Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry.

Supplementary Information

On the potential intermediacy of PhlBr_{2} as a brominating agent

Tania, Andrew Molino, Lachlan Sharp-Bucknall, David J. D. Wilson*, and Jason L. Dutton*

Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University,
Melbourne 3086, Australia
i.dutton@latrobe.edu.au

Experimental Section

1.1 Experimental Details

All reagents were purchased from Sigma Aldrich and used as received. Solvents were dried using an Innovative Technologies Solvent Purification System. The dried solvents were stored under N_{2} atmosphere over 3 Å molecular sieves in the glovebox. Deuterated solvents for NMR spectroscopy were purchased from Cambridge Isotope Laboratories and dried by stirring for three days over CaH_{2}, distilled prior to use, and stored in the glovebox over $3 \AA$ molecular sieves. All reactions were performed within a N_{2} filled glove box unless otherwise stated. Glassware was dried in an oven at $120^{\circ} \mathrm{C}$ overnight and transferred to the glovebox port or Schlenk line where it was subjected to three vacuum cycles over 30 minutes prior to use. NMR spectra for all experiments were recorded using Bruker Ultrashield Plus 500 MHz and Ascend 400 MHz spectrometers. The UV-Vis absorptions were recorded using Agilent Technology Cary 300 UV-Vis spectrophotometer. The abbreviations used to report NMR signal multiplicity are $s=\operatorname{singlet}, \mathrm{d}=\mathrm{doublet}, \mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. Other abbreviations used are PIFA $=\mathrm{PhI}(\mathrm{OTFA})_{2}, \mathrm{PIDA}=\mathrm{PhI}(\mathrm{OAc})_{2}$.

1.2 Experimental Methods

a. Synthesis of PIFA

In accordance with procedure reported by Silverio et al, ${ }^{1}$ an RBF was charged with PIDA ($5 \mathrm{~g}, 15.5 \mathrm{mmol}$) under N_{2}. Trifluoroacetic acid (TFA, $8 \mathrm{~mL}, 104.5 \mathrm{mmol}$) was added dropwise to this solid while stirring. This reaction mixture was then heated up to $55^{\circ} \mathrm{C}$ and stirred for 1 hour under N_{2}. After 1 hour, a suspension with white solid was observed. TFA (4 mL) was added dropwise to this suspension to afford a clear solution. The RBF was then placed over an ice bath to cool reaction mixture to $0^{\circ} \mathrm{C}$. A white crystalline solid precipitated out of the solution. The precipitates were filtered via vacuum filtration and washed with pentane. After drying under vacuum, title compound ($5 \mathrm{~g}, 11.6 \mathrm{mmol}, 75 \%$ yield) was obtained as a white crystalline solid. The spectral data was consistent with that previously reported. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.18-8.21(\mathrm{~d}, 2 \mathrm{H}), 7.73-7.76(\mathrm{t}, 1 \mathrm{H}), 7.60-7.64(\mathrm{~d}, 2 \mathrm{H})$
${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-73.4$ (s)

b. Reaction of PIFA with TMSBr

Following the procedure reported by Cossio and Vallribera, ${ }^{2}$ PIFA ($50 \mathrm{mg}, 0.116 \mathrm{mmol}$) was dissolved in 500 $\mu \mathrm{LCDCl}_{3}$ in a reaction vial in glove box. A clear solution was formed. $\operatorname{TMSBr}(18 \mathrm{mg}, 0.116 \mathrm{mmol})$ was added to this solution. The solution turned orange immediately. The reaction contents were transferred to an NMR tube. The NMR was recorded.

c. Reaction of PIFA with 2 equivalents of TMSBr

Following the procedure reported by Cossio and Vallribera, ${ }^{2}$ PIFA ($50 \mathrm{mg}, 0.116 \mathrm{mmol}$) was dissolved in 500 $\mu \mathrm{LCDCl}_{3}$. TMSBr ($36 \mathrm{mg}, 0.232 \mathrm{mmol}$) was added to this solution. The solution turned orange immediately. The reaction contents were transferred to an NMR tube to record NMR. This experiment was also repeated in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

d. Reaction of PIDA with TMSBr

Following the procedure reported by Cossio and Vallribera, ${ }^{2}$ PIDA ($50 \mathrm{mg}, 0.157 \mathrm{mmol}$) was dissolved in 500 $\mu \mathrm{LCDCl}_{3} . \mathrm{TMSBr}(12 \mathrm{mg}, 0.157 \mathrm{mmol})$ was added to this clear solution. The solution turned orange gradually. The reaction contents were transferred to an NMR tube to record NMR.

e. Reaction of PIDA with 2 equivalents of TMSBr

Following the procedure reported by Cossio and Vallribera, ${ }^{2}$ PIDA ($50 \mathrm{mg}, 0.157 \mathrm{mmol}$) was dissolved in 500 $\mu \mathrm{LCDCl}_{3}$. TMSBr ($24 \mathrm{mg}, 0.314 \mathrm{mmol}$) was added to this solution. The solution turned orange immediately. The reaction contents were transferred to an NMR tube to record NMR. This experiment was also repeated in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

f. Reaction of PhI with Br_{2}

Following the procedure reported by Fryberg, ${ }^{3}$ reaction vial was charged with $\mathrm{Phl}(22 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ in 1 mL dry hexane. $\mathrm{Br}_{2}(10 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ was added to this solution at room temperature to afford an orange solution. This solution was then cooled to $-5^{\circ} \mathrm{C}$. A variable temperature NMR experiment was performed to record NMR spectrum of reaction mixture at $-5^{\circ} \mathrm{C},-1{ }^{\circ} \mathrm{C}, 12{ }^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.

g. Bromination of aryl substrates using Br_{2}

A reaction vial was charged with $\mathrm{Br}_{2}(10 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ in 2 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2}. While stirring, 1 equivalent of aryl substrate was added. The reaction mixture was left to stir over-night and the reaction mixture was poured into water. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was collected and dried over MgSO_{4}. The dried filtrate was subject to vacuum on rotavap. The obtained crude product was dissolved in $500 \mu \mathrm{~L}$ of CDCl_{3} for recording NMR.

This experiment was also repeated at NMR scale by dissolving 0.2 mmol of aryl substrate in $500 \mu \mathrm{LCDCl} 3.0 .2$ mmol of Br_{2} was added to this solution and reaction was transferred to an NMR tube to record chemical shifts without work up.

h. Bromination of aryl substrates using PIFA/2 TMSBr

A reaction vial was charged with PIFA ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $500 \mu \mathrm{LCDCl}_{3} . \operatorname{TMSBr}(62 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added to afford an orange-coloured solution. 1 equivalent of aryl substrate was added to this reaction mixture. This mixture was then transferred to an NMR tube to record NMR spectrum.

i. Reaction of PIDA and NaBr

Following the procedure reported by Karade, ${ }^{4}$ PIDA ($50 \mathrm{mg}, 0.157 \mathrm{mmol}$) was dissolved in $500 \mu \mathrm{~L}$ MeOD. $\mathrm{NaBr}(32 \mathrm{mg}, 0.314 \mathrm{mmol})$ was added to this clear solution. The solution turned bright yellow immediately. The reaction contents were transferred to an NMR tube to record the NMR spectrum.

j. Reaction of PIDA and NaBr with Benzaldehyde

Following the procedure reported by Karade, ${ }^{4}$ a reaction flask was charged with benzaldehyde ($106 \mathrm{mg}, 1$ mmol) and $\mathrm{NaBr}(205 \mathrm{mg}, 2 \mathrm{mmol})$ in 15 mL MeOH . PIDA ($322 \mathrm{mg}, 1 \mathrm{mmol}$) was added to this clear solution while stirring. The solution turned bright yellow gradually. After 2 hours of stirring, $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added. The product was extracted using DCM and dried over MgSO_{4}. The solvent was removed under vacuum to obtain crude product. This product was then dissolved in CDCl_{3} to record NMR.

k. Reaction of Br_{2} with Benzaldehyde

A reaction flask was charged with benzaldehyde ($106 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{Br}_{2}(159 \mathrm{mg}, 1 \mathrm{mmol})$ in 15 mL MeOH . The solution turned bright orange. After 2 hours of stirring, $10 \mathrm{mLH}_{2} \mathrm{O}$ was added. The product was extracted using DCM and dried over MgSO_{4}. The solvent was removed under vacuum to obtain crude product. This product was then dissolved in CDCl_{3} to record NMR. This experiment was also repeated in presence of Phl.

