Electronic Supplementary Information

A synthetically benign one-pot construction of enamino-xanthene dyes

Juan Manuel Garrido-Zoido,* Franklin Kajina, Esther Matamoros, M. Victoria Gil, Pedro Cintas and Juan

C. Palacios*

Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.

E-mail: jmgarridozoido@gmail.com, palacios@unex.es

<u>INDEX</u>

ENERGY DATA (TABLES AND F	IGURES)			•		•		•	S2
MASS SPECTROMETRY .	•	•	•	•	•	•	•	•	S4
INFRARED SPECTROSCOPY	•	•	•	•	•	•	•	•	S9
¹ H NMR, ¹³ C NMR AND DEPT	SPECTRA							•	S16
COSY, HSQC, HMBC SPECTRA	AND VAR	RIABLE-T	EMPERA	TURE EX	XPERIMI	ENTS		•	S30
CARTESIAN COORDINATES FC	R OPTIM	IZED STR	RUCTUR	ES					S40

ENERGY DATA (TABLES AND FIGURES)

	OH 8 89 7 HO 6 5 5a O	$ \begin{array}{c} \text{Me} \\ \text{H} \\ \text{N} \\ \text{H} \\ \text{H} \\ \text{N} \\ \text{H} \\ \text{H} \\ \text{N} \\ \text{H} \\ $	Me OH 7 HO 6 5 5	$\begin{array}{c} 9 \\ 1a \\ 1a \\ 1a \\ 2a \\ 3a \\ 0 \\ 4a \\ 4 \\ 3 \end{array}$	10 N H O	
	21			22		
Signal	Assignment	Δδ ^a	$\Delta artheta^{ extsf{b}}$	۲ _c c	Tcd	ΔG ^{≠ e}
NH	Enamine	0,055	27,5	87	360	18,1
=CH	C10	0,029	14,5	87	360	18,5
СН	С9	0,020	10,0	77	350	18,2
СЦ	67	0.044	22.0	07	270	10 7

Table S1. Energy barrier to interconversion of 21/22.

^a In ppm; ^b In Hz; ^c In °C; ^d In K; ^e In kcal·mol⁻¹ (1 cal = 4.184 J).

Table S2. Relative electronic energy, enthalpy, and Gibbs energy in gas phase.^a

		Enamine				TS [‡]			Imine	
Compound	ΔΕ	ΔH	ΔG	ΔE [‡]	ΔH [‡]	ΔG [‡]	$\mathbf{\tilde{v}^{\texttt{tb}}}$	ΔE	ΔН	ΔG
21/49	0.0	0.0	0.6	7.3	3.7	4.6	-1074.6	5.9	5.2	6.4
22/50	0.0	0.0	0.0	6.4	3.1	4.4	-1025.5	5.3	4.4	5.3

^a In kcal·mol⁻¹, ^b In cm⁻¹.

Figure S1. Optimized structures of ketoenamines 21 and 22 in the gas phase.

Figure S2. Optimized structures of phenolimines 49 and 50 in the gas phase.

Table S3. Relative electronic energy, enthalpy, and Gibbs energy in DMSO.^a

		Enamine				ΤS [‡]			Imine	
Compound	ΔE	ΔН	ΔG	ΔE [‡]	ΔH [‡]	ΔG [‡]	$\mathbf{\tilde{v}^{\ddagger b}}$	ΔE	ΔН	ΔG
21/49	0.0	0.0	0.6	8.8	5.1	6.0	-896.9	8.3	7.1	8.0
22/50	0.3	0.3	0.0	8.3	4.9	5.9	-861.4	7.9	6.6	7.5

^a In kcal·mol⁻¹, ^b In cm⁻¹.

Table S4. Relative electronic energy, enthalpy, and Gibbs energy in DMSO, ethanol and water.^a

		DMSO			Ethanol			Water	
Compound	ΔE	ΔН	ΔG	ΔE	ΔН	ΔG	ΔΕ	ΔH	ΔG
21	0.0	0.0	0.6	0.0	0.0	0.3	0.0	0.0	0.0
49	8.3	7.1	8.0	9.1	7.6	8.6	9.8	8.2	8.8
50	7.9	6.6	7.5	8.8	7.3	8.5	9.5	8.1	8.6
22	0.3	0.3	0.0	0.3	0.0	0.0	0.5	0.2	0.0

^a In kcal·mol⁻¹.

