Transition metal-free reductive coupling of allylic sulfonylhydrazones with aryl boronic acids for $C(sp^3)$ - $C(sp^2)$ bond formation

Kasim Ali,^{a,c} Gurudayal Prajapati,^b Ravi Sankar Ampapathi^{b,c} and Gautam Panda^{a,c*}

^aMedicinal & Process Chemistry Division and ^bNMR Centre, SAIF, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India

^cAcademy of Scientific and Innovative Research, Ghaziabad- 201002, India

SUPPORTING INFORMATION

Table of Contents

Optimization Table	S2
NMR Study	
Computational Study	S6-S11
Molecular Dynamics Study	
References	S13
NMR Spectra for allylic sulfonylhydrazones	S14-S27
NMR Spectra for Substrate Scope	S28-S120

Optimization Table

Ar	Base	Solvent	Time (h)	Yield (%) ^[a]
4-MeC ₆ H ₄	Cs ₂ CO ₃	Toluene	10	45
4-MeOC ₆ H ₄	Cs ₂ CO ₃	Toluene	10	86
4-NO ₂ C ₆ H ₄	Cs ₂ CO ₃	Toluene	10	15
2,4,6-Me C ₆ H ₄	Cs_2CO_3	Toluene	10	51
4-MeOC ₆ H ₄	Cs_2CO_3	1,4-dioxane	10	70
4-MeOC ₆ H ₄	Cs_2CO_3	Toluene	8	75
4-MeOC ₆ H ₄	K ₂ CO ₃	Toluene	10	53
4-MeOC ₆ H ₄	Cs ₂ CO ₃	THF	10	48 ^[b]
4-MeOC ₆ H ₄	K ₂ CO ₃	1,4-dioxane	10	50
4-MeOC ₆ H ₄	NaOH	Toluene	10	NR
4-MeOC ₆ H ₄	Na ₂ CO ₃	Toluene	10	30
4-MeOC ₆ H ₄	КОН	Toluene	10	26
4-MeOC ₆ H ₄	CsF	Toluene	10	18
4-MeOC ₆ H ₄	Ag ₂ CO ₃	Toluene	10	ND

Reaction conditions: allylic sulfonylhydrazones **1a**, (1.0 equiv.); aryl boronic acid **2a**, (1.5 equiv.); Cs_2CO_3 , (2.5 equiv.); Toluene (1.6 M), 110 °C, 10 h. Performed in a sealed screw-capped vial under N₂ [a] Yields of isolated products after column chromatography. [b] Reaction performed at 70 °C, NR: No Reaction, ND: Not Determined.

NMR Study

NMR data were acquired on Bruker Avance-III HD 400 and 500 MHz NMR spectrometer at 300K and 303K in suitable solvents, respectively. Resonance assignments were carried out using various one-dimensional, two-dimensional ¹H-¹H COSY, NOESY and indirect detection experiments like ¹H-¹³C HSQC and HMBC. All NMR data were analysed and processed using TopSpin3.1 software. Proton spectra were acquired with 16 to 32 transients with 16K points zero-filled to 32k data points. 2D ¹H-¹³C HSQC NMR data were acquired, with ¹³C decoupling during the acquisition period, over an F2 frequency width of 12 ppm into 2k complex data points. 16 to 32 transients were accumulated for each of 128 t1 increments over an F1 frequency width of 200 ppm centred at 100 ppm. Phase-sensitive data were acquired in a sensitivityimproved manner using an echo-anti-echo acquisition mode. 2D ¹H-¹³C HMBC NMR data were acquired over an F2 frequency width of 12 ppm into 2k complex data points. 32 to 64 transients were accumulated for each of 128 t1 increments over an F1 frequency width of 200 ppm centred at 100 ppm. Integration of ¹H NMR spectra (20H protons) supports the suggested molecular formula C₂₀H₂₀O of compound **3ad**. The characteristics of HMBC correlation in the compound **3ad** in which double bonds exist between C₂ and C₃ positions, are C₃H (δ 6.23 ppm) with C₁/C₁₁, C_2 , C_4 and C_5 (δ 142.34, 139.42, 35.03 and 132.4 ppm respectively) and C_4H (δ 3.40 ppm) with C₂, C₃, C₅ and C₁₀ (δ 139.42, 128.11, 133.04 and 129.30 ppm respectively) confirms the double bond position.

