2016, **2016**, 780-788.
- L. M. Mori-Quiroz, K. W. Shimkin, S. Rezazadeh, R. A. Kozlowski and D. A. Watson, *Chem-Eur. J.*, 2016, 22, 15654-15658.
- 4. D. G. Pintori and M. F. Greaney, Org. Lett., 2011, 13, 5713-5715.
- X. Y. Hu, S. H. Hao, Y. Wei, Z. L. Wang, H. M. Wang, Y. C. Feng and Q. X. Qin, *Tetrahedron Lett.*, 2022, 95, 153731

- Z. Rajic, D. Hadjipavlou-Litina, E. Pontiki, M. Kralj, L. Suman and B. Zorc, *Chem. Biol. Drug. Des.*, 2010, 75, 641-652.
- 7. Y. Yuan, F. Q. Zhao and X. F. Wu, *Chem. Sci.*, 2021, **12**, 12676-12681.
- X. Jin, M. Willeke, R. Lucchesi, C. G. Daniliuc, R. Frohlich, B. Wibbeling, W. Uhl and E. U. Wurthwein, *J. Org. Chem.*, 2015, 80, 6062-6075.
- 9. Bhardwaj, Tilak Raj; et al, India, IN2008DE02354 A 2010-04-23
- S. A. N. Mehta, S. Thareja, P. Malla, M. Misra, T. Bhardwaj and M. Kumar, *ChemTech.*, 2010, 2, 233-238.
- H. Q. Do, S. Bachman, A. C. Bissember, J. C. Peters and G. C. Fu, *J. Am. Chem. Soc.*, 2014, **136**, 2162-2167.
- 12. T. T. Chen, A. E. Wang and P. Q. Huang, *Org. Lett.*, 2019, **21**, 3808-3812.
- C. Duangkamol, S. Jaita, S. Wangngae, W. Phakhodee and M. Pattarawarapan, *RSC Adv.*, 2015, 5, 52624-52628.
- T. Sato, A. Ohno, S. M. Sarkar, Y. Uozumi and Y. M. A. Yamada, *Chemcatchem.*, 2015, 7, 2141-2148.
- Y. H. Yao, H. Y. Yang, M. Chen, F. Wu, X. X. Xu and Z. H. Guan, J. Am. Chem. Soc., 2021, 143, 85-91.
- 16. Q. Gou, Q. Chen, Q. Tan, M. Zhu, H. Huang, M. Deng, W. Yi and S. He, *Org. Lett.*, 2022, **24**, 3549-3554.
- Y. P. Zhu, S. Sergeyev, P. Franck, R. V. Orru and B. U. Maes, *Org. Lett.*, 2016, 18, 4602-4605.
- S. Wangngae, C. Duangkamol, M. Pattarawarapan and W. Phakhodee, *RSC Adv.*, 2015, 5, 25789-25793.
- 19. J. Kraiem and T. Ollevier, *Green Chem.*, 2017, **19**, 1263-1267.
- C. Dankers, J. Tadros, D. G. Harman, J. R. Aldrich-Wright, T. V. Nguyen and C. P. Gordon, ACS Comb. Sci., 2020, 22, 255-267.
- 21. R. N. Ram, N. Kumar and N. Singh, J. Org. Chem., 2010, 75, 7408-7411.
- 22. S. H. Lee and G. I. Nikonov, *Dalton T.*, 2014, **43**, 8888-8893.
- 23. X. D. Lang and L. N. He, *Chemsuschem.*, 2018, **11**, 2062-2067.
- C. G. Jorgensen, B. Frolund, J. Kehler and A. A. Jensen, *Chemmedchem.*, 2011, 6, 725-736.
- 25. M. T. Shea, G. T. Rohde, Y. A. Vlasenko, P. S. Postnikov, M. S. Yusubov, V. V. Zhdankin, A. Saito and A. Yoshimura, *Molecules*, 2021, **26**.
- 26. F. Chahdoura, S. Mallet-Ladeira and M. Gomez, Org. Chem. Front., 2015, 2, 312-318.