I. Reaction of PIDA and [NBu_{4}] [Br]

Following the procedure reported by Uchiyama, ${ }^{5}$ PIDA ($14 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in $500 \mu \mathrm{~L} \mathrm{CD}_{2} \mathrm{Cl}_{2}$. [NBu_{4}] Br] ($14 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added to this clear solution. The solution turned bright yellow gradually. The reaction contents were transferred to an NMR tube to record the NMR spectrum. ESI/MS was recorded for reaction aliquot in negative polarity.

m. Reaction of PIDA and [$\left.\mathrm{NHex}_{4}\right][\mathrm{Br}]$

Following the procedure reported by Uchiyama, ${ }^{5}$ PIDA ($14 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in $500 \mu \mathrm{~L} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. [NHex_{4}][Br] ($21 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added to this clear solution. The solution turned bright yellow gradually. $\mathrm{ESI} / \mathrm{MS}$ was recorded for resulting solution in negative polarity.

n. Immediately monitored reactions of PIFA/TMSBr and Br_{2} with anisole.

i. PIFA/2 TMSBr

An NMR tube was charged with a solution of PIFA ($41.6 \mathrm{mg}, 0.097 \mathrm{mmol}$) and $\operatorname{TMSBr}(32 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $500 \mu \mathrm{CDCl}_{3}$ and inverted several times to reach homogeneity. After allowance of 3 minutes reaction time, anisole (10.5, $\mu \mathrm{L} 0.98 \mathrm{mmol}$) was then added and the tube was again inverted several times. ${ }^{1} \mathrm{H}$ NMR spectra were obtained within 5 minutes.

ii. $\quad \mathrm{Br}_{2}$

To an NMR tube charged with $500 \mu \mathrm{LCDCl}_{3}$ was added $\mathrm{Br}_{2}(15 \mu \mathrm{~L}, 0.291 \mathrm{mmol})$ which was inverted several times to homogeneity. Anisole ($31.5 \mu \mathrm{~L}, 0.294 \mathrm{mmol}$) was then added and the tube was again inverted several times. ${ }^{1} \mathrm{H}$ NMR spectra were obtained within 5 minutes. This experiment was repeated with 2 equivalents of Br_{2} and ${ }^{1} \mathrm{H}$ NMR was recorded.

o. Reference NMR chemical shifts

Phl: Commercial Sample
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.71(\mathrm{~d}, 2 \mathrm{H}), 7.32-7.35(\mathrm{t}, 1 \mathrm{H}), 7.09-7.12(\mathrm{t}, 2 \mathrm{H})$

Phenyl iodo bis(trifluoroacetate) (PIFA): Synthesised using reported procedure. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.18-8.21 (d, 2H), 7.73-7.76 (t, 1H), 7.60-7.64 (t, 2H)

${ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.4$ (s)

Phenyl iodo diacetate (PIDA): Commercial sample
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.09(\mathrm{~d}, 2 \mathrm{H}), 7.57-7.61(\mathrm{t}, 1 \mathrm{H}), 7.47-7.51(\mathrm{t}, 2 \mathrm{H})$

Anisole: Commercial sample
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.39(\mathrm{t}, 2 \mathrm{H}), 7.01-7.04(\mathrm{t}, 1 \mathrm{H}), 6.97-7.00(\mathrm{t}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$

p-Bromo anisole: Commercial sample
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.37-7.39 (d, 2H), 6.78-6.80 (d, 2H), 3.80 (s, 3H)

o,p-dibromo anisole: Commercial sample

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.67-7.66(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.39(\mathrm{~d}, 1 \mathrm{H}), 6.76-6.78(\mathrm{~d}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$

1,3,5-Trimethoxybenzene: Commercial sample
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.09(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 9 \mathrm{H})$

2-Bromo-1,3,5-trimethoxybenzene: Compared with reported chemical shift ${ }^{6}$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.17$ (s, 2H), 3.88 ($\mathrm{s}, 6 \mathrm{H}$), 3.82 ($\mathrm{s}, 3 \mathrm{H}$)

2,6-Dibromo-1,3,5-trimethoxybenzene: Compare with reported chemical shift ${ }^{6}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.36(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$

Salicylic Acid: Commercial sample
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.38(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.95(\mathrm{~d}, 1 \mathrm{H}), 7.52-7.54(\mathrm{t}, 1 \mathrm{H}), 7.01-7.03(\mathrm{~d}, 1 \mathrm{H}), 6.93-$
 6.97 ($\mathrm{t}, 1 \mathrm{H}$)

4-Bromo-2-hyroxybenzoic acid: Compared with reported chemical shift ${ }^{7}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.63(\mathrm{~d}, 1 \mathrm{H}), 6.92-6.94(\mathrm{~d}, 1 \mathrm{H})$

1,4-dimethoxybenzene: Commercial sample
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85(\mathrm{~s}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$

2-Bromo-1,4-dimethoxybenzene: Compared with reported chemical shift ${ }^{8}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$

Mesitylene: Commercial sample
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 9 \mathrm{H})$

Bromo mesitylene: Compared with reported chemical shift ${ }^{8}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$

Benzaldehyde: Commercial sample
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.89(\mathrm{~d}, 2 \mathrm{H}), 7.60-7.64(\mathrm{t}, 1 \mathrm{H}), 7.51-7.54(\mathrm{t}, 2 \mathrm{H})$

p. UV-Vis Absorption experiments
i. Br_{2}

In a volumetric flask, a 0.04 M solution of Br_{2} was prepared by dissolving $\mathrm{Br}_{2}(10 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ in 5 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was further diluted to prepare several dilutions. These dilutions were used to record absorption from wavelength range 190 nm to 800 nm . This experiment was also repeated using methanol as solvent.

ii. $\quad \mathrm{Phl}+\mathrm{Br}_{2}$

In a volumetric flask, a 0.04 M solution of Phl was prepared by dissolving $\mathrm{Phl}(42 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 5 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\mathrm{Br}_{2}(10 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ was added to this solution to form an orange solution. This solution was further diluted to prepare several dilutions. These dilutions were used to record absorption from wavelength range 190 nm to 800 nm . This experiment was also repeated using methanol as solvent.

iii. PIFA + TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

In a volumetric flask, a 4 mM solution of PIFA was prepared by dissolving PIFA ($17.2 \mathrm{mg}, 0.04 \mathrm{mmol}$) in $10 \mathrm{mLCH} \mathrm{Cl}_{2}$. $\mathrm{TMSBr}(6.12 \mathrm{mg}, 0.04 \mathrm{mmol})$ was added to this solution to form an orange solution. This solution was further diluted to prepare several dilutions. These dilutions were used to record absorption from wavelength range 190 nm to 800 nm .

iv. PIFA + 2 TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

In a volumetric flask, a 4 mM solution of PIFA was prepared by dissolving PIFA ($17.2 \mathrm{mg}, 0.04 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. TMSBr ($12.2 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added to this solution to form an orange solution. This solution was used to record absorption from wavelength range 190 nm to 800 nm over time.

v. PIDA + 2 NaBr in MeOH

In a volumetric flask, a 0.04 M solution of PIDA was prepared by dissolving PIDA ($64 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 5 $\mathrm{mL} \mathrm{MeOH} . \mathrm{NaBr}(41 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added to this solution to form a bright yellow solution. This solution was further diluted to prepare several dilutions. These dilutions were used to record absorption from wavelength range 190 nm to 800 nm .

1.3 NMR Investigations

a. Phl

Figure $\mathrm{S} 1:{ }^{1} \mathrm{H}$ NMR spectrum of Phl in CDCl_{3} (inset) aryl region of the spectrum.

Figure $\mathrm{S} 2:{ }^{1} \mathrm{H}$ NMR spectrum of Phl in hexane (inset) aryl region of the spectrum.

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of Phl in MeOD (inset) aryl region of the spectrum.
b. $\mathrm{Phl}+\mathrm{Br}_{2}$

Figure $\mathrm{S} 4:{ }^{1} \mathrm{H}$ NMR spectrum of Phl and Br_{2} in CDCl_{3} (inset) aryl region of spectrum.