Fig. SI-5: Structure for the compound 3ad

Proton	¹ H Chemical shift and coupling	¹³ C Chemical shift
	constant	
СзН	6.23 (t, ${}^{3}J_{C4H-C3H} = 7.57, 15.10$)	128.11
C4H	3.40 (d, ${}^{3}J_{C4H-C3H} = 7.57$)	35.03
C6H/C10H	7.10 (d, ${}^{3}J_{C6H-C7H} = 8.63$)	129.30
C7H/C9H	6.84 (d, ${}^{3}J_{C7H-C6H} = 8.63$)	113.97
OMe	3.78 (s)	55.30

Table 1: Chemical shift assignment for 3ad

Others: Aromatic (Ph) 7.41-7.08 (m, 10H) & 131-113 (10C), Quaternary: $C_1/C_{11} = 142.34$ $C_2 = 139.42$ $C_5 = 133.04$, $C_8 = 157.7$

Fig. SI-6: Structure for the compound 3j

Table 2: Chemical shift assignment for 3j

Proton	Major regioisomer		Minor regioisomer	
	¹ H Chemical shift and	¹³ C Chemical	¹ H Chemical shift and	¹³ C Chemical
	coupling constant	shift	coupling constant	shift
C ₂ H	$6.40(bd, {}^{3}J_{C2H-C3H} = 13.94)$	130.46	$6.42(bd, {}^{3}J_{C2H-C3H} = 13.40)$	130.764
C ₃ H	6.20 (dt, ${}^{3}J_{C3H-C2H} = 6.92$,	127.08	6.33 (dt, ${}^{3}J_{C3H-C2H} = 6.41$,	129.70
	13.94)		13.40)	
C4H	3.52 (bd, ${}^{3}J_{C4H-C3H} = 6.84$)	39.35	3.48 (bd, ${}^{3}J_{C4H-C3H} = 6.63$)	38.42
C6H/C10H	7.28 (m)	127.24	7.15 (m)	129.61
C7H/C9H	6.82 (m)	113.94	6.85 (m)	113.70
C11H/C15H	7.30 (m)	128.36	7.31 (m)	128.72
C ₁₂ H/C ₁₄ H	7.28 (m)	127.24	7.26 (m)	127.52
C ₁₃ H	7.24 (m)	128.67	7.23 (m)	128.52
OMe	3.78 (s)	55.30	3.76 (s)	55.30
Others: Qua	aternary: $C_1 = 140.50$, $C_5 = 15$	8.87, $C_8 =$	Others: Quaternary: C ₁ =13	$67.58, C_5 =$
132.15			158.10, $C_8 = 132.23$	

Fig. SI-1: (A) Characteristics HMBC correlation of C_3H (δ 6.23 ppm) with C_1/C_{11} , C_2 and C_4 (δ 142.34, 139.42, and 35.03 ppm respectively) and C_4H (δ 3.40 ppm) with C_3 , C_{10} , C_5 and C_2 (δ 128.11, 129.30, 133.04 and 139.42 ppm respectively) as mentioned by 1-6 respectively.

Fig. SI-2: Characteristics HSQC peak showing the presence of three CH and one OMe as highlighted in the structure

Computational Study

For validating and understanding the experimental results towards the formation of regioselective 1,3-diarylpropenes derivative Gaussian G09 program¹ were used for all the computational calculation by using hybrid $B3LYP^{2,3}$ functional with a 6-31G++(d,p) basic set,⁴ in gaseous phase. The frequency calculations were performed to confirm that these optimized structures are real minima on the potential energy surface with all positive frequencies and one imaginary frequency. Intrinsic reaction coordinates (IRC) were also calculated to validate the transition states that linked the related reactant and products. Minima were used to describe stationary points (ground state), Transition state (TS-1, TS-1a and TS-2a) via frequency calculation and Intermediate of the reaction (Int-1 and Int-2). The reaction intermediate proceeds via two regioisomeric products. There were some questions to address: First, does both the regioisomeric products takes place equally, if not then which regioisomer is majorally obtained, second, does the substituting group play a role in the regio-selectivity, if yes then what will be the energy differences. In order to validate the possible major regioisomeric products, Density Function Calculation (DFT) were performed for the compound **3j**, which were taken as a reactant with one transition state. The transition state proceeds with two different intermediates (Int-1 and Int-2). The reaction proceeds through Int-1 are thermodynamically stable (-1.36 kcal) and forming more stable intermediate (-18.91 kcal), whereas the reaction proceeds through Int-2 form less stable intermediate (-17.55). Nucleophilic addition of water at boronic acid (Int-1) passes through low activation energy (-2.64 kcal) and forming more stable intermediate (-7.83 kcal), whereas Int-2 passes through high activation energy (-5.19 kcal). We have notice that the formation of regioselective 1,3-diarylpropenes derivative proceeds through Int-1 is preferred, as it proceed with a low activation barrier and forms a stable product.

