Supporting Information

Facial Access to 2,2-Difluoro-2,3-dihydrofuran Skeleton without Extra Additive: DMF-Promoted Difluorocarbene Formation of ClCF₂CO₂Na

Zunsheng Chen,^a Xin Xie,^a Weiming Chen,^a Nianhua Luo,^a Xiaoning Li,^b Fuchao Yu,^{c*} Jiuzhong Huang^{a*}

^a School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China

^b Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China

^c Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China

E-mail: huangjz@gmu.edu.cn, yufc@kust.edu.cn.

Table of Contents

Table of Contents	Ĺ
General Information	2
General Procedure for the Synthesis of Enaminones 1	2
General Procedure for the Synthesis of Products 2	2
Gram synthesis of 2,2-Difluoro-2,3-dihydrofuran 2w	5
X-ray Crystallographic Data of Compound 2f	5
The Antiproliferative Activity of 2,2-Difluoro-2,3-dihydrofuran Products.4	ŀ
Characterization Data for All Products	5
References21	L
NMR Spectra for All Compounds22	2

General Information

¹H, ¹³C NMR and ¹⁹F spectra were recorded on BRUKER DRX-400 spectrometer. Chemical shifts are reported relative to the residual solvent signal. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), td (triplet of doublets), dt (doublet of triplets), ddd (doublet of doublet of doublet of doublets). The data of HRMS were carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). Melting points were determined with Büchi Melting Point B-545 instrument. TLC was performed by using commercially prepared 200-300 mesh silica gel plates and visualization effected at 254 nm. Unless stated otherwise, all reagents and solvents were purchased from commercial suppliers and used without further purification. Previously reported compounds were synthesized according to literature procedures. Synthetic methods and spectral data were consistent with the methods and data reported in the literatures.

General Procedure for the Synthesis of Enaminones 1

Synthesis of 1: In a 100 mL round-bottom flask, aryl methyl ketone **S1** (5 mmol), DMF-DMA (10 mL) were successively added, the mixture was stirred at 105 °C. The reaction was stopped when **S1** disappeared. Then the reaction cooled to room temperature and evaporated in vacuo to an oil, which crystallizesd with the addition of hexane to give the product **1**.

General Procedure for the Synthesis of Products 2

To a 20 mL sealed tube with magnetic stirrer bar, $ClCF_2COONa$ (0.30 mmol), enaminone **1** (0.20 mmol) and DMF (2.0 mL), were successively added and vigorously stirred together at 90 °C for 24 hours. After the reaction was finished, the mixture was cooled to room temperature. The reaction was diluted with EtOAc (20 mL) and washed with NH₄Cl aq (3 × 15 mL). The ethyl

acetate layer was washed with brine (10 mL) and dried over anhydrous Na_2SO_4 . The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate) on silica gel to afford product **2**.

Gram synthesis of 2,2-Difluoro-2,3-dihydrofuran 2w

To a 100 mL sealed tube with magnetic stirrer bar, $ClCF_2COONa$ (9.0 mmol), enaminone **1w** (6 mmol) and DMF (25 mL), were successively added and vigorously stirred together at 90 °C for 24 hours. After the reaction was finished, the mixture was cooled to room temperature. The reaction was diluted with EtOAc (150 mL) and washed with NH₄Cl aq (3 × 60 mL). The ethyl acetate layer was washed with brine (60 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by flash column chromatography (eluting with petroleum ether/ethyl acetate) on silica gel to afford product **2w** 1.18 g, 65% yield.

X-ray Crystallographic Data of Compound 2f

The X-ray crystallographic structure for **2f**. ORTEP representation with 50% probability thermal ellipsoids. Crystal data have been deposited to CCDC number 2190192.

Identification code	2f
Empirical formula	$C_{12}H_{12}ClF_2NO$
Formula weight	259.68
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.8005(12)
b/Å	11.8789(16)
c/Å	12.2138(17)
α/°	90.098(11)
β/°	97.747(11)
$\gamma/^{\circ}$	110.017(13)
Volume/Å ³	1187.2(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.453
µ/mm ⁻¹	0.330
F(000)	536.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.842 to 49.996
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -14 \le l \le 14$
Reflections collected	4184
Independent reflections	4184 [$R_{int} = ?, R_{sigma} = 0.0776$]
Data/restraints/parameters	4184/0/312
Goodness-of-fit on F ²	1.048
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0787, wR_2 = 0.2200$
Final R indexes [all data]	$R_1 = 0.1003, wR_2 = 0.2424$
Largest diff. peak/hole / e Å ⁻³	1.14/-0.69

Table S1 Crystal data and structure refinements for 2f

The Antiproliferative Activity of 2,2-Difluoro-2,3-dihydrofuran Products

The compounds were evaluated for their in vitro cytotoxicity against the human cancer cell lines Hela, MCF7, and HepG2 by 3-(4,5-dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium Bromide (MTT) assay. The cancer cell lines were purchased from American Type Culture Collection (ATCC). Hela cells, MCF7 cells, and HepG2 cells were grown in DMEM medium. The medium for all cell lines were supplemented with 10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA) and 1% penicillin-streptomycin (Life Technologies, USA) and maintained in a humidified incubator at 37° C adjusted to 5% CO₂. Cells were seeded into 96-well plates at a density of 5000 cells/well. On the next day, medium containing the new compounds at different concentrations was added into per well for at least three cell doublings and incubated at 37° C for another 48 h, with 5-

Fluorouracil (FU) as the positive control. At the indicated time, the culture medium was replaced with 100 μ L medium containing 10% MTT solution (5 mg/mL in PBS) and further incubated for 4 h. The absorbance was detected with a microplate reader at a wavelength of 570 nm. The IC₅₀ values were calculated by plotting the percentage viability versus concentration on a logarithmic graph and reading of the concentration at which 50% of cells remained viable relative to the control. Each experiment was repeated at least three times to obtain the mean values.

