Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

Halonium, Chalconium, and Pnictonium Salts as Noncovalent Organocatalysts: A Computational Study on Relative Catalytic Activity

Alexander S. Novikov^{1, 2} and Dmitrii S. Bolotin^{1, *}

¹ Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation. * E-mail: d.s.bolotin@spbu.ru
 ² Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, Bldg. A, Saint Petersburg, 197101 Russian Federation

Table of contents

Table S1. Calculated values of total electronic energies, enthalpies, and Gibbs free energies of activation (ΔE^{\neq} , ΔH^{\neq} , and ΔG^{\neq} in kJ mol⁻¹) for model reactions (**Method 1**)...**S3**

Table S5. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2 \rho(\mathbf{r})$, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, Lagrangian kinetic energy $-G(\mathbf{r})$, and electron localization function -ELF (a.u.) at the bond critical points (3, -1) for contacts X…Y

(X = P, As,	Sb, S, Sb, T	e, Cl	Br, I,; Y	= CI in TS1 and	O in TS2) as	well as	appro	oximately
estimated	strength	of	these	noncovalent	interactions	Eint	=	−V(r)/2
(kJ/mol)								S7

Model reaction	ΔE [≠]	ΔH [≠]	∆G [≠]
$CH_3CI + H_2O \rightarrow TS1$	252.5	257.4	293.4
$1 + CH_3CI + H_2O \rightarrow 1TS1$	108.2	118.2	206.6
$2 + CH_3CI + H_2O \rightarrow 2 \cdots \mathbf{TS1}$	69.9	81.8	177.2
$3 + CH_3CI + H_2O \rightarrow 3TS1$	50.8	61.5	154.6
$4 + \mathrm{CH}_{3}\mathrm{CI} + \mathrm{H}_{2}\mathrm{O} \rightarrow 4\cdots\mathbf{TS1}$	92.2	101.3	184.2
5 + CH ₃ Cl + H ₂ O → 5 ··· TS1	63.9	77.5	160.2
$6 + \mathrm{CH}_{3}\mathrm{CI} + \mathrm{H}_{2}\mathrm{O} \rightarrow 6\cdots\mathbf{TS1}$	61.5	73.5	153.3
7 + CH ₃ Cl + H ₂ O → 7 ···TS1	76.2	88.3	163.3
8 + CH ₃ Cl + H ₂ O → 8TS1	59.5	71.5	149.9
9 + CH ₃ Cl + H ₂ O → 9 … TS1	51.0	63.1	142.2
$H_2O + NH_3 + Me_2CO \rightarrow TS2$	-10.6	-8.5	94.5
$1 + H_2O + NH_3 + Me_2CO \rightarrow 1 \cdots \mathbf{TS2}$	-105.2	-96.8	63.1
$2 + H_2O + NH_3 + Me_2CO \rightarrow 2 \cdots \mathbf{TS2}$	-140.9	-131.6	32.5
$3 + H_2O + NH_3 + Me_2CO \rightarrow 3TS2$	-154.4	-147.1	18.5
$4 + H_2O + NH_3 + Me_2CO \rightarrow 4 \cdots \mathbf{TS2}$	-120.9	-110.7	46.2
$5 + H_2O + NH_3 + Me_2CO \rightarrow 5 \cdots TS2$	-160.2	-149.6	10.7
$6 + H_2O + NH_3 + Me_2CO \rightarrow 6 \cdots \mathbf{TS2}$	-152.2	-141.6	17.5
$7 + H_2O + NH_3 + Me_2CO \rightarrow 7TS2$	-122.8	-112.5	35.4
8 + H ₂ O + NH ₃ + Me ₂ CO → 8····TS2	-142.5	-133.8	17.0
$9 + H_2O + NH_3 + Me_2CO \rightarrow 9 \cdots TS2$	-144.2	-134.6	13.3

Table S1. Calculated values of total electronic energies, enthalpies, and Gibbs free energies of activation (ΔE^{\neq} , ΔH^{\neq} , and ΔG^{\neq} in kJ mol⁻¹) for model reactions (**Method 1**).

Table S2. Calculated total electronic energies (E, in Hartree), enthalpies (H, in Hartree), Gibbs free energies (G, in Hartree), and entropies (S, cal/mol•K) for optimized equilibrium