Fig. SI-3: Comparative energy profile diagram for the regioselective intermolecular nucleophilic addition reaction for 3e at the B3LYP//6-31 G++G(d,p) level of theory in the gas phase.

The absolute energy value E in Hartree, Cartesian coordinates xyz and name of the compound used in computational study

C C C C C C C C H N N H H H H

-9.58272	-1.95951	0.22311
-8.34592	-2.72558	0.72813
-7.13054	-2.12609	0.72737
-6.98622	-0.67877	0.22136
-8.07458	-0.00466	-0.22318
-5.60516	0.00257	0.22048
-5.47826	1.27612	-0.22511
-4.09733	1.95771	-0.22585
-3.99714	2.96316	-0.57781
-3.05844	1.31474	0.19903
-1.95374	1.86015	0.19858
-10.31503	-0.15366	-0.57312
-10.54234	-2.43281	0.22379
-8.44621	-3.73119	1.07963
-6.27121	-2.65837	1.07834
-7.97433	1.00093	-0.57484
-4.74582	-0.52953	0.57166
-6.33759	1.80809	-0.57642

H H

Η

С	0.50656	0.73591	-1.23288
С	0.60325	-0.61465	-1.28963
С	1.24486	-1.39034	-0.12422
С	1.71284	-0.72239	0.95812
С	1.60297	0.81234	1.02261
С	1.03833	1.49494	-0.00295
В	0.92061	3.13929	0.06617
0	-0.32823	3.79663	0.68255
0	2.05959	4.01667	-0.48568
0	1.34683	-2.81545	-0.18406
С	2.49786	-3.24226	0.54933
Н	0.06075	1.27486	-2.04262
Н	0.23378	-1.14203	-2.14419
Н	2.15865	-1.26134	1.76786
Н	1.97246	1.33973	1.87717
Н	-0.48438	4.64492	0.26107
Н	2.09602	4.84034	0.00608
Н	2.57409	-4.30826	0.50456
Н	2.40512	-2.93384	1.56971
Н	3.37557	-2.80372	0.12248
0	4.08345	0.18789	-0.67592
Н	3.86226	0.85288	-0.01982
Н	3.27829	-0.22317	-0.99895

TS-1

TS-1, E = -1056.53058

С	-10.42981	-1.75882	1.26798
С	-10.10614	-3.05454	1.03673
С	-8.72993	-3.41098	0.44441
С	-7.84271	-2.42896	0.15345
С	-8.21063	-0.95659	0.41511
С	-9.42142	-0.64311	0.93751
С	-7.20321	0.16011	0.08358
С	-7.52649	1.45466	0.32041
С	-6.52289	2.57433	-0.01293
Ν	-6.24659	1.84385	-1.25798
Ν	-6.03794	1.30372	-2.18399
В	-4.89735	2.85703	-0.02155
0	-4.48708	3.53217	1.30024
С	-4.09009	1.42702	-0.18326
0	-4.54371	3.78127	-1.20155

-3.78556	0.95777	-1.41782
-3.03104	-0.37593	-1.57047
-2.67141	-1.08049	-0.47009
-3.01813	-0.54789	0.93313
-3.68236	0.62587	1.06736
-1.96999	-2.31864	-0.61218
-1.11987	-2.51846	0.52051
-11.38582	-1.51094	1.68002
-10.80676	-3.82987	1.26569
-8.47428	-4.43421	0.26261
-6.88661	-2.67646	-0.25804
-9.67665	0.37996	1.12032
-6.24883	-0.08608	-0.33307
-8.48012	1.69909	0.73969
-6.31089	2.46236	1.02998
-4.95649	4.36441	1.39366
-3.59811	3.94614	-1.20646
-4.06931	1.51412	-2.28673
-2.79061	-0.74618	-2.54548
-2.73451	-1.10455	1.80202
-3.92331	0.99588	2.04213
-0.59512	-3.44478	0.41361
-0.41579	-1.71532	0.58424
-1.71243	-2.54493	1.41114
-1.86126	1.78229	-0.62892
-2.23382	0.90262	-0.72342
-2.36152	2.27288	0.02732