Characterization Data for All Products

2,2-difluoro-N, N-dimethyl-5-(p-tolyl)-2,3-dihydrofuran-3-amine (2a)^[1]

Yellow solid, m.p. = 71-73 °C (40.6 mg, 85% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.48 (t, J = 2.4 Hz, 1H), 4.14 (ddd, J = 15.1, 7.2, 2.6 Hz, 1H), 2.48 (s, 6H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.50 (d, J = 3.7 Hz), 140.15, 131.22 (dd, J = 273.8, 271.1 Hz), 129.26, 125.47, 125.28, 96.38 (d, J = 3.0 Hz), 71.04 (dd, J = 34.6, 18.9 Hz), 41.13 (d, J = 2.9 Hz), 21.44. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.29 (d, J = 150.6 Hz), -83.92 (d, J = 150.8 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₅F₂NO, [M+H]⁺: 240.1200, found, 240.1193.

5-([1,1'-biphenyl]-4-yl)-2,2-difluoro-N, N-dimethyl-2,3-dihydrofuran-3-amine (2b)

Yellow solid, m.p. = 133-135 °C (54.1 mg, 90% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.66 (s, 2H), 7.64 – 7.59 (m, 4H), 7.46 (d, J = 7.2 Hz, 2H), 7.38 (d, J = 7.3 Hz, 1H), 5.58 (t, J = 2.4 Hz, 1H), 4.17 (ddd, J = 15.0, 7.3, 2.6 Hz, 1H), 2.50 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 154.15 (d, J = 3.8 Hz), 142.69, 140.16, 131.22 (dd, J = 274.0, 271.4 Hz), 128.92, 127.84, 127.25, 127.08, 125.81, 97.47 (d, J = 2.9 Hz), 71.09 (dd, J = 34.5, 19.0 Hz), 41.19 (d, J = 2.8 Hz). ¹⁹F NMR (377 MHz, Chloroform-d) δ -61.26 (d, J = 150.7 Hz), -83.80 (d, J = 150.6 Hz). HRMS-ESI (m/z): calcd for $C_{18}H_{17}F_2NO$, [M+H]⁺: 302.1356, found, 302.1345.

2,2-difluoro-N, N-dimethyl-5-(4-phenoxyphenyl)-2,3-dihydrofuran-3-amine (2c)

Dark yellow solid, m.p. = 56-58 °C (51.3 mg, 81% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.56 (d, J = 8.5 Hz, 2H), 7.36 (t, J = 7.9 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.01 (dd, J = 13.7, 8.3 Hz, 4H), 5.45 (t, J = 2.4 Hz, 1H), 4.14 (ddd, J = 15.0, 7.1, 2.4 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 158.97, 156.29, 153.90 (d, J = 3.8 Hz), 131.20 (dd, J = 274.0, 271.3 Hz), 129.94, 127.07, 124.02, 123.03, 119.49, 118.33, 96.24 (d, J = 2.6 Hz), 71.08 (dd, J = 34.5, 18.9 Hz), 41.13 (d, J = 2.8 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.28 (d, J = 150.7 Hz), -83.90 (d, J = 150.8 Hz). HRMS-ESI (m/z): calcd for C₁₈H₁₇F₂NO₂, [M+H]⁺: 318.1306, found, 318.1283.

2,2-difluoro-*N*, *N*-dimethyl-5-(4-(trifluoromethoxy)phenyl)-2,3-dihydrofuran-3-amine (2d)

Yellow oil, (44.4 mg, 72% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 5.56 (s, 1H), 4.16 (ddd, J = 14.9, 7.4, 2.4 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.02 (d, J = 3.8 Hz), 150.14 (d, J = 1.7 Hz), 131.12 (dd, J = 274.8, 271.8 Hz), 126.96, 126.87, 120.95, 120.37 (q, J = 258.0 Hz), 98.26 (d, J = 2.7 Hz), 71.08 (dd, J = 34.4, 19.0 Hz), 41.12 (d, J = 2.3 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -57.86, -61.47 (d, J = 150.5 Hz), -83.78 (d, J = 150.5 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₂F₅NO₂, [M+H]⁺: 310.0866, found, 310.0851.

2,2-difluoro-N, N-dimethyl-5-(4-(methylthio)phenyl)-2,3-dihydrofuran-3-amine (2e)

Yellow solid, m.p. = 88-90 °C (40.1 mg, 74% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.50 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 5.49 (t, J = 2.0 Hz, 1H), 4.13 (ddd, J = 15.1, 7.3, 2.8 Hz, 1H), 2.49 (s, 3H), 2.47 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.98 (d, J = 3.6 Hz), 141.30, 131.18 (dd, J = 274.1, 271.1 Hz), 125.85, 125.64, 124.71, 96.67 (d, J = 3.2 Hz), 71.06 (dd, J = 34.5, 19.0 Hz), 41.14 (d, J = 2.9 Hz), 15.27. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.36 (d, *J* = 150.7 Hz), -83.82 (d, *J* = 150.7 Hz). HRMS-ESI (m/z): calcd for $C_{13}H_{15}F_2NOS$, [M+H]⁺: 272.0921, found, 272.0922.