- E. T. Nadres, G. I. F. Santos, D. Shabashov and O. Daugulis, *J. Org. Chem.*, 2013, 78, 9689-9714.
- 28. A. C. Maguire, V. Kumar and S. J. Connon, *Chem. Commun.*, 2019, **55**, 13526-13529.
- T. Gonec, P. Bobal, J. Sujan, M. Pesko, J. H. Guo, K. Kralova, L. Pavlacka, L. Vesely,
 E. Kreckova, J. Kos, A. Coffey, P. Kollar, A. Imramovsky, L. Placek and J. Jampilek,
 Molecules, 2012, 17, 613-644.
- 30. L. Mistry, K. Mapesa, T. W. Bousfield and J. E. Camp, Synthesis of ureas in the bioalternative solvent Cyrene, *Green Chem.*, 2017, **19**, 2123-2128.

Spectral Data

¹H NMR (DMSO, 400 MHz) spectrum of N,N'-diphenylcarbodiimide (2c)

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Cyclohexyl-2-(6-methoxynaphthalen-2-yl)propanamide (**3a**)

¹³C NMR (CDCl₃, 101 MHz) spectrum of *N*-Cyclohexyl-2-(6-methoxynaphthalen-2-yl)propanamide (**3a**)

-173.	-157.7	1129.0		77.38 76.74	55.33	47,15	(32.9) (32.9)	25.4	724.8(18.6
-------	--------	--------	--	----------------	-------	-------	---------------	------	--------	------

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Cyclohexyl-2-(p-tolyl)acetamide (**3b**)

¹H NMR (CDCl₃, 600 MHz) spectrum of *N*-Isopropyl-2-(6-methoxynaphthalen-2-yl)propanamide (**3d**)

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Isopropyl-2-(*p*-tolyl)acetamide (**3e**)

0828999999999444	44333243	792554	67 66 66 66 60 60 60 60 60 60 60 60 60 60	22 3 3 3 3 3 3 3 4 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 2 2 2 2 2 2 2 2 8 2 8 2 8 2 8 8 8 8 8
NNNNNNNNNNNNNN	N N M M M	i m m m m H H H H			
	A State of the sta			a land have been been been been been been been be	

¹³C NMR (CDCl₃, 101 MHz) spectrum of *N*-Cyclohexyl-2-(4-isobutylphenyl)propanamide (**3h**)

73.48	40.55 38.84 29.54 27.29	7.98 6.84 6.84 7.550 7.537 7.550 7.550 7.550 7.550 8.49 8.49
1	マン マン	444 66 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7

¹ H NMR (CDCl ₃ , 400 MHz) st	pectrum of 2-(3-Benzoylphen	yl)- <i>N</i> -isopropylpropanamide (3 j)
		(J) ((J)

77.80 77.68 77.68 77.68 77.69 77.57 77.77 77.57 77.77 77.77 77.77	5.33	4,09 4,00 4,00 1,00 1,00 1,00 1,00 1,00 1,00	1,53 1,153 1,106 1,046
The second s	N	in the second se	YAF

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Cyclohexylpivalamide (**3m**)

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Isopropylpivalamide (**3n**)

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Isopropylcinnamamide (**3p**)

0.5

¹H NMR (CDCl₃, 500 MHz) spectrum of 2-(6-methoxynaphthalen-2-yl)-*N*-phenylpropanamide (**3**q)

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*,2-diphenylbutanamide (**3s**)

335 239 239 239	191	18 18 05 99 97	
ブブブブ	22225	<u>,,,,,,,,</u> ,,	

-3.33 -3.32 -3.32 ¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Cyclohexyl-4-methoxybenzamide (5a)

¹H NMR (CDCl₃, 600 MHz) spectrum of *N*-Isopropyl-4-methoxybenzamide (**5**b)

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Cyclohexyl-4-nitrobenzamide (**5**c)

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Isopropyl-4-nitrobenzamide (**5d**)

¹H NMR (CDCl₃, 400 MHz) spectrum of 4-Chloro-*N*-cyclohexylbenzamide (5e)

¹H NMR (CDCl₃, 400 MHz) spectrum of 4-Chloro-*N*-isopropylbenzamide (5f)

¹H NMR (CDCl₃, 400 MHz) spectrum of *N*-Cyclohexyl-3-methoxybenzamide (5g)

9.0

¹H NMR (CDCl₃, 400 MHz) spectrum of 3-Chloro-*N*-isopropylbenzamide (5j)

μμη

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-phenylpyrrolidine-1-carboxamide (26)

11.0

0.0