Int-1

Н

C C C C C C C H

Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н 0 Н

Int-1, E = -1056.60377

-9.01848	-3.36029	-0.25323
-9.06058	-4.62422	0.23388
-7.78828	-5.26805	0.81553
-6.62654	-4.57068	0.84028
-6.57869	-3.1344	0.28675
-7.69832	-2.56783	-0.22512
-5.25853	-2.34194	0.31487
-5.21642	-1.07801	-0.17224
-3.89626	-0.28555	-0.14412
-4.20275	1.21794	-0.01308
-3.06195	-0.55704	-1.54152
-4.30528	1.78415	1.21398
-4.61177	3.28764	1.34494

C C C C C C C C C B C C

С	-4.77894	4.04451	0.23329	С	-1.00466	0.89833	2.62057
С	-4.66242	3.40109	-1.16162	С	-1.86995	-0.23942	2.04744
С	-4.39271	2.07802	-1.27632	С	-2.75961	0.01834	1.05823
0	-1.52279	-0.50617	-1.54163	0	-1.99412	2.52285	-2.19255
0	-3.82241	-0.86128	-2.84563	0	-2.67247	0.10135	-2.21346
0	-5.06353	5.44061	0.35498	0	-4.19273	1.84166	-3.20563
С	-5.78661	5.67597	1.56605	Н	-4.93304	1.23441	-3.13642
Н	-9.90248	-2.91296	-0.65736	Н	-3.76524	1.72927	-4.05781
Н	-9.97784	-5.17483	0.21433	0	-0.06585	0.62635	3.66442
Н	-7.82152	-6.26599	1.20013	С	-0.54272	-0.45955	4.46336
Н	-5.74253	-5.01802	1.24442	Н	-9.37708	-1.77648	0.40488
Н	-7.66507	-1.56989	-0.60917	Н	-9.31412	-3.90291	-0.75956
Н	-4.37452	-2.78927	0.71901	Н	-7.23369	-4.54036	-2.20094
Н	-6.10043	-0.63068	-0.57637	Н	-5.36352	-3.00625	-2.37583
Н	-3.30712	-0.60353	0.69055	Н	-7.36441	-0.12547	0.21668
Н	-4.17329	1.18657	2.09161	Н	-4.21595	-0.68181	-1.74744
Н	-4.69272	3.73469	2.31375	Н	-5.95691	1.02909	0.08509
Н	-4.79441	3.99868	-2.03873	Н	-4.27027	2.74754	-0.52518
Н	-4.31175	1.63097	-2.24508	Н	-2.24528	3.44423	0.62879
Н	-1.21223	-0.21717	-2.40281	Н	-0.53178	2.94782	2.53393
Н	-3.28467	-1.42631	-3.40526	Н	-1.76861	-1.23345	2.43026
Н	-5.99956	6.72053	1.65715	Н	-3.36079	-0.77218	0.66001
Н	-5.19745	5.35792	2.40073	Н	-1.56662	2.41045	-3.04473
Н	-6.70386	5.12529	1.54651	Н	-2.04223	-0.08126	-1.51272
Ν	-0.91097	0.96134	1.95284	Н	0.15974	-0.66305	5.24441
Ν	-0.80213	-0.11294	2.11575	Н	-1.48753	-0.19865	4.89247
0	0.77603	0.19654	-0.65724	Н	-0.65719	-1.32951	3.85102
Н	0.06844	0.84439	-0.62254	Ν	0.71007	0.05939	-0.93034
Н	0.40443	-0.67533	-0.81002	Ν	1.38353	-0.23539	-0.12286