5-(4-chlorophenyl)-2,2-difluoro-N, N-dimethyl-2,3-dihydrofuran-3-amine (2f)^[1]

Dark yellow solid, m.p. = 58-60 °C (35.2 mg, 68% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.6 Hz, 2H), 5.54 (q, *J* = 2.8 Hz, 1H), 4.15 (dd, *J* = 14.9, 7.4 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.29 (d, *J* = 3.8 Hz), 135.86, 131.11 (dd, *J* = 274.5, 271.8 Hz), 128.87, 126.67, 126.63, 97.98 (d,

J = 3.1 Hz), 71.05 (dd, J = 34.4, 19.0 Hz), 41.15 (d, J = 2.7 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.35 (d, J = 150.6 Hz), -83.68 (d, J = 152.1 Hz). HRMS-ESI (m/z): calcd for C₁₂H₁₂ClF₂NO, [M+H]⁺: 260.0654, found, 260.0641.

5-(4-bromophenyl)-2,2-difluoro-*N*, *N***-dimethyl-2,3-dihydrofuran-3-amine (2g)**^[1] Yellow solid, m.p. = 53-55 °C (43.1 mg, 71% yield).

1H NMR (400 MHz, Chloroform-d) δ 7.53 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 5.56 (s, 1H), 4.14 (ddd, J = 14.9, 7.4, 2.2 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.35 (d, J = 3.8 Hz), 131.82, 131.10 (dd, J = 274.7, 271.7 Hz), 127.11, 126.83, 124.16, 98.13 (d, J = 2.7 Hz), 71.07 (dd, J = 34.5, 19.0 Hz), 41.16 (d, J = 2.3 Hz). ¹⁹F NMR (377 MHz, Chloroform-d) δ -61.38 (d, J = 150.5 Hz), -83.66 (d, J = 150.5 Hz). HRMS-ESI (m/z): calcd for C₁₂H₁₂BrF₂NO, [M+H]⁺: 304.0149, found, 304.0155.

4-(4-(dimethylamino)-5,5-difluoro-4,5-dihydrofuran-2-yl)benzonitrile (2h)^[1]

Yellow solid, m.p. = 48-50 °C (26.5 mg, 53% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.70 (s, 4H), 5.74 (s, 1H), 4.19 (dd, J = 14.7, 7.7 Hz, 1H), 2.49 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.39 (d, *J* = 3.9 Hz), 130.99 (d, *J* = 3.7 Hz), 132.41, 132.19 (d, *J* = 3.1 Hz), 125.84, 118.26, 113.28, 101.27 (d, *J* = 2.9 Hz), 71.07 (dd, *J* = 34.4, 19.1 Hz), 41.24 (d, *J* = 2.4 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.47 (d, *J* = 150.2 Hz), -83.38 (d, *J* = 150.2 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₂F₂N₂O, [M+H]⁺: 251.0996, found, 251.1015.

2,2-difluoro-N, N-dimethyl-5-(4-nitrophenyl)-2,3-dihydrofuran-3-amine (2i)^[1]

Yellow solid, m.p. = 81-83 °C (24.3 mg, 45% yield).

¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 2H), 5.81 (s, 1H), 4.21 (ddd, J = 15.1, 7.9, 2.8 Hz, 1H), 2.50 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.14 (d, J = 3.8 Hz), 148.33, 133.89, 130.98 (dd, J = 275.9, 272.4 Hz), 126.15, 123.94, 102.05 (d, J = 3.3 Hz), 71.13 (dd, J = 34.3, 19.1 Hz), 41.26 (d, J = 2.9 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.48 (d, J = 150.1 Hz), -83.27 (d, J = 149.9 Hz). HRMS-ESI (m/z): calcd for C₁₂H₁₂F₂N₂O₃, [M+H]⁺: 271.0894, found, 271.0873.

2,2-difluoro-5-(3-methoxyphenyl)-*N*, *N*-dimethyl-2,3-dihydrofuran-3-amine (2j)^[1]

Yellow oil, (37.7 mg, 74% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.30 (t, J = 7.8 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.12 (s, 1H), 6.93 (d, J = 8.1 Hz, 1H), 5.54 (s, 1H), 4.14 (dd, J = 15.0, 7.3 Hz, 1H), 3.84 (s, 3H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 159.71, 154.17 (d, J = 3.6 Hz), 131.16 (dd, J = 274.1, 271.4 Hz), 129.65, 129.51, 117.82, 115.90, 110.50, 97.77 (d, J = 3.0 Hz), 71.03 (dd, J = 34.5, 19.0 Hz), 55.37, 41.16 (d, J = 2.8 Hz). ¹⁹F NMR (377 MHz, Chloroform-d) δ -61.32 (d, J = 150.7 Hz), -83.82 (d, J = 150.7 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₅F₂NO₂, [M+H]⁺: 256.1149, found, 256.1130.

2,2-difluoro-N, N-dimethyl-5-(3-(trifluoromethyl)phenyl)-2,3-dihydrofuran-3-amine (2k)

Yellow oil, (32.8 mg, 56% yield).