Figure $\mathrm{S} 5:{ }^{1} \mathrm{H}$ NMR spectrum of Phl and Br_{2} in hexane (inset) aryl region of spectrum.

Figure $\mathrm{S} 6:{ }^{1} \mathrm{H}$ NMR spectra stack of PhI and Br_{2} in hexane at variable temperatures (top to bottom) i. $25^{\circ} \mathrm{C}$ ii. $12{ }^{\circ} \mathrm{C}$ iii. $-1{ }^{\circ} \mathrm{C}$ and iv. $-5^{\circ} \mathrm{C}$.
c. PIFA

Figure $\mathrm{S7}:{ }^{1} \mathrm{H}$ NMR spectrum of PIFA in CDCl_{3} (inset) aryl region of spectrum.

Figure $\mathrm{S} 8:{ }^{19} \mathrm{~F}$ NMR spectrum of PIFA in CDCl_{3}.
d. PIFA $+x$ TMSBr

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of PIFA and 2 equivalents of TMSBr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S10: ${ }^{19} \mathrm{~F}$ NMR spectrum of PIFA and 2 equivalents of TMSBr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of PIFA and excess TMSBr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S12: ${ }^{19} \mathrm{~F}$ NMR spectrum of PIFA and excess TMSBr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of PIFA and 1 equivalent of TMSBr in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S14: ${ }^{19} \mathrm{~F}$ NMR spectrum of PIFA and 1 equivalent of TMSBr in CDCl_{3}.

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum of PIFA and 2 equivalents of TMSBr in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S16: ${ }^{19} \mathrm{~F}$ NMR spectrum of PIFA and 2 equivalents of TMSBr in CDCl_{3}.

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum of PIFA and 3 equivalents of TMSBr in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S18: ${ }^{19} \mathrm{~F}$ NMR spectrum of PIFA and 3 equivalents of TMSBr in CDCl_{3}.

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectra stack of PIFA and 2 equivalents of TMSBr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at variable temperatures (top to bottom) i. $25^{\circ} \mathrm{C}$ ii. $12{ }^{\circ} \mathrm{C}$ iii. $2{ }^{\circ} \mathrm{C}$ iv. $-8{ }^{\circ} \mathrm{C}$ v. $-18{ }^{\circ} \mathrm{C}$ vi. $-28^{\circ} \mathrm{C}$ vii. $-38^{\circ} \mathrm{C}$ and viii. $-43^{\circ} \mathrm{C}$.
e. PIDA + 2TMSBr

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum of PIDA and 2 equivalents of TMSBr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of PIDA and excess TMSBr in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S22: ${ }^{1} \mathrm{H}$ NMR spectrum of PIDA and 1 equivalent of TMSBr in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum of PIDA and 2 equivalents of TMSBr in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum of PIDA and 3 equivalents of TMSBr in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.
f. Bromination of anisole

Figure $\mathrm{S} 25:{ }^{1} \mathrm{H}$ NMR spectrum of reaction of anisole and Br_{2} under N_{2} in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S26: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of anisole and 2 equivalents of Br_{2} in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum stack of reaction of anisole and 2 equivalents of Br_{2} in CDCl_{3} over time showing formation of dibromo anisole.

Figure S28: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of anisole and $\mathrm{PIFA} / 2 \mathrm{TMSBr}$ in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S29: ${ }^{19} \mathrm{~F}$ NMR spectrum of reaction of anisole and $\mathrm{PIFA} / 2 \mathrm{TMSBr}$ in CDCl_{3}.

Figure S30: Stacked in situ ${ }^{1} \mathrm{H}$ NMR spectra after 5 minutes of PIFA/ 2 TMSBr (red) and Br_{2} (blue) with anisole in CDCl_{3}.
g. Bromination of 1,3,5-trimethoxy benzene

Figure S31: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of 1,3,5-trimethoxy benzene and Br_{2} under N_{2} in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S32: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of 1,3,5-trimethoxy benzene and PIFA/2 $\mathrm{TMSBr}^{\text {in }} \mathrm{CDCl}_{3}$ (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S33: ${ }^{19} \mathrm{~F}$ NMR spectrum of reaction of 1,3,5-trimethoxy benzene and PIFA/2TMSBr in CDCl_{3}.
h. Bromination of Salicylic acid

Figure S34: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of salicylic acid and Br_{2} under N_{2} in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound where $\mathrm{SA}=$ salicylic acid and BSA = bromo salicylic acid.

Figure S35: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of salicylic acid and $\mathrm{PIFA} / 2 \mathrm{TMSBr}$ in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound where $\mathrm{SA}=$ salicylic acid and BSA = bromo salicylic acid.

Figure S36: ${ }^{19} \mathrm{~F}$ NMR spectrum of reaction of salicylic acid and PIFA/2TMSBr in CDCl_{3}.
i. Bromination of 1,4-dimethoxy benzene

Figure S37: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of 1,4-dimethoxy benzene and Br_{2} under N_{2} in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S38: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of 1,4-dimethoxy benzene and PIFA/2TMSBr in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound.

Figure S39: ${ }^{19} \mathrm{~F}$ NMR spectrum of reaction of 1,4-dimethoxy benzene and PIFA/2TMSBr in CDCl_{3}.
j. Bromination of Mesitylene

Figure S40: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of mesitylene and Br_{2} under N_{2} in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound where $\mathrm{M}=$ mesitylene, $\mathrm{BM}=$ bromo mesitylene and $D B B=3,5$-dimethylbenzyl bromide.

Figure S41: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of mesitylene and $\mathrm{PIFA} / 2 \mathrm{TMSBr}$ in CDCl_{3} (inset) aryl region of spectrum with peaks labelled to corresponding compound where $B M=$ bromo mesitylene.

Figure S42: ${ }^{19} \mathrm{~F}$ NMR spectrum of reaction of mesitylene and $\mathrm{PIFA} / 2 \mathrm{TMSBr}$ in CDCl_{3}.
k. $\mathrm{PIDA}+2 \mathrm{NaBr}$

Figure S43: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of PIDA/2 NaBr in MeOD (inset) aryl region of spectrum with peaks labelled to corresponding compound.
I. PIDA $+2 \mathrm{NaBr}+$ Benzaldehyde

Figure S44: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of PIDA/ 2 NaBr and benzaldehyde in MeOD (inset) aryl region of spectrum with peaks labelled to corresponding compound where $B=$ benzaldehyde and $M B=$ Methyl benzoate.
m. $\mathrm{Br}_{2}+$ Benzaldehyde

Figure S45: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of Br_{2} and benzaldehyde in MeOD (inset) aryl region of spectrum with peaks labelled to corresponding compound where $\mathrm{B}=$ benzaldehyde and $\mathrm{MB}=$ Methyl benzoate.
n. PIDA $+\left[\mathrm{NBu}_{4}\right][\mathrm{Br}]$

Figure S46: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of PIDA and $[\mathrm{NBu} 4][\mathrm{Br}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (inset) aryl region of spectrum with peaks labelled to corresponding compound.
o. PIDA $+2\left[\mathrm{NBu}_{4}\right][\mathrm{Br}]$

Figure S47: ${ }^{1} \mathrm{H}$ NMR spectrum of reaction of PIDA and 2 equivalents of $\left[\mathrm{NBu}_{4}\right][\mathrm{Br}]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (inset) aryl region of spectrum with peaks labelled to corresponding compound.

1.4 UV-Vis Investigations

a. Br_{2}

Figure S48: Absorbance vs. wavelength plot for various dilutions of Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S49: Absorbance at $\lambda_{\text {max }}$ for different dilutions of Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S50: Absorbance for different dilutions of Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\lambda_{\text {max }}$ wavelength.

Figure S51: Absorbance vs. wavelength plot for $4 \mathrm{mM} \mathrm{Br}_{2}$ in MeOH .

Figure S52: $\lambda_{\max }$ wavelength for $4 \mathrm{mM} \mathrm{Br}_{2}$ in MeOH .
b. $\mathrm{Phl}+\mathrm{Br}_{2}$

Figure S53: Absorbance vs. wavelength (nm) plot for Br_{2} and PhI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S54: $\lambda_{\text {max }}$ wavelength for $4 \mathrm{mM} \mathrm{Br}_{2}$ and PhI in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S55: Absorbance vs. wavelength (nm) plot for $4 \mathrm{mM} \mathrm{Br}_{2}$ and Phl in MeOH .