TS-1a

С

С

С

С

С

С

В

С

С

-7.33663

-5.06884

-5.10402

-3.91645

-2.90541

-3.18169

-2.14399

-1.13295

-1.06365

-0.42048

0.76776

1.74191

1.44899

1.54872

2.45021

2.15731

-0.29708

-1.15652

-0.50582

-0.61684

0.50725

-2.08153

1.01161

2.13571

-8.03521	-3.53275	-0.42703
-8.01964	-4.81186	0.02041
-6.69721	-5.44844	0.48688
-5.54904	-4.72944	0.44994
-5.56673	-3.27595	-0.05851
-6.73047	-2.71575	-0.46901
-4.26199	-2.45896	-0.10049
-4.27756	-1.17979	-0.54793
-2.97282	-0.36279	-0.58991
-3.29491	1.12956	-0.38805

С

C

С

С

С

С

С

С

С

С	-2.50783	2.07547	-0.95579	С	-5.34644	0.99519	-1.66776
С	-2.82992	3.56782	-0.75393	С	-2.88077	0.93571	-2.12836
С	-3.90044	3.93518	-0.00854	С	-2.16805	0.81312	-0.76873
С	-4.79484	2.86029	0.63663	С	-2.89332	0.77364	0.37539
С	-4.51141	1.54702	0.45899	С	-2.18067	0.65106	1.73502
0	-4.19952	5.32093	0.17898	С	-2.90586	0.61158	2.87914
С	-5.61045	5.48612	0.34285	С	-2.19314	0.48901	4.23877
Н	-8.95405	-3.09049	-0.75114	С	-0.84068	0.42061	4.29113
Н	-8.92619	-5.37952	0.04957	С	-0.01652	0.46547	2.99123
Н	-6.68492	-6.45832	0.84016	С	-0.64371	0.57334	1.79452
Н	-4.63021	-5.17173	0.77405	В	-1.98006	0.18764	-3.29092
Н	-6.74277	-1.70583	-0.82229	0	-2.02682	0.69266	-4.74545
Н	-3.34316	-2.90117	0.22362	0	-1.09264	-1.01569	-2.92191
Н	-5.19639	-0.73752	-0.87204	0	-0.17887	0.30688	5.55365
Н	-2.49657	-0.49978	-1.53824	С	1.04296	-0.41744	5.38778
Н	-2.31874	-0.69504	0.18899	Н	-7.58475	0.90173	-1.28628
Н	-1.66264	1.78541	-1.54432	Н	-7.83315	-1.44969	-1.82587
Н	-2.20848	4.31466	-1.20224	Н	-5.75258	-2.84923	-2.55658
Н	-5.64007	3.15034	1.22515	Н	-3.57091	-1.79843	-2.68325
Н	-5.13284	0.80018	0.90726	Н	-5.23684	2.03259	-1.42969
Н	-5.83424	6.52302	0.48311	Н	-2.99752	1.96962	-2.37792
Н	-6.11535	5.12711	-0.52956	Н	-1.10022	0.75912	-0.72738
Н	-5.93751	4.93186	1.19767	Н	-3.96115	0.82764	0.33405
В	0.96263	0.56581	0.35555	Н	-3.97371	0.66558	2.83779
0	2.45315	0.93038	0.48784	Н	-2.76577	0.45784	5.14211
0	0.54733	-0.72256	-0.37877	Н	1.05132	0.41147	3.03234
0	-0.11243	1.48961	0.95758	Н	-0.07108	0.60451	0.89119
Н	2.54737	1.88525	0.51831	Н	-1.87317	-0.0417	-5.34392
Н	1.23635	-1.38364	-0.27968	Н	-1.01947	-1.60301	-3.67775
Н	-0.91726	1.42486	0.43829	Н	1.53816	-0.50261	6.33246
Ν	4.63551	-1.57994	-0.07745	Н	0.82957	-1.39458	5.00756
Ν	5.39239	-0.79344	-0.04545	Н	1.67538	0.10295	4.69919
				Ν	2.00122	-0.17864	-1.44231
				Ν	2.14548	-1.18386	-1.84379

Int-2

Int-2, E = -1056.60162

С	-6.73179	0.32793	-1.58314
С	-6.87064	-0.98599	-1.88466
С	-5.64298	-1.81182	-2.31193
С	-4.42387	-1.22464	-2.38639
С	-4.26613	0.26845	-2.04374