1H NMR (400 MHz, Chloroform-d) δ 7.85 (s, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 5.67 (s, 1H), 4.19 (dd, *J* = 14.6, 7.2 Hz, 1H), 2.49 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.83 (d, *J* = 3.7 Hz), 131.23 (q, *J* = 32.5 Hz), 131.03, 129.19, 129.01, 128.45, 126.44 (q, *J* = 3.6 Hz), 122.18 (q, *J* = 3.8 Hz), 99.20 (d, J = 2.8 Hz), 71.05 (dd, *J* = 34.4, 19.0 Hz), 41.17 (d, *J* = 2.8 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.49 (d, *J* = 150.5 Hz), -62.93, -83.65 (d, *J* = 150.4 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₂F₅NO, [M+H]⁺: 294.0917, found, 294.0902.

2,2-difluoro-N, N-dimethyl-5-(o-tolyl)-2,3-dihydrofuran-3-amine (21)^[1]

Yellow oil, (27.7 mg, 58% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.53 (m, 1H), 7.32 – 7.27 (m, 1H), 7.24 (t, *J* = 5.9 Hz, 2H), 5.35 (t, *J* = 2.1 Hz, 1H), 4.16 (ddd, *J* = 15.2, 7.2, 2.6 Hz, 1H), 2.52 (s, 6H), 2.46 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.60 (d, *J* = 3.6 Hz), 136.70, δ 133.43 – 128.01 (m), 131.08, 129.70, 128.20, 128.03, 125.93, 101.68 (d, *J* = 2.7 Hz), 71.07 (dd, *J* = 34.7, 18.9 Hz), 41.15 (d, *J* = 2.8 Hz), 21.46. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.71 (d, *J* = 151.7 Hz), -84.94 (d, *J* = 151.6 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₅F₂NO, [M+H]⁺: 240.1200, found, 240.1193 .

5-(3,4-difluorophenyl)-2,2-difluoro-N, N-dimethyl-2,3-dihydrofuran-3-amine (2m)

Yellow oil, (31.8 mg, 61% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.33 (m, 2H), 7.19 (q, J = 8.7 Hz, 1H), 5.53 (s, 1H), 4.16 (dd, J = 14.8, 7.4 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.04 (dd, J = 89.2, 12.9 Hz), 152.30 – 152.15 (m),149.55 (dd, J = 85.5, 13.0 Hz), 131.02 (dd, J = 275.1, 272.1 Hz), 125.31 (dd, J = 6.6, 4.0 Hz), 121.81 (dd, J = 6.7, 3.8 Hz), 117.68 (d, J = 17.9 Hz), 114.65 (d, J = 19.4 Hz), 98.37, 71.08 (dd, J = 34.3, 19.0 Hz), 41.12 (d, J = 2.3 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.51 (d, J = 150.9 Hz), -83.67 (d, J = 150.5 Hz), -134.64 (d, J = 21.0 Hz), -136.62 (d, J = 21.0 Hz). HRMS-ESI (m/z): calcd for C₁₂H₁₁F₄NO, [M+H]⁺: 262.0855, found, 262.0841.

5-(3-chloro-4-fluorophenyl)-2,2-difluoro-N, N-dimethyl-2,3-dihydrofuran-3-amine (2n)

Yellow oil, (36.0 mg, 65% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.65 (d, J = 5.2 Hz, 1H), 7.48 (s, 1H), 7.17 (t, J = 8.6 Hz, 1H), 5.53 (s, 1H), 4.15 (dd, J = 14.3, 6.9 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.84 (d, J = 253.1 Hz), 152.10 (d, J = 3.0 Hz), 131.04 (dd, J = 275.2, 272.2 Hz), 127.80, 125.53 (d, J = 3.9 Hz), 125.32 (d, J = 7.6 Hz), 121.67 (d, J = 18.4 Hz), 116.91 (d, J = 21.8 Hz), 98.39, 71.08 (dd, J = 34.3, 19.0 Hz), 41.17. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.50 (d, J = 150.2 Hz), -83.67 (d, J = 150.3 Hz), -112.41. HRMS-ESI (m/z): calcd for C₁₂H₁₁ClF₃NO, [M+H]⁺: 278.0560, found, 278.0512.

5-(3-bromo-4-methoxyphenyl)-2,2-difluoro-N, N-dimethyl-2,3-dihydrofuran-3-amine (20)

Yellow oil, (45.4 mg, 68% yield).

¹H NMR (400 MHz, Chloroform-d) δ 7.79 (s, 1H), 7.52 (d, J = 8.5 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 5.43 (s, 1H), 4.14 (ddd, J = 15.1, 7.2, 2.1 Hz, 1H), 3.92 (s, 3H), 2.47 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 157.04, 152.78 (d, J = 3.8 Hz), 131.10 (dd, J = 274.3, 271.5 Hz), 130.39, 125.83, 122.17, 111.92, 111.56, 96.45 (d, J = 2.6 Hz), 71.07 (dd, J = 34.5, 19.0 Hz), 56.37, 41.14 (d, J = 2.2 Hz). ¹⁹F NMR (377 MHz, Chloroform-d) δ -61.43 (d, J = 150.5 Hz), -83.84 (d, J = 150.5 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₄BrF₂NO₂, [M+H]⁺: 334.0254, found, 334.0259.