MASS SPECTROMETRY

Figure S6. LC-MS of **24** - $C_{17}H_{15}NO_5$ [M+H]⁺ m/z calcd. 314.1023; [M₂+H]⁺ m/z calcd. 627.1973; [M₃+H]⁺ m/z calcd. 940.2923.

Figure S7. LC-MS of **25** $C_{17}H_{15}NO_5$ [M+H]⁺ m/z calcd. 314.1023; [M₂+H]⁺ m/z calcd. 627.1973.

220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 Counts vs. Mass-to-Charge (m/z)

150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825 Counts vs. Mass-to-Charge (m/z)

Figure S16. LC-MS of **51** - $C_{14}H_{13}NO_4 [M+H]^+ m/z$ calcd. 260.0917.

INFRARED SPECTROSCOPY

Figure S17. FTIR spectrum of 18.

Figure S18. FTIR spectrum of 19.

Figure S19. FTIR spectrum of 23.

Figure S20. FTIR spectrum of 24.

Figure S21. FTIR spectrum of 25.

Figure S22. FTIR spectrum of 26.

Figure S23. FTIR spectrum of 27.

Figure S24. FTIR spectrum of 28.

Figure S25. FTIR spectrum of 29.

Figure S26. FTIR spectrum of 30.

Figure S27. FTIR spectrum of 31.

Figure S28. FTIR spectrum of 32.

Figure S29. FTIR spectrum of 33.

Figure S30. FTIR spectrum of 51.

¹H NMR, ¹³C NMR AND DEPT SPECTRA

Figure S31. ¹H NMR spectrum of 18 in DMSO-d6 / 500 MHz.

Figure S32. ¹³C NMR and DEPT spectra of 18 in DMSO-d6 / 125 MHz.

Figure S34. ¹³C NMR and DEPT spectra of 19 in DMSO-d6 / 125 MHz.

Figure S35. ¹H NMR spectrum of 23 in DMSO-d6 / 500 MHz.

Figure S36. ¹H NMR spectrum of 24 in DMSO-d6 / 500 MHz.

Figure S37. ¹³C NMR and DEPT spectra of 24 in DMSO-d6 / 125 MHz.

(25) H-NMR in DMSO-d6 / 500 MHz

Figure S38. ¹H NMR spectrum of 25 in DMSO-d6 / 500 MHz.

S20

Figure S41. ¹³C NMR and DEPT spectra of 26 in DMSO-d6 / 125 MHz.

Figure S43. ¹³C NMR and DEPT spectra of 27 in DMSO-d6 / 125 MHz.

Figure S45. ¹³C NMR and DEPT spectra of 28 in DMSO-d6 / 125 MHz.

Figure S46. ¹H NMR spectrum of 29 in DMSO-d6 / 500 MHz.

Figure S47. ¹³C NMR and DEPT spectra of 29 in DMSO-d6 / 125 MHz.

Figure S51. ¹³C NMR and DEPT spectra of 31 in DMSO-d6 / 125 MHz.

Figure S53. ¹³C NMR and DEPT spectra of 32 in DMSO-d6 / 125 MHz.

Figure S54. ¹H NMR spectrum of 33 in DMSO-d6 / 500 MHz.

Figure S58. Compound 19 – HSQC.

Figure S59. Compound 19 – HMBC.

Figure S60. Compound 19 – HMBC (expanded/zoomed areas)

Figure S61. Compound 19. ¹H NMR variable-temperature experiments recorded between 13 and 5 ppm.

Figure S63. Compound 26 – COSY.

Figure S66. Compound 26 – HMBC (at higher magnification).

Figure S67. Compound **26** – HMBC (expanded/zoomed areas).

Figure S68. Compound 26 – HMBC (expanded/zoomed spectrum).

CARTESIAN COORDINATES FOR OPTIMIZED STRUCTURES

Compound 21 in DMSO:

ATOM TYPE	Х	У	Z
С	-0.92484500	-0.32546600	-0.01397900
С	-1.82614900	0.79522700	-0.00783700
С	-1.34948400	2.18676600	-0.00211200
С	0.09122300	2.40649500	-0.00205100
С	0.94966000	1.36381100	-0.00492000
С	0.52913300	-0.01959800	-0.00930900
0	2.28590200	1.64103600	-0.00377300
С	3.22615500	0.66022300	-0.00118700
С	2.84838800	-0.68961600	-0.00221700
С	1.45522800	-1.00716000	-0.00758300
С	4.55006500	1.06582900	0.00259800
С	5.53087600	0.07699800	0.00619800
С	5.20647800	-1.28369400	0.00622000
С	3.87541200	-1.65697200	0.00201900
0	6.84395000	0.38294000	0.01018500
0	3.48344600	-2.94776300	0.00180200
0	-1.30227800	-1.50704900	-0.02131900
С	-3.21038800	0.59801000	-0.00375400
0	-2.12755500	3.14515600	0.00204200
N	-3.82705100	-0.55900900	-0.01192800
С	-5.30055600	-0.72846500	0.00662600
C	-5.55960600	-2.23013300	-0.05352600
С	-5.91196900	-0.03578600	-1.21122200
C	-5.86062000	-0.14105900	1.30246300
H 	0.45590600	3.42582900	0.00110200
H	1.13183500	-2.041/8900	-0.01015400
H	4.80415700	2.11923500	0.00308100
H	5.99778800	-2.02509000	0.00963400
H	6.96231400	1.34242400	0.009/8800
H	4.25625800	-3.52882000	0.00540700
H	-3.83/49800	1.48599900	0.00900200
H	-3.23191500	-1.38/02300	-0.01821/00
H	-5.10191100	-2./3//2000	0.79993100
H	-0.03452100	-2.41800200	-0.03019300
H	-5.15521100	-2.050/3100	-0.9/543500
п u	-6.00143400	_0 20330900	-1.21005000
п u	-5.48995300	-0.20330800	-2 13463300
п u	-6.9/150900	-0.43979300	-2.13403300
ц	-5 41044400	-0 62017000	2 17038600
и П	-5.41044400	0.0291/000	1 36420700
11	5.00000000	0.00011000	1.30120700

Compound 22 in DMSO:

ATOM TYPE	х	У	Z
С	0.72101200	0.89172400	-0.00629600
С	1.79198100	-0.08861100	-0.00917800
С	1.53177100	-1.52291800	-0.01245000
С	0.15019300	-1.97705400	-0.00803500
С	-0.86359900	-1.08433900	-0.00421500
С	-0.66684800	0.34833400	-0.00513500
0	-2.13787200	-1.57161400	0.00067000
С	-3.22297200	-0.75479300	0.00170500
С	-3.06501300	0.63824500	-0.00275000
С	-1.74022600	1.17371600	-0.00538400
С	-4.46446000	-1.36859600	0.00754200
С	-5.59097900	-0.54941700	0.00857900
С	-5.48769300	0.84562400	0.00339600
С	-4.23432700	1.42860800	-0.00241500
0	-6.83914800	-1.05927300	0.01451200
0	-4.05591100	2.76555600	-0.00783100
0	0.90127300	2.10924500	-0.00488500
С	3.09871300	0.40948000	-0.00453300

0	2.45938700	-2.35218700	-0.01785900
N	4.19861400	-0.30360500	-0.00830900
С	5.57263900	0.25241800	0.00771100
С	5.77513900	1.07014500	1.28363300
С	6.51572400	-0.94638100	-0.01119200
С	5.78909800	1.11954700	-1.23279500
Н	-0.04202800	-3.04255600	-0.00795100
Н	-1.58720900	2.24685000	-0.00703900
Н	-4.54501700	-2.44938200	0.01112100
Н	-6.38718700	1.45046100	0.00394400
Н	-6.80352800	-2.02549000	0.01786700
Н	-4.91232200	3.21417100	-0.00676900
Н	3.21676300	1.49037400	0.00410000
Н	4.07060700	-1.31575400	-0.01441000
Н	6.79890400	1.44996300	1.31594400
Н	5.09501300	1.92491600	1.31760700
Н	5.60420600	0.45006400	2.16692800
Н	7.55099000	-0.60109800	0.00087000
Н	6.36163000	-1.54539500	-0.91263800
Н	6.35273200	-1.58034000	0.86446900
Н	5.62819800	0.53523900	-2.14197200
Н	5.11142100	1.97679000	-1.24171200
Н	6.81376500	1.49820900	-1.23819100

Compound 49 in DMSO:

ATOM TYPE	х	У	Z
С	-0.95778000	-0.14790600	0.00019700
С	-1.82710400	0.92259800	0.00015100
С	-1.32943500	2.30530400	0.00007900
С	0.11315800	2.49591200	0.00002100
С	0.94429600	1.43093100	0.00004900
С	0.47808700	0.06151600	0.00013800
0	2.28713700	1.66197400	0.00001000
С	3.19249100	0.65282300	-0.00001600
С	2.76998600	-0.68608400	0.00004000
С	1.37408100	-0.96176000	0.00012600
С	4.52884000	1.01453600	-0.00008800
С	5.47607100	-0.00608800	-0.00010900
С	5.10770400	-1.35721000	-0.00005800
С	3.76773500	-1.68826300	0.00001100
0	6.79694800	0.25426100	-0.00018200
0	3.33304400	-2.96348100	0.00006000
0	-1.38186100	-1.39639100	0.00026300
С	-3.26264700	0.68892600	0.00006200
0	-2.10392800	3.26601100	0.00004800
N	-3.72683600	-0.50461200	0.00023600
С	-5.16850900	-0.80131000	-0.00008600
С	-6.05801800	0.43889600	0.00045700
С	-5.43875900	-1.64087100	1.25194800
С	-5.43848400	-1.63956700	-1.25307200
H	0.50219300	3.50619000	-0.00004300
H	1.02648000	-1.98806400	0.00018/00
H	4.81689500	2.05928700	-0.00012300
H	5.8/3/5300	-2.1243/200	-0.0000/500
H	6.94945900	1.2091/400	-0.00021800
H	4.08486800	-3.5/1/0600	0.00004100
H	-2.41513200	-1.33823300	0.00025500
H	-3.89923200	1.5/312500	-0.00013400
Н	-5.89110900	1.05394000	-0.88789600
п	- 7.10331300	1 05227500	0.00040200
п	-5.89085800	1.0332/300	1 25072000
п	-4.80897400	-2.33290700	1 27272200
n u	-0.40490100 -5.23211100	-1.95094200	2 15545400
ц ц	-5.23166000	-1 05869500	-2 15592000
н	-4 80667900	-2 53158100	-1 26165700
н	-6 48461800	-1 95563200	-1 27435900
11	0.10101000		T.C. I J J J U U

Compound 50 in DMSO:

ATOM TYPE	Х	У	Z
С	-0.69391100	0.99624100	0.00015400
С	-1.78436300	0.04952500	0.00024700
С	-1.53426500	-1.33172300	0.00031900
С	-0.21784000	-1.88040600	0.00024600
С	0.83414000	-1.02069300	0.00010700
С	0.67331800	0.40883400	0.00010700
0	2.08485000	-1.55026600	0.00005200
С	3.19415100	-0.77160900	0.00000100
С	3.07838000	0.62797200	0.00011300
С	1.77891100	1.20183400	0.00014400
С	4.41551500	-1.42325700	-0.00019000
С	5.56515100	-0.63732700	-0.00026000
С	5.50575400	0.76248300	-0.00010100
С	4.27445300	1.38457400	0.00008800
0	6.79612900	-1.18151500	-0.00047000
0	4.13400300	2.72368200	0.00026100
0	-0.84621500	2.22030900	0.00006100
С	-3.14750400	0.54153100	0.00025500
0	-2.53390800	-2.18774000	0.00057700
N	-4.14219700	-0.26783400	0.00053300
С	-5.54337200	0.17975100	-0.00020900
С	-6.19039300	-0.41821900	-1.25310500
С	-6.19193500	-0.41902400	1.25146600
С	-5.71261100	1.69635600	0.00019000
Н	-0.07914500	-2.95324200	0.00031200
H	1.65839200	2.27970700	0.00017900
H	4.46162900	-2.50597000	-0.00029700
Н	6.42482200	1.33742600	-0.00014400
H	6.73461900	-2.14672700	-0.00064100
H	5.00224300	3.14940700	0.00001300
Н	-3.27004600	1.62481200	-0.00021200
H	-3.40305200	-1.62069200	0.00058200
Н	-7.25982300	-0.19300500	-1.26940900
H	-5.73377800	-0.00399100	-2.15601300
H	-6.06333700	-1.50379200	-1.26708300
Н	-7.26144300	-0.19411000	1.26645100
H	-5.73668400	-0.00517600	2.15524400
Н	-6.06457000	-1.50456600	1.26504100
Н	-5.26793600	2.15295100	-0.88828500
Н	-6.77917900	1.93263600	0.00036800
Н	-5.26769800	2.15234200	0.88887300

Transition state for 21 to 49 tautomerization in DMSO:

ATOM TYPE	Х	У	Z
С	-0.98273300	-0.11943500	0.00220200
С	-1.83386600	0.98103500	0.00495900
С	-1.32315400	2.35400000	0.00477700
С	0.12368700	2.52409800	0.00114000
С	0.94058700	1.44809700	-0.00039100
С	0.46043600	0.08250600	0.00111500
0	2.28688700	1.66397900	-0.00390000
С	3.18100700	0.64448200	-0.00264500
С	2.74468600	-0.68954900	0.00122200
С	1.34421500	-0.94924900	0.00222800
С	4.52120600	0.99254400	-0.00539400
С	5.45834700	-0.03735700	-0.00343700
С	5.07569100	-1.38411700	0.00149400
С	3.73181500	-1.70121600	0.00367200
0	6.78231200	0.20964800	-0.00604300
0	3.28493200	-2.97253500	0.00824900
0	-1.44046600	-1.33541500	0.00076800
С	-3.25704100	0.74456000	0.00611400
0	-2.08334600	3.32677400	0.00701100

Ν	-3.69537200	-0.46517000	0.00254600
С	-5.11769800	-0.84218500	-0.00279500
С	-5.34010900	-1.72903500	1.22504200
С	-5.35129600	-1.65321700	-1.28042000
С	-6.05462200	0.35999700	0.03796900
Н	0.52686000	3.52893200	-0.00023400
Н	0.98191800	-1.97063500	0.00394500
Н	4.81902700	2.03453600	-0.00867200
Н	5.83291600	-2.15994600	0.00367000
Н	6.94415700	1.16296600	-0.00917800
Н	4.03108700	-3.58757300	0.00979000
Н	-3.91939100	1.60826300	0.00954200
Н	-2.58086400	-1.20101100	0.00047000
Н	-5.15845500	-1.16591800	2.14420300
Н	-6.36917400	-2.09643500	1.23911600
Н	-4.66544100	-2.58890800	1.20485400
Н	-5.18259900	-1.03314200	-2.16472600
Н	-6.37915100	-2.02359500	-1.30490100
Н	-4.67323600	-2.50964200	-1.32123300
Н	-7.08648200	0.00275800	0.03748300
Н	-5.90275400	0.95500000	0.94252100
Н	-5.92031700	1.00516500	-0.83427300

Transition state for 22 to 50 tautomerization in DMSO:

ATOM TYPE	Х	У	Z
С	0.68196900	1.04446300	0.00002900
С	1.78014400	0.11153300	0.00000500
С	1.56268000	-1.28767000	0.00002400
С	0.24347800	-1.84501200	-0.00000300
С	-0.81662600	-0.99739300	0.00000400
С	-0.67780000	0.43702200	0.00001300
0	-2.06212300	-1.54261700	0.00001000
С	-3.18209700	-0.77833900	-0.00000200
С	-3.08603300	0.62183200	-0.00000100
С	-1.79260300	1.21384800	0.00000700
С	-4.39442500	-1.44708400	-0.00001100
С	-5.55531600	-0.67776400	-0.00001700
С	-5.51508800	0.72230800	-0.00001400
С	-4.29164300	1.36112100	-0.00000700
0	-6.77905900	-1.23986200	-0.00002800
0	-4.17008700	2.70263400	-0.00000100
0	0.81658100	2.27069800	0.00006800
С	3.13304100	0.59902200	-0.00003400
0	2.57560000	-2.09898400	0.00006400
N	4.11455500	-0.23536300	0.00002300
С	5.53652700	0.13900700	-0.00002200
С	5.75783500	1.64758000	-0.00004200
С	6.15669000	-0.48487700	1.25332200
С	6.15664800	-0.48491000	-1.25336800
Н	0.11308200	-2.91903100	0.00000100
Н	-1.68679600	2.29319500	0.00001100
Н	-4.42431700	-2.53035300	-0.00001000
Н	-6.44169700	1.28505800	-0.00001500
Н	-6.70300000	-2.20394400	-0.00001300
Н	-5.04434400	3.11569500	-0.00000700
Н	3.28612100	1.67714800	-0.00010800
Н	3.50284600	-1.41694700	0.00007400
Н	6.83187200	1.84567700	-0.00002100
Н	5.32870500	2.11781100	-0.88893300
Н	5.32867500	2.11783800	0.88882000
Н	7.23358300	-0.29995100	1.27016700
Н	5.98937600	-1.56503200	1.26602600
Н	5.71481700	-0.05379100	2.15545500
Н	5.98909000	-1.56502600	-1.26618600
Н	5.71494400	-0.05365700	-2.15550400
Н	7.23358300	-0.30022200	-1.27011600