TS-2a

0

H H

5.43255

4.67695

5.13185

-0.26378

0.32549

-1.17461

-1.88518

-1.94302

-1.92469

TS-2a, E = -1056.58192

С	-7.85287	1.32693	-2.41855
С	-8.33117	0.39784	-1.55562

С	-7.35503	-0.46499	-0.73442	С	-7.78498	-3.40443	-1.21834
С	-6.01784	-0.29519	-0.87466	С	-8.01143	-4.66562	-0.77717
С	-5.47439	0.76059	-1.85526	С	-7.03804	-5.31824	0.22201
С	-6.33334	1.51988	-2.57793	С	-5.95502	-4.63136	0.65998
С	-3.95486	0.95355	-2.01464	С	-5.69769	-3.19819	0.15857
С	-3.25182	0.60948	-0.68838	С	-6.55427	-2.62388	-0.72064
С	-3.89492	0.80103	0.48902	С	-4.46698	-2.41765	0.65626
С	-3.19188	0.45695	1.81528	С	-4.78475	-0.91083	0.66726
С	-3.83499	0.64854	2.99269	С	-4.53544	-0.15771	-0.43148
С	-3.13195	0.30448	4.31893	С	-4.85321	1.34911	-0.42049
С	-1.87018	-0.18995	4.30862	С	-4.60391	2.10222	-1.51923
С	-1.13938	-0.40762	2.97066	С	-4.92169	3.60904	-1.50824
С	-1.75805	-0.10482	1.80356	С	-5.45063	4.18192	-0.39982
В	-3.39631	-0.04052	-3.20726	С	-5.73394	3.32611	0.84875
0	-3.69148	-1.50535	-2.83474	С	-5.45429	2.00011	0.83907
0	-1.87678	0.15243	-3.36663	0	-5.74571	5.58111	-0.38961
0	-4.09936	0.30354	-4.53351	С	-6.85177	5.82865	0.48231
Н	-3.91536	1.21668	-4.76572	Н	-8.46129	-2.95099	-1.91252
Н	-3.77437	-0.27482	-5.22747	Н	-8.86653	-5.20795	-1.12289
0	-1.21736	-0.50947	5.54014	Н	-7.21683	-6.31402	0.57039
С	-0.29809	-1.58402	5.32754	Н	-5.27875	-5.08481	1.35416
Н	-8.53105	1.92643	-2.98913	Н	-6.37548	-1.62811	-1.06903
Н	-9.38688	0.26377	-1.44488	Н	-3.63937	-2.60287	0.00384
Н	-7.73262	-1.19856	-0.05308	Н	-4.21878	-2.73704	1.64684
Н	-5.33966	-0.89469	-0.30407	Н	-5.20238	-0.45851	1.54241
Н	-5.95574	2.25345	-3.25926	Н	-4.11781	-0.61003	-1.30664
Н	-3.74978	1.97131	-2.27346	Н	-4.18628	1.64997	-2.39438
Н	-2.25558	0.21917	-0.69652	Н	-4.72485	4.20366	-2.37575
Н	-4.89116	1.19134	0.49716	Н	-6.15157	3.77843	1.72398
Н	-4.83122	1.03882	3.00082	Н	-5.65114	1.40549	1.70658
Н	-3.63971	0.45564	5.24856	Н	-7.07256	6.87568	0.48995
Н	-0.14314	-0.79794	2.96252	Н	-7.70687	5.28632	0.13651
Н	-1.25029	-0.25606	0.87393	Н	-6.60349	5.50927	1.47289
Н	-4.63872	-1.62563	-2.73539	В	-0.82298	0.23004	0.27033
Н	-1.55181	-0.42594	-4.06052	0	0.69484	0.49003	0.25571
Н	0.19038	-1.82314	6.24903	0	-1.37761	-1.12055	-0.21945
Н	0.43204	-1.29059	4.60249	0	-1.78618	1.32065	0.77474
Н	-0.82885	-2.44239	4.97203	Н	0.85776	1.42702	0.12491
Ν	0.63801	-0.29824	-1.11741	Н	-0.73138	-1.81087	-0.05383
Ν	1.55029	-0.39466	-1.70979	Н	-2.62775	1.23958	0.32457
				Ν	3.18621	-1.78957	-0.00948
				Ν	3.84189	-0.91647	0.006

Product-2

Product-2, E = -1056.65391

Molecular Dynamics Study

Energy minimization and molecular dynamics (MD) calculations were performed on Discovery Studio 3.0 version⁵, using CHARMm4 force field with default parameters throughout the simulation. Distance restraints used in the simulated molecular dynamics were calculated from the volume integrals of the cross-peaks in the NOESY spectra using a two-spin approximation with a reference distance of 1.80 Å for the geminal protons. Force constant of 10 K cal/Å and 5 K cal/Å were used for distance and torsional restraints respectively. Minimization was done with steepest descent algorithm followed by conjugate gradient methods for maximum 1000 iterations each. The molecules were initially equilibrated for 1 nS and then subjected to 5 nS production run. Starting from 50 K, they were heated to 300 K in five steps increasing the temperature 50 K at each step. 10 structures were stored from the production run and are again energy minimized with the above-mentioned protocol.