Figure S56: $\lambda_{\text {max }}$ wavelength for $4 \mathrm{mM} \mathrm{Br}_{2}$ and Phl in MeOH .
c. PIFA +TMSBr

Figure S57: Absorbance vs. wavelength (nm) plot for 4 mM PIFA and 1 equivalent of TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S58: $\lambda_{\max }$ wavelength for 4 mM PIFA and 1 equivalent of TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
d. PIFA +2 TMSBr

Figure S59: Absorbance vs. wavelength (nm) plot for 4 mM PIFA and 2 equivalents of TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S60: $\lambda_{\max }$ wavelength for 4 mM PIFA and 2 equivalents of TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S61: $\lambda_{\max }$ wavelength for 4 mM solution of PIFA and 2 equivalents of TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over time.

Figure S62: $\lambda_{\max }$ for 4 mM solutions of $\mathrm{Br}_{2}, \mathrm{PhI}+\mathrm{Br}_{2}, \mathrm{PIFA}+\mathrm{TMSBr}$, and PIFA and 2 equivalents of TMSBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
e. $\mathrm{PIDA}+2 \mathrm{NaBr}$

Figure S63: Absorbance vs. wavelength (nm) plot for 0.04 M PIDA and 2 equivalents of NaBr in MeOH .

Figure S64: $\lambda_{\max }$ wavelength for 0.04 M PIDA and 2 equivalents of NaBr in MeOH .

1.5 ESI-MS Investigations

Figure S65: ESI-MS (negative polarity) of PIDA + [$\left.\mathrm{NBu}_{4}\right][\mathrm{Br}]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and species responsible for major signal (inset) isotope pattern for major signal.

Figure S66: ESI-MS (negative polarity) of PIDA + [$\left.\mathrm{NHex}_{4}\right][\mathrm{Br}]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and species responsible for major signal (inset) isotope pattern for major signal.

Computational Section

2.1 Computational Details

Geometry optimizations with ω B97X-D3(BJ) were carried out in Orca 5.0.3. ${ }^{9}$ The def2-SVP and def2-TZVP basis sets ${ }^{10}$ (and associated ECP for iodine) ${ }^{10,11}$ were used in addition to the resolution of identity approximations (RIJCOSX) for both Coulomb and Hartree-Fock exchange integrals with the def $2 / \mathrm{J}^{12}$ and def2 $/ \mathrm{C}^{13}$ auxiliary basis sets. A tight SCF convergence criterion ($\pm 1.0 \mathrm{E}-08 \mathrm{au}$) was employed in all calculations. Solvation was included in all calculations utilising the $\mathrm{CPCM}{ }^{14}$ models with parameters for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Vibrational frequency calculations were carried out analytically at the same level of theory as any geometry optimization calculation. Within Orca, transition state optimizations employed default algorithms (optts keyword) or the NEB-TS approach. ${ }^{15}$ Intrinsic reaction coordinate (IRC) calculations were carried out for all optimized transition state structures.

Geometry optimizations with B3LYP-D3, B3LYP-D3(BJ), M06-2X, and ω B97XD were carried out in Gaussian 09 Rev E. 01^{16} and Gaussian 16 Rec C.01. ${ }^{17}$ Default parameters were employed unless specified. Vibration frequency calculations were performed for all optimized stationary points on the potential energy surface to confirm that minima had no imaginary frequencies, while transition states had one imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were carried out within Gaussian 09 using the LQA algorithm with 100 steps. The McGrath and Radom ${ }^{18} 6-31+G(d)$ basis set for Br was taken from the internal library in Gaussian. The Rassolov ${ }^{19} 6-31+G(d)$ basis for Br was employed by use of the GTBas1 keyword in Gaussian. Solvation was included in all calculations. In Gaussian 09, a polarizable continuum model (PCM) model was utilised, while in Gaussian 16 a PCM model was employed together with Truhlar's SMD model. In all instances a solvent of dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was utilised.

Single-point energy calculations were carried out within Orca 5.0.3 ${ }^{9}$ with a range of DFT functionals (PW6B95D3(BJ), B97M-D4, ω B97X-D3(BJ), ω B97M-D3(BJ), ω B97M-V, B97M-D4) and DLPNO-CCSD(T) ${ }^{20,21}$, DLPNOMP2 ${ }^{22,}{ }^{23}$ and RI-SCS-MP2, ${ }^{24}$ which utilised the SMD ${ }^{25}$ solvation model.

2.2 Formation of PhlBr_{2} from $\mathrm{Phl}+\mathrm{Br}_{2}$

The results of various methods and basis sets are presented in Table S1 to assess basis set and electronic structure method dependence. All methods indicate that formation of PhlBr_{2} from Phl and Br_{2} is endergonic. Calculated $\Delta G_{\text {corr }}$ is consistently $37-47 \mathrm{~kJ} / \mathrm{mol}$; using any of these values would still lead to all single-point energy calculations being endergonic.

Table S1: Calculated $\Delta \mathrm{G}$ of $\mathrm{Phl}+\mathrm{Br}_{2} \rightarrow \mathrm{PhIBr}_{2}$. Units of $\mathrm{kJ} /$ mol. Geometry and thermal corrections calculated at the same level of theory unless noted. ${ }^{\text {a }}$

Method	Basis Sets			ΔE	ΔG	$\Delta G_{\text {corr }}$
	C, H	Br	1			
B3LYP-D3 (PCM)	6-31+G(d)	6-31+G(d) internal	LANL2DZ	18.9	58.2	39.3
B3LYP-D3 (PCM)	6-31+G(d)	6-31+G(d) (GTbas1)	LANL2DZ	31.0	70.0	39.0
B3LYP-D3 (PCM)	6-31+G(d)	6-31+G(d) internal	def2-SVP	-26.7	14.0	40.7
B3LYP-D3 (PCM)	$6-31+G(d)$	6-31+G(d) (GTbas1)	def2-SVP	-17.7	24.3	42.0
B3LYP-D3 (PCM)	6-31+G(d)	def2-SVP	def2-SVP	-18.7	18.3	37.0
B3LYP-D3 (PCM)	def2-SVP	def2-SVP	def2-SVP	-8.8	31.0	39.8
M06-2X (PCM,SMD)	def2-TZVP	def2-TZVP	def2-TZVP	-5.5	36.3	41.8
ω ¢97XD (PCM, SMD)	def2-TZVP	def2-TZVP	def2-TZVP	-6.9	38.9	45.8
	def2-SVP	def2-SVP	def2-SVP	-16.7	29.2	45.9
$\omega \mathrm{B97X}$-D3(BJ) (CPCM)	def2-TZVP	def2-TZVP	def2-TZVP	-25.5	21.6	47.1
B3LYP-D3/6-31+G(d),LANL2DZ (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) geometry ${ }^{\text {b }}$						45.8
PW6B95-D3(BJ)	def2-TZVP			-4.6	41.2	
B97M-D4	def2-TZVP			-22.3	24.8	
MP2 ${ }^{\text {c }}$	def2-TZVP			-4.6	41.2	
DLPNO-MP2 (CPCM,SMD)	def2-TZVPP			-15.6	30.2	
RI-SCS-MP2 (CPCM,SMD)	def2-TZVPP			-0.1	45.7	
DLPNO-CCSD(T) (CPCM)	def2-TZVPP			4.6	50.3	
DLPNO-CCSD (T) (CPCM, SMD)	def2-TZVPP			2.0	47.8	
ω B97X-D3(BJ)/def2-TZVP ($\mathrm{CPCM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) geometry ${ }^{\text {b }}$						47.1
ω B97M-D3(BJ) (SMD)	def2-TZVP			5.1	52.2	
$\omega \mathrm{B97M}-\mathrm{V}$ (SMD)	def2-TZVP			-1.3	45.8	
B97M-D4 (CPCM)	def2-TZVP			-31.7	15.5	
PW6B95-D3(BJ) (CPCM)	def2-TZVP			-22.3	24.8	
DLPNO-MP2 (CPCM, SMD)	def2-TZVPP			-15.9	31.3	
RI-SCS-MP2 (CPCM, SMD)	def2-TZVPP			1.4	48.5	
DLNO-CCSD(T) (CPCM)	def2-TZVPP			6.7	53.8	
DLNO-CCSD(T) (CPCM, SMD)	def2-TZVPP			4.3	51.4	

${ }^{\text {a }}$ PCM solvent model with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent unless noted. Pure spherical harmonic d,f functions employed in all calculations. $\Delta G_{\text {corr }}$ is the free energy correction ($\Delta G-\Delta E$).
${ }^{\mathrm{b}}$ Tabled ΔG is the sum of the electronic energies and thermal correction ($G_{\text {corr }}$) calculated at the same level of theory as the geometry optimization.