5-(4-(allyloxy)-3-methoxyphenyl)-2,2-difluoro-*N*, *N*-dimethyl-2,3-dihydrofuran-3-amine (2p)

Brown oil, (47.8 mg, 77% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (d, *J* = 8.4 Hz, 1H), 7.09 (s, 1H), 6.87 (d, *J* = 8.3 Hz, 1H), 6.07 (ddt, *J* = 17.0, 10.2, 5.3 Hz, 1H), 5.40 (d, *J* = 11.9 Hz, 2H), 5.30 (d, *J* = 10.4 Hz, 1H), 4.64 (d, *J* = 4.7 Hz, 2H), 4.15 (dd, *J* = 14.9, 6.9 Hz, 1H), 3.91 (s, 3H), 2.49 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 154.20 (d, *J* = 3.8 Hz), 149.47, 149.33, 131.16 (dd, *J* = 273.7, 271.3 Hz), 132.79, 121.30, 118.46, 118.31, 112.92, 108.58, 95.58 (d, *J* = 2.5 Hz), 71.06 (dd, *J* = 34.6, 18.9 Hz), 69.78, 56.02, 41.08 (d, *J* = 2.4 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.26 (d, *J* = 150.8 Hz). HRMS-ESI (m/z): calcd for C₁₅H₁₇F₂NO₃, [M+H]⁺: 298.1255, found, 298.1252.

5-(4-(difluoromethoxy)-3-methoxyphenyl)-2,2-difluoro-*N*,*N*-dimethyl-2,3-dihydrofuran-3-amine (2q)

Dark yellow oil, (42.3 mg, 66% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, J = 4.2 Hz, 3H), 6.58 (t, J = 74.8 Hz, 1H), 5.54 (t, J = 2.4 Hz, 1H), 4.16 (ddd, J = 15.0, 7.4, 2.7 Hz, 1H), 3.93 (s, 3H), 2.49 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.32 (d, J = 3.8 Hz), 151.12, 141.03 (t, J = 3.1 Hz), 131.09 (dd, J = 274.6, 271.8 Hz), 126.73, 122.25, 118.29, 115.88 (t, J = 260.8 Hz), 109.60, 97.95 (d, J = 3.1 Hz), 71.08 (dd, J = 34.5, 19.0 Hz), 56.14, 41.15 (d, J = 2.8 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ - 61.39 (d, J = 150.5 Hz), -81.71, -83.73 (d, J = 150.5 Hz). HRMS-ESI (m/z): calcd for C₁₄H₁₅F₄NO₃, [M+H]⁺: 322.1066, found, 322.1094.

2,2-difluoro-N, N-dimethyl-5-(3,4,5-trimethoxyphenyl)-2,3-dihydrofuran-3-amine (2r)

Yellow solid, m.p. = 83-85 °C (52.2 mg, 83% yield).

¹H NMR (400 MHz, Chloroform-d) δ 6.82 (s, 2H), 5.47 (s, 1H), 4.14 (ddd, J = 15.1, 7.3, 2.7 Hz, 1H), 3.89 (s, 6H), 3.87 (s, 3H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 154.09 (d, J = 3.8 Hz), 153.34, 139.72, 131.11 (dd, J = 274.1, 271.5 Hz), 123.63, 102.69, 96.89 (d, J = 2.7 Hz),

71.08 (dd, J = 34.6, 18.9 Hz), 60.95, 56.25, 41.14 (d, J = 2.8 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.33 (d, J = 150.6 Hz), -83.82 (d, J = 150.6 Hz). HRMS-ESI (m/z): calcd for C₁₅H₁₉F₂NO₄, [M+H]⁺: 316.1360, found, 316.1351.

5-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoro-N, N-dimethyl-2,3-dihydrofuran-3-amine (2s)

Dark yellow oil, (41.9 mg, 78% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (d, J = 8.1 Hz, 1H), 7.04 (d, J = 2.2 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 6.00 – 5.97 (m, 2H), 5.39 – 5.36 (m, 1H), 4.12 (dd, J = 14.9, 7.1 Hz, 1H), 2.47 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.99 (d, J = 3.7 Hz), 149.05, 147.93, 131.12 (dd, J = 273.9, 2 71.1 Hz), 122.31, 119.90, 108.35, 105.63, 101.49, 95.78 (d, J = 3.1 Hz), 71.02 (dd, J = 34.5, 18.9 Hz), 41.07 (d, J = 2.9 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.35 (d, J = 150.9 Hz), -83.90 (d, J = 150.8 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₃F₂NO₃, [M+H]⁺: 270.0942, found, 270.0944 .

5-(2,3-dihydrobenzofuran-5-yl)-2,2-difluoro*N*, *N*-dimethyl-2,3-dihydrofuran-3-amine (2t) Yellow solid, m.p. = 60-62 °C (38.4 mg, 72% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (s, 1H), 7.39 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.35 (s, 1H), 4.61 (t, J = 8.7 Hz, 2H), 4.13 (dd, J = 14.8, 5.7 Hz, 1H), 3.22 (t, J = 8.7 Hz, 2H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 161.65, 154.56 (d, J = 3.7 Hz), 131.18 (dd, J = 273.4, 271.0 Hz), 94.59 (d, J = 2.5 Hz), 127.60, 126.03, 122.24, 120.85, 109.37, 94.59 (d, J = 2.5 Hz), 71.04 (dd, J = 34.6, 18.9 Hz), 41.04 (d, J = 2.6 Hz), 29.33. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.28 (d, J = 150.9 Hz), -84.05 (d, J = 151.0 Hz). HRMS-ESI (m/z): calcd for C₁₄H₁₅F₂NO₂, [M+H]⁺: 268.1149, found, 268.1140.