Fig. SI-4: Single structure of least energy conformations of compound 3ad

Fig. SI-5: Stereo-view of the 10 superimposed least energy conformations of compound 3ad

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, K. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. For-esman, D. J. Fox, Gaussian, Inc. 2009, Wallingford CT. (2) A. D. Becke, *Phys. Rev.A.* 1988, **38**, 3098-3100.

(3) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. Condens. Matter, 1988, 37, 785-789.

(4) P. C. Hariharan, J. A. Pople, Theort. chim. Acta., 1973, 28, 213-222.

(5) 16. (a) B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, J. Com-put. Chem. 1983, 4, 187-217. (b) A. Siriwardena, K. K. Pulukuri, P. S. Kandiyal, S. Roy, O. Ghosh, S. Bande, J. M. G. Fernndez, F. A. Martin, J. M. Ghigo, C. Beloin, K. Ito, R. J. Woods, R. S. Ampapathi, T. K. Chakraborty, Angew. Chem. Int. Ed. 2013, 52, 10221-10226.

Transition metal-free reductive coupling of allylic sulfonylhydrazones with aryl boronic acids for $C(sp^3)$ - $C(sp^2)$ bond formation

NMR Spectra for allylic sulfonylhydrazones

Compound 1a ¹H NMR (400 MHz, DMSO-*d*₆)

Compound 1a ¹³C NMR (100 MHz, DMSO-d₆)

Compound 1b ¹³C NMR (100 MHz, DMSO-d₆)

Compound 1c ¹³C NMR (100 MHz, DMSO-*d*₆)

-3.835

Compound 1d ¹H NMR (400 MHz, DMSO-d₆)

Compound 1d ¹³C NMR (100 MHz, DMSO-d₆)

Compound 1e ¹H NMR (400 MHz, DMSO-*d*₆)

Compound 1e ¹³C NMR (100 MHz, DMSO-*d*₆)

Compound 1f ¹H NMR (400 MHz, DMSO-d₆)

NMR Spectra for Cross–Coupling Products

Compound 3a ¹H NMR (400 MHz, CDCl₃)

Compound 3b ¹H NMR (400 MHz, CDCl₃)

Compound 3b ¹³C NMR (100 MHz, CDCl₃)

Compound 3c ¹H NMR (400 MHz, CDCl₃)

-33.395

Compound 3d ¹H NMR (400 MHz, CDCl₃)

129.116 128.776 128.582 128.146 128.097

27.916

27.691

27.508

127.207 126.800 126.281

126.216

126.040

123.649

125.387

125.644

137.705 137.519 135.007 133.735

131.379

131.223

132.841

140.198

-39.519

Compound 3e ¹H NMR (400 MHz, CDCl₃)

Compound 3e (crude) ¹H NMR (400 MHz, CDCl₃)

Compound 3e ¹³C NMR (100 MHz, CDCl₃)

Compound 3f ¹H NMR (400 MHz, CDCl₃)

Compound 3f ¹³C NMR (100 MHz, CDCl₃)

Compound 3g ¹H NMR (400 MHz, CDCl₃)

Compound 3h ¹H NMR (400 MHz, CDCl₃)

Compound 3h ¹³C NMR (100 MHz, CDCl₃)

500

2.87

Compound 3i ¹H NMR (400 MHz, CDCl₃)

1.40

1.88

1.63

Compound 3i ¹³C NMR (100 MHz, CDCl₃)

Compound 3j (crude) ¹H NMR (500 MHz, CDCl₃)

Compound 3j ¹³C NMR (125 MHz, CDCl₃)

Compound 3j ¹³C Dept-135⁰ (125 MHz, CDCl₃)

Compound 3j 2D-COSY (500 MHz, CDCl₃)

Compound 3j 2D-HSQC (500 MHz, CDCl₃)