The first four rows in Table S1 with B3LYP-D3 indicate with the McGrath and Radom (internal) and Rassolov $6-31+G(d)$ basis sets for Br give slightly different results, with the Rassolov basis set yielding ΔG that is about $10 \mathrm{~kJ} / \mathrm{mol}$ more positive. However, the qualitative conclusions are similar with both predicting an exergonic dissociation reaction. Larger differences arise between the LANL2DZ and def2-SVP basis sets and associated ECPs. Different DFT functionals yield similar results with def2 basis sets. Single-point calculations with DLPNO$\operatorname{CCSD}(T)$ and MP2 variants (MP2, DLPNO-MP2, RI-SCS-MP2) similarly indicate that the formation reaction is endergonic.

2.3 Reproduction of $\mathrm{PhIBr}_{2}+$ anisole mechanism from Cossio and Vallribera. ${ }^{2}$

We were able to reproduce the SI results reported by Cossio and Vallribera ${ }^{2}$ using the specified method (B3LYP-D3/6-31+G(d),LANL2DZ(iodine) with $\mathrm{PCM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvation within Gaussian 09 Rev E. 01 for the reaction of PhIBr 2 and anisole. The reaction mechanism for two Br_{2} reacting with anisole (Figure 3 from Cossio and Vallribera) appears to use an ECP for Br (possibly LANL2DZ).

We reproduced both the geometries and energies reported in the SI by Cossio and Vallribera. ${ }^{2}$ Some discrepancies are noted between the geometry parameters provided by Cossio and Vallribera² in Figure 1 of their manuscript and from the Cartesian coordinates given in the SI. It is assumed that these differences in geometry parameters are simple transcription errors. This is illustrated in Figure S67, with key bond distance parameters for in initial vdW complex (RC1 from Ref 2 is labelled RC2 in our current work) and the initial transition state (TS1 from Ref 2 is labelled TS2 in the current work) associated with bromination of methoxybenzene (anisole). In Figure S67, the black-coloured values are from Figure 1 (Cossio and Vallribera²), red-coloured values from the geometries provided in the SI, and blue-coloured values from our optimized B3LYP-D3(BJ)/def2-SVP (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) calculations.

Figure S67. Optimised geometries of (a) RC2 and (b) TS2. Bond distances, black - as reported by Cossio and Vallribera ${ }^{2}$ Figure 1, red - obtained from XYZ coordinates provided by Cossio and Vallribera ${ }^{2}$ supplementary data, blue - B3LYP-D3(BJ)/def2-SVP ($\mathrm{PCM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) optimised geometries.

A number of methods were utilized to explore the reaction mechanism of PhIBr_{2} and anisole proposed by Cossio and Vallribera ${ }^{2}$ (Figure 1 in Ref. 2), with results presented in Table S2. Single-point calculations were carried out with B3LYP-D3, B3LYP-D3(BJ), M06-2X, and wB97XD density functionals at the optimized geometries reported by Cossio and Vallribera ${ }^{2}$. Calculated electronic energies (E_{e}) were converted to ΔG values by adding the Gibb's free energy correction ($\Delta G_{\text {corr }}$) from B3LYP-D3/6-31+G(d),LALN2DZ (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) calculations. Separate geometry optimizations were also carried out with B3LYP-D3, B3LYP-D3(BJ), M06-2X, and wB97XD density functionals.

Table S2: Calculated ΔG of the potential energy surface for the reaction of PhlBr_{2} and methoxybenzene (anisole). All results given as $\Delta \mathrm{G}$ relative to PhIBr 2 and anisole, in units of $\mathrm{kJ} / \mathrm{mol}$.

	Method ${ }^{\text {a }}$	RC1	TS1	syn-INT1	anti-INT1	Barrier
1	B3LYP-D3/6-31+G(d),LANL2DZ (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) Ref 2. SI data	25.2	118.2	21.7	16.8	93.0
2	B3LYP-D3/6-31+G(d),LANL2DZ (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G09 (6D)	25.2	118.2	21.7	16.8	93.0
3	B3LYP-D3/6-31+G(d),LANL2DZ (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) opt G09 (6D)	25.2	118.2	21.7	16.8	93.0
4	B3LYP-D3/6-31+G(d),LANL2DZ (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G09 (5D)	9.4	102.4	5.9	1.1	93.0
5	B3LYP-D3/6-31+G(d),LANL2DZ (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) opt G16 (5D)	22.3	118.7	20.9	17.7	96.4
6	B3LYP-D3/6-31+G(d),GTBas1,LANL2DZ(PCM, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{SP}$ G09(5D)	11.6	103.5	10.7	5.6	91.9
7	B3LYP-D3/6-31+G(d), def2-SVP (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G09 (6D)	7.6	133.2	49.6	44.8	125.6
8	B3LYP-D3/def2-SVP (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G09 (5D)	7.0	140.4	61.7	59.5	133.4
9	B3LYP-D3(BJ)/def2-SVP (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G09 (5D)	5.3	140.8	69.4	68.0	135.5
10	B3LYP-D3(BJ)/def2-SVP (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) opt G09 (5D)	6.9	148.7	62.5	58.5	141.8
11	B3LYP-D3(BJ)/def2-TZVP (PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G09 (5D)	13.0	151.8	80.0	75.6	138.8
12	M06-2X/def2-SVP (PCM, SMD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G16 (5D)	20.1	212.6	77.7	76.0	192.5
13	M06-2X/def2-TZVP (PCM,SMD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G16 (5D)	27.1	226.2	89.1	83.8	199.1
14	$\omega \mathrm{B97XD} /$ def2-TZVP (PCM, SMD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G16 (5D)	27.7	226.4	85.5	77.2	198.7
15	MP2/def2-TZVP (PCM, SMD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) SP G16 (5D)	9.5	242.2	85.7	80.0	232.8
16	DLPNO-MP2/def2-TZVPP (CPCM,SMD) ${ }^{\text {b }}$	12.6	248.5	80.9	80.4	235.9
17	RI-SCS-MP2/def2-TZVPP (CPCM,SMD) ${ }^{\text {b }}$	22.5	246.0	75.1	73.5	223.5
18	DLPNO-CCSD(T)/def2-TZVPP (CPCM) ${ }^{\text {c }}$	15.9	217.8	40.3	36.3	201.9
19	DLPNO-CCSD(T)/def2-TZVPP (CPCM,SMD) ${ }^{\text {c }}$	22.4	255.9	72.6	72.4	233.5

${ }^{\text {a }}$ SI refers to energetics reported in the Supporting Information by Cossio and Vallribera²; 'opt' refers to results from optimized geometries at the listed level of theory, 'SP' refers to single-point energies calculated at the geometries reported by Cossio and Vallribera', converted to ΔG by the addition of $G_{\text {corr }}$ from Cossio and Vallribera. ${ }^{2}$ G09 and G16 refer to Gaussian 09 Rev E. 01 and Gaussian 16 Rec C.01, respectively. 5D indicates that the $6-31+G(d)$ basis set uses pure d functions, whereas $6 D$ indicates that the $6-31+G(d)$ basis set uses Cartesian d functions.
${ }^{\mathrm{b}}$ CPCM with SMD solvation model. Calculated electronic energies at ω b97XD/def2-TZVP(PCM,SMD) optimized geometries. ΔG is the sum of the electronic energies and thermal correction ($G_{\text {corr }}$) calculated at the ω b97XD/def2-TZVP(PCM,SMD) level of theory.
${ }^{c}$ CPCM without SMD solvation model. Calculated electronic energies at ω b97XD/def2-TZVP(PCM,SMD) optimized geometries. ΔG is the sum of the electronic energies and thermal correction ($G_{\text {corr }}$) calculated at the ω b97XD/def2-TZVP (PCM,SMD) level of theory.