5-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2,2-difluoro-*N*,*N*-dimethyl-2,3-dihydrofuran-3-amine (2u)

Yellow oil, (37.3 mg, 66% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (d, *J* = 9.0 Hz, 2H), 6.86 (d, *J* = 8.2 Hz, 1H), 5.38 (d, *J* = 2.7 Hz, 1H), 4.27 (s, 4H), 4.12 (ddd, *J* = 14.9, 7.1, 2.8 Hz, 1H), 2.47 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.96 (d, *J* = 3.8 Hz), 145.13, 143.50, 131.15 (dd, *J* = 273.6, 271.1 Hz), 121.73, 118.87, 117.46, 114.53, 95.72 (d, *J* = 2.9 Hz), 71.04 (dd, *J* = 34.6, 18.9 Hz), 64.51, 64.25,

41.08 (d, J = 2.4 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.34 (d, J = 151.0 Hz), -84.00 (d, J = 150.7 Hz). HRMS-ESI (m/z): calcd for C₁₄H₁₅F₂NO₃, [M+H]⁺: 284.1098, found, 284.1093.

2,2-difluoro-N, N-dimethyl-5-(naphthalen-1-yl)-2,3-dihydrofuran-3-amine (2v)^[1]

Dark yellow oil, (35.7 mg, 65% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, J = 8.3 Hz, 1H), 7.88 (t, J = 8.8 Hz, 2H), 7.71 (d, J = 7.1 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.46 (d, J = 7.8 Hz, 1H), 5.54 (t, J = 2.4 Hz, 1H), 4.23 (ddd, J = 15.3, 7.1, 2.6 Hz, 1H), 2.57 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 154.69 (d, J = 3.7 Hz), 133.66, 131.06 (dd, J = 274.0, 271.3 Hz), 130.70, 130.54, 128.67, 127.13, 127.07, 126.36, 126.27, 124.95, δ 102.70 (d, J = 2.8 Hz), 71.08 (dd, J = 34.6, 18.8 Hz), 41.35 (d, J = 2.5 Hz). ¹⁹F NMR (377 MHz, Chloroform-d) δ -61.57 (d, J = 151.1 Hz), -84.57 (d, J = 151.1 Hz). HRMS-ESI (m/z): calcd for C₁₆H₁₅F₂NO, [M+H]⁺: 276.1200, found, 276.1200.

2,2-difluoro-*N*, *N*-dimethyl-5-(naphthalen-2-yl)-2,3-dihydrofuran-3-amine (2w) ^[1] Yellow solid, m.p. = 57-59 °C (41.8 mg, 76% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.83 (dd, J = 12.5, 5.6 Hz, 3H), 7.65 – 7.59 (m, 1H), 7.50 (dd, J = 6.1, 3.2 Hz, 2H), 5.65 (s, 1H), 4.20 (ddd, J = 15.2, 7.5, 3.0 Hz, 1H), 2.51 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 154.37 (d, J = 3.7 Hz), 133.84, 132.95, 131.28 (dd, J = 274.0, 271.3 Hz).128.67, 128.38, 127.75, 127.16, 126.80, 125.33, 125.16, 122.36, 98.10 (d, J = 2.7 Hz), 71.16 (dd, J = 34.5, 18.9 Hz), 41.22 (d, J = 2.4 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.18 (d, J = 150.6 Hz), -83.60 (d, J = 150.6 Hz). HRMS-ESI (m/z): calcd for C₁₆H₁₅F₂NO, [M+H]⁺: 276.1200, found, 276.1200.

MeO

2,2-difluoro-5-(6-methoxynaphthalen-2-yl)-*N*, *N*-dimethyl-2,3-dihydrofuran-3-amine (2x) Yellow solid, m.p. = 113-115 °C (50.0 mg, 82% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.74 (dd, J = 15.6, 8.8 Hz, 2H), 7.60 (dd, J = 8.6, 1.6 Hz, 1H), 7.17 (dd, J = 8.9, 2.5 Hz, 1H), 7.13 (d, J = 2.3 Hz, 1H), 5.60 (t, J = 2.3 Hz, 1H), 4.20 (ddd, J = 15.0, 7.2, 2.6 Hz, 1H), 3.93 (s, 3H), 2.51 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.68, 154.52 (d, J = 3.7 Hz), 135.23, 131.28 (dd, J = 274.0, 271.2 Hz), 130.17, 128.30, 127.16, 124.96, 123.23, 122.97, 119.55, 105.89, 96.98 (d, J = 2.6 Hz), 71.12 (dd, J = 34.5, 18.9 Hz), 55.35, 41.18 (d, J = 2.5 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.19 (d, J = 150.8 Hz),

-83.74 (d, J = 150.8 Hz). HRMS-ESI (m/z): calcd for C₁₇H₁₇F₂NO₂, [M+H]⁺: 306.1306, found, 306.1308 .

2,2-difluoro-*N*, *N*-dimethyl-5-(2-(phenylethynyl)phenyl)-2,3-dihydrofuran-3-amine (2y) Brown oil, (37.0 mg, 57% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.55 (m, 1H), 7.54 – 7.48 (m, 1H), 7.40 (dd, J = 7.2, 2.3 Hz, 2H), 7.30 – 7.22 (m, 5H), 6.24 – 6.17 (m, 1H), 4.09 (ddd, J = 15.0, 7.5, 2.6 Hz, 1H), 2.38 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.16 (d, J = 3.7 Hz), 133.89, 131.45, 130.65 (dd, J = 273.0, 270.0 Hz), 129.09, 129.00, 128.78, 128.54, 128.46, 126.98, 122.81, 120.71, 102.63 (d, J = 2.9 Hz), 95.13, 88.46, 71.47 (dd, J = 34.5, 19.1 Hz), 41.26. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.81 (d, J = 151.2 Hz), -84.37. HRMS-ESI (m/z): calcd for C₁₃H₁₅F₂NO, [M+H]⁺: 326.1356, found, 326.1343.