Model structure	E	Н	G	S
CH₃CI	-500.045423591	-500.002975	-500.029526	55.880
H ₂ O	-76.3733781385	-76.348059	-76.369493	45.112
NH ₃	-56.5129432676	-56.474244	-56.496081	45.960
Me ₂ CO	-193.057343796	-192.966042	-193.000966	73.503
1	-1266.12783251	-1265.757874	-1265.827382	146.291
2	-3158.59676668	-3158.227463	-3158.299393	151.390
3	-930.159409533	-929.791625	-929.866364	157.302
4	-1091.36335793	-1091.092010	-1091.149704	121.428
5	-3092.65033011	-3092.379263	-3092.437972	123.563
6	-701.238385649	-700.968565	-701.029098	127.403
7	-921.752039426	-921.579216	-921.624391	95.079
8	-3033.37840425	-3033.205520	-3033.251785	97.374
9	-472.960287924	-472.788086	-472.835650	100.106
TS1	-576.322630312	-576.253009	-576.287275	72.119
1TS1	-1842.50543382	-1842.063891	-1842.147714	176.420
2…TS1	-3734.98893299	-3734.547345	-3734.630907	175.871
3TS1	-1506.55885228	-1506.119247	-1506.206494	183.627
4TS1	-1667.74703571	-1667.404476	-1667.478572	155.948
5…TS1	-3669.04481092	-3668.700797	-3668.775960	158.194
6…TS1	-1277.63377319	-1277.291596	-1277.369711	164.407
7…TS1	-1498.14180729	-1497.896633	-1497.961220	135.934
8TS1	-3609.77453667	-3609.529324	-3609.593697	135.485
9…TS1	-1049.35968192	-1049.115087	-1049.180493	137.659
TS2	-325.947695904	-325.791587	-325.830551	82.007
1…TS2	-1592.11155657	-1591.583074	-1591.669874	182.686
2…TS2	-3484.59410733	-3484.065932	-3484.153543	184.393
3…TS2	-1256.16187671	-1255.635987	-1255.725870	189.176
4…TS2	-1417.35308516	-1416.922522	-1416.998651	160.226
5TS2	-3418.65502473	-3418.224586	-3418.300428	159.623
6TS2	-1027.24001632	-1026.810841	-1026.888987	164.471
7TS2	-1247.74248481	-1247.410409	-1247.477462	141.125
8TS2	-3359.37633956	-3359.044840	-3359.111861	141.057
9TS2	-798.958861144	-798.627710	-798.697117	146.078

model structures (Method 1).

Table S3. Calculated values of total electronic energies of activation (ΔE[≠] in kJ/mol) for model reactions at the M06-2X/MWB46 for Sb, Te, and I; 6-311G* for other atoms (single point calculations) // M06-2X/MWB46 for Sb, Te, and I; 6-31G* for other atoms (full

Model reaction	ΔE [≠]
$CH_3CI + H_2O \rightarrow TS1$	235.6
$1 + CH_3CI + H_2O \rightarrow 1TS1$	97.8
2 + CH ₃ Cl + H ₂ O → 2····TS1	86.9
$3 + CH_3CI + H_2O \rightarrow 3TS1$	45.1
$4 + \mathrm{CH_3Cl} + \mathrm{H_2O} \rightarrow 4 \cdots \mathbf{TS1}$	80.0
5 + CH ₃ Cl + H ₂ O → 5…TS1	76.7
6 + CH ₃ Cl + H ₂ O → 6…TS1	53.4
7 + CH ₃ Cl + H ₂ O → 7 ···TS1	66.9
8 + CH ₃ Cl + H ₂ O → 8 … TS1	57.5
9 + CH ₃ Cl + H ₂ O → 9…TS1	43.9
$H_2O + NH_3 + Me_2CO \rightarrow TS2$	-7.6
$1 + H_2O + NH_3 + Me_2CO \rightarrow 1TS2$	-100.7
$2 + H_2O + NH_3 + Me_2CO \rightarrow 2 \cdots \mathbf{TS2}$	-110.9
$3 + H_2O + NH_3 + Me_2CO \rightarrow 3TS2$	-147.8
$4 + H_2O + NH_3 + Me_2CO \rightarrow 4 \cdots \mathbf{TS2}$	-120.5
5 + H ₂ O + NH ₃ + Me ₂ CO \rightarrow 5…TS2	-127.0
$6 + H_2O + NH_3 + Me_2CO \rightarrow 6 \cdots \mathbf{TS2}$	-150.4
$7 + H_2O + NH_3 + Me_2CO \rightarrow 7 \cdots TS2$	-120.4
$8 + H_2O + NH_3 + Me_2CO \rightarrow 8 \cdots \mathbf{TS2}$	-120.4
$9 + H_2O + NH_3 + Me_2CO \rightarrow 9 \cdots TS2$	-138.4

geometry optimization) level of theory (Method 2).

Table S4. Calculated total electronic energies (E, in Hartree) for model structures at theM06-2X/MWB46 for Sb, Te, and I; 6-311G* for other atoms (single point calculations) //M06-2X/MWB46 for Sb, Te, and I; 6-31G* for other atoms (full geometry optimization) level

Model structure	E
CH₃CI	-500.088390368
H ₂ O	-76.3992479578
NH ₃	-56.5331544923
Me ₂ CO	-193.110607217
1	-1266.35325710
2	-3160.84548733
3	-930.362495636
4	-1091.54113600
5	-3094.90541799
6	-701.390320287
7	-921.880663921
8	-3035.86476051
9	-473.058566934
TS1	-576.397921387
1TS1	-1842.80365191
2…TS1	-3737.30002302
3…TS1	-1506.83295292
4…TS1	-1667.99829928
5…TS1	-3671.36384466
6…TS1	-1277.85763388
7…TS1	-1498.34283600
8TS1	-3612.33048656
9TS1	-1049.52948570
TS2	-326.045892600
1TS2	-1592.43460333
2TS2	-3486.93074864
3TS2	-1256.46181762
4TS2	-1417.63002728
5…TS2	-3420.99681132
6…TS2	-1027.49062991
7TS2	-1247.96954398
8TS2	-3361.95364130
9TS2	-799.154275002

of theory (Method 2).