The first three rows (Table S2) reproduce the calculated energetics from Cossio and Vallribera. ${ }^{2}$ The energies included in the SI of Ref. 2 can be reproduced exactly as shown in rows 2 and 3 (single-point energies and optimized geometries). There are some transcription errors from the SI data to Figure 1 in Ref. 2, however the SI data is correct and reproducible.

Comparison of Row 2 and 4 illustrates the impact of using pure (5 d) functions (Row 4) in comparison with Cartesian (6d) functions (Row 2). The relative free energies are generally 10-15 kJ/mol smaller in magnitude with pure 5 d functions in comparison with Cartesian 6d functions. By coincidence, the barrier height is the same when using pure d or Cartesian d functions.

Comparison of rows 2 and 7 illustrates the impact of the iodine basis set. Replacing the LANL2DZ basis and ECP with def2-SVP (ECP28MWB) results in the barrier increasing by $33 \mathrm{~kJ} / \mathrm{mol}$. Similarly, the relative free
energies of each component of the reaction are qualitatively different. The LANL2DZ basis and ECP is quite dated, and its use for modern computational work is not recommended.

The third set of results in Table S2 (rows 7-11) utilise the def2-SVP basis set. Here the barrier is calculated to be 125.6 to $141.8 \mathrm{~kJ} / \mathrm{mol}$. Similarly, results with M06-2X (rows 12-13) and ω B97XD (row 14) give a barrier of nearly $200 \mathrm{~kJ} / \mathrm{mol}$. Finally, in rows 15-19 the use of MP2 and $\operatorname{CCSD}(\mathrm{T})$ variants yields even higher barriers that exceed $200 \mathrm{~kJ} / \mathrm{mol}$. It is concluded that the B3LYP-D3/6-31+G(d),LANL2DZ calculated barrier is too low compared to higher-level calculations.

IRC calculations were carried out for TS1 identified by Cossio and Vallribera² (labelled TS2 in the present work) at the B3LYP-D3/6-31+G(d),LANL2DZ(PCM, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ level of theory. TS1 is clearly connected to RC1 (Figure S68, (a) reverse reaction). However, following the reaction coordinate in the opposite direction leads to an alternative structure that is different from Int1-anti and Int1-syn reported by Cossio and Vallribera. ${ }^{2}$

Following the IRC forward path, a newly optimized Int1new structure (Figure S69) was located that is in better agreement with the IRC results. The non-bonded Br atom lies in the plane of the anisole ring. Here Int1new $\left(E_{\mathrm{e}}=-5732.64333417 \mathrm{au}, \Delta G=-5732.47286 \mathrm{au}\right)$ lies $41.0 \mathrm{~kJ} / \mathrm{mol}$ higher in free energy than the reactants ($\mathrm{PhIBr}_{2}+$ anisole).
(a) Reverse reaction
(b) TS2
(c) Forward reaction

Figure S68: Results from IRC calculation (100 steps).

Figure S69: B3LYP-D3/6-31+G(d),LANL2DZ(PCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) optimized geometry of Int1new.

2.4 Reaction of PhlBr_{2} and MeOPh (anisole)

We carried out a full investigation of the mechanism of $\mathrm{PhIBr}_{2}+$ anisole at the ω B97X-D3(BJ)/def2-TZVP (CPCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) level of theory. Results and discussion are presented in the manuscript. Cartesian coordinates of all optimized geometries are provided below.
2.5 Optimised ω B97X-D3(BJ)/def2-TZVP (CPCM, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) Cartesian Coordinates (A)

Ph

E $\mathrm{E}_{\text {e }}=-529.639640411961$ hartree			
I	-0.00218400	-0.91631000	0.00000300
C	0.00221900	1.17027600	0.00000000
C	0.00830100	3.93889100	-0.00000100
C	0.00064100	1.85177700	1.21058800
C	0.00675500	1.85176300	-1.21058800
C	0.00981100	3.24256200	-1.20348100
C	0.00372600	3.24257700	1.20347900
H	-0.00294200	1.30780200	2.14762800
H	0.00790600	1.30777600	-2.14762700
H	0.01340400	3.78079700	-2.14519700
H	0.00254300	3.78082300	2.14519500
H	0.01071200	5.02334800	-0.00000200

Br_{2}
$\mathrm{E}_{\mathrm{e}}=-5148.1298211612$ hartree

Br	0.00000000	0.00000000	1.13769800
Br	0.00000000	0.00000000	-1.13769800

RC1
$\mathrm{E}_{\mathrm{e}}=-5677.7747656734$ hartree

I	-0.43619000	-0.33607600	-1.82829600
C	0.33683700	0.37078700	-0.02676600
C	1.58184900	0.98642400	-0.01277300
C	2.08497100	1.46798200	1.19073500
C	1.35005200	1.33254400	2.36343300
C	0.10669300	0.71052000	2.33410400
C	-0.40825400	0.22642200	1.13647500
H	-1.37878100	-0.25460600	1.11090800
H	-0.47032800	0.59962500	3.24576300
H	1.74643400	1.71068100	3.29930800
H	3.05500600	1.95310400	1.20685800
H	2.14996500	1.09786800	-0.92852500
Br	-2.13861300	3.28524400	-0.56855800
Br	-0.18705600	3.70138000	-1.65533200

$\mathrm{E}_{\mathrm{e}}=-5677.69109717658$ hartree

I	-0.33359600	-1.53853900	-2.44559200
C	0.09534500	-0.65424900	-0.63584000
C	1.30571100	0.01943600	-0.49357700
C	1.58863600	0.61696500	0.72627500
C	0.67471500	0.53510200	1.77347300
C	-0.52856100	-0.14372900	1.60995000
C	-0.83272100	-0.74390600	0.39561000
H	-1.77374200	-1.25760100	0.24900400
H	-1.23883600	-0.20163200	2.42684400
H	0.90245100	1.00500300	2.72384700
H	2.52520600	1.14660500	0.85826100
H	2.00844100	0.07436700	-1.31600100
Br	-3.23703100	0.40997600	-1.97466200
Br	-1.15601800	0.73220200	-3.89759300

Int1

$\mathrm{E}_{\mathrm{e}}=-5677.7356927259$ hartree
I $-0.39026200-1.18084500 \quad-2.56574300$
C $0.10014000 \quad-0.43750700 \quad-0.70381300$

C	1.42025700	-0.06407400	-0.47350900
C	1.74265600	0.41195500	0.78817600
C	0.76157700	0.49966900	1.77266200
C	-0.55055300	0.12024000	1.50931900
C	-0.90398600	-0.35546000	0.25297600
H	-1.92497100	-0.63309200	0.01207100
H	-1.30714600	0.19522500	2.28174900
H	1.02451300	0.87088800	2.75698100
H	2.76145500	0.71412600	1.00018800
H	2.16838400	-0.14083600	-1.25300000
Br	-3.99681200	-0.89664700	-1.66505800
Br	-0.90525300	0.89635900	-3.71299600

TS2
$\mathrm{E}_{\mathrm{e}}=-5677.73481123935$ hartree

I	-0.53726300	-0.99793500	-2.59948800
C	0.03164000	-0.33579200	-0.72734000
C	1.38578200	-0.12452700	-0.48940800
C	1.75526900	0.28398400	0.78301400
C	0.78677400	0.45706100	1.76971000
C	-0.55874300	0.23217000	1.49851300
C	-0.96030200	-0.16665600	0.22958100
H	-2.00144400	-0.36283800	-0.00708700
H	-1.30323000	0.36422500	2.27492800
H	1.08765200	0.76838500	2.76391100
H	2.80096300	0.46127200	1.00545300
H	2.12310300	-0.27207500	-1.26898000
Br	-4.04907000	-1.41605000	-1.41645900
Br	-0.56113200	1.10877600	-3.81634800

PhIBr_{2}

$\mathrm{E}_{\mathrm{e}}=-5677.77917335913$ hartree

I	-0.54426000	0.35356400	-1.80120000
C	0.33917600	0.66981800	0.05782200
C	1.42665600	1.52447400	0.13172400
C	2.02258600	1.70887600	1.37367400
C	1.52371700	1.05188000	2.49387200
C	0.42569900	0.20471900	2.38615500
C	-0.18220700	0.00102500	1.15306300
H	-1.03774800	-0.65591700	1.05350100
H	0.03976700	-0.30532900	3.26127700
H	1.99483400	1.20080700	3.45903200
H	2.87791700	2.36891200	1.46202300
H	1.80710700	2.02576700	-0.74989300
Br	-2.57081300	1.83472600	-1.02546600
Br	1.54017800	-1.10223300	-2.45037200