1-(4'-(4-(dimethylamino)-5,5-difluoro-4,5-dihydrofuran-2-yl)-[1,1'-biphenyl]-4-yl)ethan-1one (2z)

Light yellow solid, m.p. = 145-147 °C (48.7 mg, 71% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, J = 8.0 Hz, 2H), 7.68 (dd, J = 8.8, 5.1 Hz, 6H), 5.63 (s, 1H), 4.18 (ddd, J = 15.1, 7.4, 2.6 Hz, 1H), 2.64 (s, 3H), 2.50 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.66, 153.85 (d, J = 3.7 Hz), 144.59, 141.22, 136.23, 131.16 (dd, J = 274.3, 271.4 Hz), 129.01, 127.96, 127.41, 127.17, 125.94, 98.07 (d, J = 3.0 Hz), 71.07 (dd, J = 34.5, 19.0 Hz), 41.19 (d, J = 2.7 Hz), 26.70. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.26 (d, J = 150.5 Hz), -83.71 (d, J = 150.6 Hz). HRMS-ESI (m/z): calcd for C₂₀H₁₉F₂NO₂, [M+H]⁺: 344.1462, found, 344.1464.

(E)-2,2-difluoro-*N*, *N*-dimethyl-5-styryl-2,3-dihydrofuran-3-amine (2aa)

Dark yellow solid, m.p. = 46-48 °C (32.0 mg, 63% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.43 (m, 2H), 7.38 – 7.33 (m, 2H), 7.32 – 7.28 (m, 1H), 7.01 (d, *J* = 16.1 Hz, 1H), 6.55 (d, *J* = 16.1 Hz, 1H), 5.21 (t, *J* = 2.3 Hz, 1H), 4.09 (ddd, *J* = 14.7, 7.3, 2.9 Hz, 1H), 2.47 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.56 (d, *J* = 3.8 Hz),

135.66, 131.19 (dd, J = 274.2, 271.2 Hz), 133.63, 128.83, 128.79, 127.03, 114.76, 101.93 (d, J = 2.7 Hz), 70.92 (dd, J = 34.3, 19.1 Hz), 41.17 (d, J = 2.4 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.39 (d, J = 150.1 Hz), -83.47 (d, J = 150.0 Hz). HRMS-ESI (m/z): calcd for C₁₄H₁₅F₂NO, [M+H]⁺: 252.1200, found, 252.1136.

2,2-difluoro-*N*,*N*-dimethyl-5-(4-((2-methyl-1H-indol-1-yl)methyl)phenyl)-2,3-dihydrofuran-3-amine (2ab)

Yellow solid, m.p. = 86-88 °C (45.6 mg, 62% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.53 (m, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.20 – 7.13 (m, 1H), 7.09 (qd, J = 6.9, 3.9 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.34 (s, 1H), 5.48 (t, J = 2.3 Hz, 1H), 5.32 (s, 2H), 4.11 (ddd, J = 15.0, 7.2, 2.6 Hz, 1H), 2.45 (s, 6H), 2.36 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.94 (d, J = 3.7 Hz), 139.89, 137.06, 136.54, 131.13 (dd, J = 274.2, 271.4 Hz), 128.20, 127.33, 126.22, 125.81, 120.91, 119.84, 119.69, 109.06, 100.73, 97.42, 70.99 (dd, J = 34.5, 18.9 Hz), 46.22, 41.15, 12.76. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.30 (d, J = 150.7 Hz), -83.90 (d, J = 150.8 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₅F₂NO, [M+H]⁺: 369.1778, found, 369.1775.

2,2-difluoro-N, N-dimethyl-5-(6-methylpyridin-2-yl)-2,3-dihydrofuran-3-amine (2ac)

Dark yellow oil, (32.1 mg, 67% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (t, J = 7.8 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 6.06 (s, 1H), 4.20 – 4.14 (m, 1H), 2.57 (s, 3H), 2.49 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 158.84, 153.72 (d, J = 3.3 Hz), 146.33, 136.84, 131.32 (dd, J = 274.9, 271.1 Hz), 124.03, 117.42, 100.93 (d, J = 3.1 Hz), 71.14 (dd, J = 34.4, 18.9 Hz), 41.43 (d, J = 2.5 Hz), 24.57. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.47 (d, J = 150.3 Hz), -82.92 (d, J = 150.5 Hz). HRMS-ESI (m/z): calcd for C₁₂H₁₄F₂N₂O, [M+H]⁺: 241.1152, found, 241.1159.

5,5-difluoro-*N*, *N*-dimethyl-4,5-dihydro-[2,2'-bifuran]-4-amine (2ad)

Brown oil, (30.5 mg, 71% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (s, 1H), 6.62 (s, 1H), 6.47 (s, 1H), 5.45 (s, 1H), 4.14 (dd, *J* = 14.6, 6.9 Hz, 1H), 2.47 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 146.17 (d, *J* = 4.8 Hz), 144.08, 143.91, 131.15 (dd, *J* = 274.7, 272.5 Hz), 111.46, 110.05, 96.44 (d, *J* = 2.9 Hz),

70.78 (dd, J = 34.3, 18.8 Hz), 41.13 (d, J = 2.9 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.89 (d, J = 150.0 Hz), -83.91 (d, J = 149.9 Hz). HRMS-ESI (m/z): calcd for C₁₀H₁₁F₂NO₂, [M+H]⁺: 216.0836, found, 216.0852.