Compound 3j 2D-HMBC (500 MHz, CDCl₃)

Compound 3j 2D-NOESY (500 MHz, CDCl₃)

Compound 3k ¹H NMR (400 MHz, CDCl₃)

Compound 3k ¹³C NMR (100 MHz, CDCl₃)

Compound 3l ¹H NMR (400 MHz, CDCl₃)

-32.445

-54.378

Compound 3m ¹H NMR (400 MHz, CDCl₃)

Compound 3m (crude) ¹H NMR (400 MHz, CDCl₃)

Compound 3n ¹H NMR (400 MHz, CDCl₃)

Compound 3n ¹³C NMR (100 MHz, CDCl₃)

Compound 30 ¹H NMR (400 MHz, CDCl₃)

Compound 3p ¹H NMR (400 MHz, CDCl₃)

Compound 3p ¹³C NMR (100 MHz, CDCl₃)

Compound 3q ¹H NMR (400 MHz, CDCl₃)

Compound 3q ¹³C NMR (100 MHz, CDCl₃)

Compound 3r ¹H NMR (400 MHz, CDCl₃)

Compound 3r ¹³C NMR (100 MHz, CDCl₃)

Compound 3s ¹H NMR (400 MHz, CDCl₃)

Compound 3s ¹³C NMR (100 MHz, CDCl₃)

Compound 3t ¹H NMR (400 MHz, CDCl₃)

Compound 3t ¹³C NMR (100 MHz, CDCl₃)

Compound 3u ¹H NMR (400 MHz, CDCl₃)

Me₂N

Compound 3u ¹³C NMR (100 MHz, CDCl₃)

Compound 3v ¹H NMR (400 MHz, CDCl₃)

Compound 3v ¹³C NMR (100 MHz, CDCl₃)

Compound 3w ¹H NMR (400 MHz, CDCl₃)

Compound 3x ¹H NMR (400 MHz, CDCl₃)

Compound 3x ¹³C NMR (100 MHz, CDCl₃)

Compound 3y ¹H NMR (400 MHz, CDCl₃)

Compound 3y ¹³C NMR (100 MHz, CDCl₃)

Compound 3z ¹H NMR (400 MHz, CDCl₃)

Compound 3z ¹³C NMR (100 MHz, CDCl₃)

Compound 3aa ¹H NMR (400 MHz, CDCl₃)

Compound 3aa ¹³C NMR (100 MHz, CDCl₃)

Compound 3ab ¹H NMR (400 MHz, CDCl₃)

Compound 3ab ¹³C NMR (100 MHz, CDCl₃)

Compound 3ac ¹H NMR (400 MHz, CDCl₃)

Compound 3ac ¹³C NMR (100 MHz, CDCl₃)

Compound 3ad ¹H NMR (500 MHz, CDCl₃)

Compound 3ad ¹³C Dept-135⁰ (125 MHz, CDCl₃)

Compound 3ad 2D-COSY (500 MHz, CDCl₃)

Compound 3ad 2D-COSY (500 MHz, CDCl₃)

Compound 3ad 2D-HSQC (500 MHz, CDCl₃)

Compound 3ad 2D-HSQC (500 MHz, CDCl₃)

Compound 3ad 2D-HMBC (500 MHz, CDCl₃)

Compound 3ae ¹H NMR (400 MHz, CDCl₃)

Compound 3ae ¹³C NMR (100 MHz, CDCl₃)

150

-36.004

Compound 3af ¹H NMR (400 MHz, CDCl₃)

Compound 3af ¹³C NMR (100 MHz, CDCl₃)

Compound 3ag ¹H NMR (400 MHz, CDCl₃)

Compound 3ag ¹³C NMR (100 MHz, CDCl₃)

Compound 3ah ¹H NMR (400 MHz, CDCl₃)

Compound 3ah ¹³C NMR (100 MHz, CDCl₃)

Compound 3ai ¹³C NMR (100 MHz, CDCl₃)

Compound 3aj ¹H NMR (400 MHz, CDCl₃)

-35.599

Compound 3aj ¹³C NMR (100 MHz, CDCl₃)

Compound 4¹H NMR (400 MHz, CDCl₃)

Compound 4 ¹³C NMR (100 MHz, CDCl₃)

Compound 5¹³C NMR (100 MHz, CDCl₃)

Compound 5¹³C NMR (100 MHz, CDCl₃)