Anisole

$\mathrm{E}_{\mathrm{e}}=-347.052061526436$ hartree
C $\quad 0.92024100 \quad-0.50843500 \quad-0.00000300$
C $0.46450700-1.82603200 \quad-0.00000100$
C $\quad-0.89182700-2.11452200 \quad 0.00000100$
C $-1.80900400-1.06413900 \quad 0.00000100$
C $-1.37322100 \quad 0.24996900-0.00000100$
C $-0.00456200 \quad 0.53309500 \quad-0.00000300$
H $\quad 1.19096300$-2.63212700 $\quad-0.00000100$
H $\quad-1.23519500 \quad-3.14290100 \quad 0.00000400$

H	-2.87400100	-1.27197100	0.00000200
H	-2.07749800	1.07484900	-0.00000100
O	0.33045500	1.85318700	-0.00000300
H	1.98418000	-0.31198700	-0.00000400
C	1.71459300	2.18296900	0.00000100
H	1.76489600	3.27062700	0.00000300
H	2.21166400	1.79327100	0.89350500
H	2.21167000	1.79327400	-0.89350100
RC2			
$\mathrm{E}_{\mathrm{e}}=-6024.84344631234$ hartree			
C	3.50188400	-0.04568300	-0.42045500
C	3.22803000	0.56243500	0.81424100
C	2.66349400	1.84715500	0.83966000
C	2.36215600	2.52410600	-0.34430100
C	2.63347600	1.90396300	-1.57270700
C	3.19872200	0.63143700	-1.61451700
H	3.44308500	0.05599400	1.74781000
H	2.45041600	2.30945300	1.80008000
H	1.90699600	3.50851700	-0.31269000
H	2.39604700	2.41304900	-2.50315000
H	3.40972400	0.13951300	-2.55959600
O	4.06617300	-1.27839200	-0.56644900
C	4.39552700	-2.02330900	0.60778700
H	4.81645000	-2.96435900	0.25070500
H	3.49967300	-2.22600600	1.20553200
H	5.14167300	-1.49357600	1.21358700
Br	-1.33051100	2.77070900	0.27899600
1	-0.34236600	0.16120400	0.22376200
Br	0.64372900	-2.44310900	0.16775300
C	-2.32257400	-0.58069700	-0.10921200
C	-3.10081000	-0.91241900	0.99753600
C	-4.39299800	-1.39407500	0.76502600
C	-4.87194100	-1.52893500	-0.54231200
C	-4.06368000	-1.18545700	-1.63104500
C	-2.76741700	-0.70348800	-1.42351000
H	-2.72545200	-0.80553100	2.00921200
H	-5.01984500	-1.66091400	1.61077500
H	-5.87722300	-1.90276100	-0.71300400
H	-4.43473300	-1.28992800	-2.64633000
H	-2.13663100	-0.43629500	-2.26406300

TS3

E	-6024.80140273801 hartree		
C	3.38405300	1.92910200	0.16420100
C	3.02738800	1.47979000	-1.12196800
C	2.38114400	0.27683500	-1.24966500
C	2.01689800	-0.49368700	-0.11070900
C	2.46968700	-0.05302400	1.16972400
C	3.11989200	1.13708000	1.30625800
H	3.24868100	2.07067300	-1.99929000
H	2.09966500	-0.08147300	-2.23347500
H	1.72125100	-1.52759100	-0.24323600
H	2.25209500	-0.66104400	2.04032600
H	3.43325800	1.50826700	2.27431400
O	3.97936500	3.08802500	0.40169900
C	4.24332700	3.97828700	-0.69474300

H	4.70096000	4.85779000	-0.24898000
H	3.30957600	4.25061000	-1.19070000
H	4.93259000	3.51489200	-1.40300800
Br	-0.14148000	0.35010800	0.02147400
l	-2.62497700	1.38280000	0.19485400
Br	-0.92751100	4.06483400	0.21395800
C	-3.55936500	-0.48763000	0.12762900
C	-3.87577400	-1.04057800	-1.10772800
C	-4.49438200	-2.28473200	-1.15038000
C	-4.78968200	-2.95977900	0.02952300
C	-4.46589500	-2.39459500	1.25858400
C	-3.84562300	-1.15142900	1.31452200
H	-3.64313200	-0.51008100	-2.02404000
H	-4.74653500	-2.72511100	-2.10880100
H	-5.27415500	-3.92932300	-0.00895100
H	-4.69633200	-2.92032400	2.17869800
H	-3.58949100	-0.70673500	2.26934800

Int2

$\mathrm{E}_{\mathrm{e}}=-6024.8216357104$ hartree

C	3.25574100	0.34081100	-1.33421700
C	3.13695900	-0.61133000	-0.20524800
C	3.19665600	-0.01129400	1.14868400
C	3.32814700	1.30594500	1.33065600
C	3.41321900	2.18124800	0.18883300
C	3.36794400	1.66265900	-1.15310900
Br	1.39831200	-1.50095300	-0.38255200
O	3.61868300	3.41632900	0.46621100
C	3.64003500	4.42468900	-0.57829700
Br	0.33014100	2.86876500	-0.09859700
I	-2.20624900	0.57206000	0.02386600
C	-3.77731000	-0.80814700	0.08380000
C	-4.27586700	-1.23543800	1.30973200
C	-5.32265600	-2.15077800	1.34336800
C	-5.86925400	-2.63588400	0.16037800
C	-5.36540700	-2.20240900	-1.06110800
C	-4.31861200	-1.28761600	-1.10421000
H	3.86589200	-1.41888800	-0.30401200
H	-3.85248000	-0.85705800	2.23308300
H	-3.92852300	-0.95005600	-2.05764100
H	-5.78777300	-2.57475100	-1.98839900
H	-5.71139200	-2.48251500	2.30033900
H	-6.68630700	-3.34857200	0.19004500
H	3.23149500	-0.07893500	-2.33345000
H	3.12181500	-0.68744100	1.99262000
H	3.36905900	1.75934000	2.31284400
H	3.43143100	2.33696100	-1.99450600
H	3.77547100	5.36425600	-0.05141100
H	4.47492200	4.23374300	-1.25128700
H	2.68143500	4.40110200	-1.09548000

p-bromo anisole

$\mathrm{E}_{\mathrm{e}}=-2920.52025968472$ hartree

C	0.92152200	-0.50510900	-0.00001900
C	0.47921200	-1.82611100	-0.00000900
C	-0.87593600	-2.09888700	0.00000500
C	-1.81058300	-1.06922400	0.00000200

	-1.37375300	0.24299400	-0.00000900
C	-0.00633900	0.53368500	-0.00001600
H	1.20093800	-2.63420400	-0.00000800
H	-2.87112000	-1.29073500	0.00001100
H	-2.08479900	1.06148300	-0.00000700
O	0.32169500	1.85141100	-0.00001800
H	1.98521400	-0.30901600	-0.00002700
C	1.70541200	2.18907400	0.00001000
H	1.74851700	3.27678100	0.00002000
H	2.20276700	1.80172200	0.89409200
H	2.20280200	1.80173800	-0.89406000
Br	-1.47273000	-3.89783400	0.00003500

HBr

$\mathrm{E}_{\mathrm{e}}=-2574.6771561447$ hartree

Br	0.00000000	0.00000000	0.71032500

H 0.000000000 .00000000
-0.71032500

Phl(OTFA) 2

$\mathrm{E}_{\mathrm{e}}=-1582.58833037731$ hartree

I	-0.00048100	0.62759300	-0.00105400
C	-0.29778900	-3.49026500	-1.17184600
C	-0.29616900	-2.10102000	-1.18419900
C	-0.00017700	-1.44136800	-0.00105100
C	0.29618900	-2.10070100	1.18219700
C	0.29854800	-3.48993700	1.17005900
C	0.00055100	-4.17916500	-0.00084500
H	-0.52895400	-4.03170500	-2.08192100
H	-0.52253800	-1.55169400	-2.08998100
H	0.52237600	-1.55115100	2.08788600
H	0.53003300	-4.03112700	2.08020100
H	0.00082600	-5.26343000	-0.00075900
O	-2.11827000	0.35412900	-0.01365800
O	2.11702200	0.35456100	0.01078100
C	-2.76110800	1.47528500	-0.08964100
O	-2.28393500	2.58659800	-0.12082800
C	2.76059000	1.47505400	0.09096400
O	2.28427400	2.58655700	0.12617200
C	-4.29938700	1.25092400	-0.12395100
F	-4.63147400	0.34332100	-1.05185900
F	-4.72680900	0.80093600	1.06616100
F	-4.94598000	2.38246400	-0.39802300
C	4.29860400	1.24878900	0.12550400
F	4.62854900	0.34112800	1.05418300
F	4.72611400	0.79750800	-1.06403400
F	4.94675000	2.37946300	0.39936700