Table S5. Values of the density of all electrons – $\rho(\mathbf{r})$, Laplacian of electron density – $\nabla^2 \rho(\mathbf{r})$, energy density – H_b, potential energy density – V(\mathbf{r}), Lagrangian kinetic energy – G(\mathbf{r}), and electron localization function – ELF (a.u.) at the bond critical points (3, –1) for contacts X…Y (X = P, As, Sb, S, Sb, Te, Cl, Br, I,; Y = Cl in **TS1** and O in **TS2**) as well as approximately estimated strength of these noncovalent interactions E_{int} = –V(\mathbf{r})/2 (kJ/mol).

Length of contacts X…Y	ρ (r)	$ abla^2 ho(\mathbf{r})$	Hb	V(r)	G(r)	ELF	$-G(\mathbf{r})/V(\mathbf{r})$	Eint
1…TS1 3.404 Å	0.011	0.028	0.001	-0.006	0.006	0.053	1.00	7.9
2…TS1 3.069 Å	0.019	0.046	0.000	-0.011	0.012	0.107	1.09	14.4
3…TS1 2.917 Å	0.032	0.097	-0.002	-0.017	0.015	0.243	0.88	22.3
4…TS1 3.154 Å	0.015	0.049	0.001	-0.009	0.011	0.062	1.22	11.8
5…TS1 2.976 Å	0.023	0.065	0.001	-0.014	0.015	0.107	1.07	18.4
6…TS1 3.074 Å	0.023	0.078	0.000	-0.014	0.014	0.109	1.00	18.4
7…TS1 2.968 Å	0.019	0.070	0.002	-0.013	0.015	0.064	1.15	17.1
8…TS1 2.958 Å	0.023	0.073	0.002	-0.014	0.016	0.094	1.14	18.4
9…TS1 3.051 Å	0.024	0.086	0.001	-0.015	0.016	0.096	1.07	19.7
1…TS2 3.070 Å	Bond critical point for P···O contact was not found							
2…TS2 2.678 Å	0.023	0.066	-0.001	-0.019	0.018	0.089	0.95	24.9
3…TS2 2.406 Å	0.056	0.226	-0.004	-0.034	0.030	0.300	0.88	44.6
4…TS2 2.797 Å	0.018	0.060	0.000	-0.014	0.015	0.054	1.07	18.4
5…TS2 2.775 Å	0.020	0.067	0.000	-0.016	0.016	0.067	1.00	21.0
6…TS2 2.747 Å	0.027	0.105	-0.001	-0.020	0.019	0.101	0.95	26.3
7…TS2 2.699 Å	0.021	0.078	0.001	-0.018	0.019	0.060	1.06	23.6
8… TS2 2.627 Å	0.030	0.095	0.000	-0.024	0.024	0.114	1.00	31.5
9… TS2 2.579 Å	0.040	0.164	-0.001	-0.031	0.030	0.144	0.97	40.7

1…TS1

2…TS1

3…TS1

4…TS1

5…TS1

6…TS1

7**…**TS1

8…TS1

9…TS1

2…TS2

3…TS2

4**…**TS2

5…TS2

6…TS2

7…TS2

8…TS2

9**…**TS2

Table S6. Calculated values of total electronic energies of activation (ΔE^{\neq} in kJ/mol) for selected model reactions at the M06-2X/MWB46 for Sb, Te, and I; aug-cc-pVTZ for other atoms (single point calculations) // M06-2X/MWB46 for Sb, Te, and I; 6-31G* for other atoms (full geometry optimization) level of theory.

Model reaction	ΔE [≠]
$CH_3CI + H_2O \rightarrow TS1$	264.6
5 + CH ₃ Cl + H ₂ O → 5 ··· TS1	112.7
9 + CH ₃ Cl + H ₂ O → 9 … TS1	73.6
$H_2O + NH_3 + Me_2CO \rightarrow TS2$	22.3
$5 + H_2O + NH_3 + Me_2CO \rightarrow 5 \cdots TS2$	-71.9
$9 + H_2O + NH_3 + Me_2CO \rightarrow 9 \cdots TS2$	-95.5

Table S7. Calculated total electronic energies (E, in Hartree) for model structures at the M06-2X/MWB46 for Sb, Te, and I; aug-cc-pVTZ for other atoms (single point calculations) // M06-2X/MWB46 for Sb, Te, and I; 6-31G* for other atoms (full geometry optimization) level of theory.

Model structure	E
CH₃CI	-500.108386688
H ₂ O	-76.430435048
NH ₃	-56.553341719
Me ₂ CO	-193.141728941
5	-3095.085544346
9	-473.142500640
TS1	-576.438049301
5…TS1	-3671.581448575
9…TS1	-1049.653278540
TS2	-326.117020707
5…TS2	-3421.238447412
9TS2	-799.304392198