TMSBr

$\mathrm{E}_{\mathrm{e}}=2983.56324218779$ hartree
C $\quad-0.18864100 \quad-0.80152300 \quad-0.53038400$
C $\quad-1.57284200 \quad-0.27933700 \quad-3.23823900$
C $\quad-0.50376700 \quad 2.09417200$-1.56560300
H $\quad-0.05414800$-0.42981600 0.48808300
H $\quad-0.66239800 \quad-1.78514700 \quad-0.48544200$
H $0.79747400 \quad-0.91361000 \quad-0.99239100$
$\begin{array}{llll}\mathrm{H} & -2.24045800 & 0.39169300 & -3.78372900\end{array}$
$\begin{array}{llll}\text { H } & -0.63682800 & -0.36917300 & -3.79896600\end{array}$

H	-2.03701500	-1.26682100	-3.18135000
H	0.46947800	2.08095300	-2.06621500
H	-1.16303300	2.77721700	-2.10647100
H	-0.36521600	2.47132200	-0.54949700
Si	-1.21395800	0.37704300	-1.53685200
Br	-3.21231700	0.54327700	-0.47705000

TMS-OTFA

$\mathrm{E}_{\mathrm{e}}=-935.989805084434$ hartree

C	0.02726400	-0.00061200	-0.00724600
C	-0.02868900	0.00522300	1.54297200
O	1.17802400	0.00661600	2.04335500
Si	1.53251100	0.00489300	3.74500100
C	0.81362700	-1.54717500	4.46319900
H	1.18265400	-2.42771500	3.93032800
H	1.11342700	-1.63429100	5.51201100
H	-0.27718400	-1.53861700	4.41645700
H	1.18443600	2.43756600	3.93823800
H	-0.27656500	1.54764400	4.42071700
H	1.11385500	1.63871000	5.51734900
C	3.38668300	0.00455600	3.75424200
H	3.78075000	0.89364900	3.25523700
H	3.75039400	0.00184600	4.78605800
H	3.78017500	-0.88223900	3.25070200
O	-1.07490700	0.00743400	2.13455500
C	0.81437700	1.55535600	4.46794600
F	-1.19512600	-0.00746900	-0.53524100
F	0.67341000	1.08542500	-0.45682600
F	0.68175300	-1.08505000	-0.44843800

Phl(OTFA)Br

$\mathrm{E}_{\mathrm{e}}=-3630.18417270785$ hartree

C	3.29952700	-1.43502700	-2.94858800
O	1.52482800	0.10637100	-2.82738800
I	-0.43883900	0.81584800	-2.10903500
C	0.48925500	0.84658800	-0.25261100
C	1.33147500	1.90890000	0.03949800
C	1.98339400	1.90058300	1.26676600
C	1.78111000	0.85200700	2.15832200
C	0.92692300	-0.19774600	1.83628200
C	0.26695600	-0.21264000	0.61350000
H	-0.39231300	-1.02780500	0.34294900
H	0.77643600	-1.01434100	2.53300100
H	2.29554400	0.85204200	3.11280600
H	2.65120200	2.71521900	1.52252200
H	1.48194100	2.71626300	-0.66696600
O	1.15097900	-1.96064800	-2.00996600
C	1.83051400	-1.11421900	-2.54680900
Br	-2.57722800	1.79033700	-1.10144100
F	4.14549500	-0.73428700	-2.17219600
F	3.58004000	-2.73058800	-2.79610000
F	3.54621300	-1.10573000	-4.22489800

OTFA-Br

$\mathrm{E}_{\mathrm{e}}=-3100.51213077381$ hartree
C $\quad-0.03769200 \quad 0.00007900 \quad-0.11062100$
C $\quad-0.00416600 \quad-0.00000600 \quad 1.44512000$

O	1.27423100	-0.00014700	1.82778300	F	0.57758200	1.08464600	-0.59235600
O	-0.97909000	0.00006500	2.12708500	F	0.57765400	-1.08437800	-0.59250600
Br	1.55690900	-0.00018500	3.62992000				
F	-1.29524400	0.00006900	-0.53545200				

References

1. Seecharan, V.; Armand, L.; Noorollah, J.; Singh, N.; Zhang, A.; Freddo, K. P.; Spatola, N.; Prasad, S.; Chaudhry, A.; War, S. W.;Hyatt, I.F. D.; Silverio, D. L., Ligand exchange of aryl iodine dicarboxylates to form reagents with differing solubilities. Arkivoc 2020, (part iv), 79-85.
2. Granados, A.; Shafir, A.; Arrieta, A.; Cossio, F. P.; Vallribera, A., Stepwise mechanism for the bromination of arenes by a hypervalent iodine reagent. J. Org. Chem. 2020, 85, 2142-2150.
3. Fryberg, M.; Oehlschlager, A. C.; Unrau, A. M., The synthesis of possible polyene intermediates in phytosterol biosynthesis. Tetrahedron 1971, 27, 1261-1274.
4. Karade, N.; Shirodkar, S.; Dhoot, B.; Waghmare, P., An efficient and mild direct oxidative methyl esterification of aromatic aldehydes using NaBr and diacetoxyiodobenzene. J. Chem. Res. 2005, 2005 (4), 274-276.
5. Watanabe, A.; Koyamada, K.; Miyamoto, K.; Kanazawa, J.; Uchiyama, M., Decarboxylative Bromination of Sterically Hindered Carboxylic Acids with Hypervalent lodine (III) Reagents. Org. Process Res. \& Dev. 2020, 24 (7), 1328-1334.
6. Frank, A.; Seel, C. J.; Groll, M.; Gulder, T., Characterization of a cyanobacterial haloperoxidase and evaluation of its biocatalytic halogenation potential. ChemBioChem 2016, 17 (21), 2028-2032.
7. Oberhauser, T., A New Bromination Method for Phenols and Anisoles: NBS/HBF (4). Et (2) O in CH (3) CN. J. Org. Chem. 1997, 62 (13), 4504-4506.
8. Mo, F.; Yan, J. M.; Qiu, D.; Li, F.; Zhang, Y.; Wang, J., Gold-Catalyzed Halogenation of Aromatics by N-Halosuccinimides. Angew. Chem. Int. Ed. 2010, 49 (11), 2028-2032.
9. Neese, F., The ORCA program system. WIREs Comp. Mol. Sci. 2012, 2 (1), 73-78.
10. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297-3305.
11. Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M., Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 2003, 119 (21), 11113-11123.
12. Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065.
13. Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W., Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc. 2007, 117 (4), 587-597.
14. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102 (11), 1995-2001.
15. Ásgeirsson, V.; Birgisson, B. O.; Bjornsson, R.; Becker, U.; Neese, F.; Riplinger, C.; Jónsson, H., Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following. J. Chem. Theor. Comp. 2021, 17 (8), 4929-4945.
16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; lyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01, Gaussian 09, Revision E.01, Gaussian, Inc.: Wallingford CT, 2013. 17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.;

Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. E.01, Wallingford, CT, 2016.
18. McGrath, M. P.; Radom, L., Extension of Gaussian-1 (G1) theory to bromine-containing molecules. J. Chem. Phys. 1991, 94 (1), 511-516.
19. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A., 6-31G* basis set for third-row atoms. J. Comp. Chem. 2001, 22 (9), 976-984.
20. Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F., Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016, 144 (2), 024109.
21. Riplinger, C.; Neese, F., An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138 (3), 034106.
22. Pinski, P.; Neese, F., Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). J. Chem. Phys. 2019, 150 (16), 164102.
23. Pinski, P.; Neese, F., Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys. 2018, 148 (3), 031101.
24. Grimme, S., Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 2003, 118 (20), 9095-9102.
25. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396.