2,2-difluoro-N, N-dimethyl-5-(thiophen-2-yl)-2,3-dihydrofuran-3-amine (2ae)^[1]

Dark yellow oil, (31.4 mg, 68% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 5.0 Hz, 1H), 7.33 (d, *J* = 3.7 Hz, 1H), 7.05 (t, *J* = 4.1 Hz, 1H), 5.38 (s, 1H), 4.17 – 4.11 (m, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 149.54 (d, *J* = 4.3 Hz), 131.03 (dd, *J* = 274.8, 272.3 Hz), 130.92, 127.65, 127.25, 126.65, 96.54 (d, *J* = 3.1 Hz), 71.12 (dd, *J* = 34.5, 18.8 Hz), 41.12 (d, *J* = 2.7 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.59 (d, *J* = 150.1 Hz), -83.84 (d, *J* = 149.9 Hz). HRMS-ESI (m/z): calcd for C₁₀H₁₁F₂NOS, [M+H]⁺: 232.0608, found, 232.0617.

2,2-difluoro-*N*, *N*-dimethyl-5-(thiophen-3-yl)-2,3-dihydrofuran-3-amine (2af) Dark yellow oil, (32.8 mg, 71% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (s, 1H), 7.36 – 7.33 (m, 1H), 7.26 – 7.23 (m, 1H), 5.36 (s, 1H), 4.14 (dd, J = 14.5, 6.7 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.80 (d, J = 4.0 Hz), 131.11 (dd, J = 274.4, 271.6 Hz)., 130.12, 126.75, 124.75, 124.20, 96.75 (d, J = 3.1 Hz), 70.96 (dd, J = 34.5, 19.0 Hz), 41.10 (d, J = 2.9 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.50 (d, J = 150.5 Hz), -83.91 (d, J = 150.0 Hz). HRMS-ESI (m/z): calcd for C₁₀H₁₁F₂NOS, [M+H]⁺: 232.0608, found, 232.0617.

2-(4-(dimethylamino)-5,5-difluoro-4,5-dihydrofuran-2-yl)-9H-fluoren-9-one (2ag)

Light yellow solid, m.p. = 114-116 °C (42.5 mg, 65% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (s, 1H), 7.69 (dd, J = 14.4, 7.6 Hz, 2H), 7.57 – 7.47 (m, 3H), 7.32 (t, J = 7.1 Hz, 1H), 5.63 (s, 1H), 4.17 (dd, J = 14.8, 7.2 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.95, 153.26 (d, J = 3.7 Hz), 145.29, 143.77, 135.01, 134.47, 134.39, 131.06 (dd, J = 274.6, 271.6 Hz), 131.33, 129.65, 129.04, 124.58, 121.32, 120.80, 120.48, 98.56 (d, J = 3.0 Hz), 71.08 (dd, J = 34.5, 19.0 Hz), 41.24 (d, J = 2.1 Hz). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.47 (d, J = 150.5 Hz), -83.59 (d, J = 150.5 Hz). HRMS-ESI (m/z): calcd for C₁₉H₁₅F₂NO₂, [M+H]⁺: 328.1149, found, 328.1139.

2,2-difluoro-N, N-dimethyl-5-ferrocenyl-2,3-dihydrofuran-3-amine (2ah)

Dark purple solid, m.p. = 76-78 °C (53.9 mg, 81% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 5.10 (s, 1H), 4.53 (d, J = 12.9 Hz, 2H), 4.31 (s, 2H), 4.19 (s, 5H), 3.98 (d, J = 12.2 Hz, 1H), 2.48 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 155.80 (d, J = 4.2 Hz), 133.91 – 128.45 (m), 94.67, 72.43, 70.93 (dd, J = 34.0, 18.4 Hz), 69.69, 66.63 (d, J = 7.9 Hz), 41.04. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.35 (d, J = 151.0 Hz), -84.85 (d, J = 150.7 Hz). HRMS-ESI (m/z): calcd for C₁₆H₁₇F₂FeNO, [M+H]⁺: 334.0706, found, 334.0671.

5-((1r,3R,5S)-adamantan-1-yl)-2,2-difluoro*N*, *N*-dimethyl-2,3-dihydrofuran-3-amine (2ai) Light yellow oil, (41.3 mg, 73% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 4.73 (t, J = 2.4 Hz, 1H), 3.86 (ddd, J = 15.1, 6.6, 2.4 Hz, 1H), 2.40 (s, 6H), 2.01 (t, J = 3.2 Hz, 3H), 1.77 (q, J = 12.9, 11.4 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.01 (d, J = 2.6 Hz), 131.23 (dd, J = 272.9, 270.2 Hz), 94.43 (d, J = 2.5 Hz), 70.23 (dd, J = 35.1, 19.0 Hz), 40.96 (d, J = 2.7 Hz), 39.11, 36.60, 34.17, 27.75. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.83 (d, J = 150.8 Hz), -85.47 (d, J = 151.0 Hz). HRMS-ESI (m/z): calcd for C₁₆H₂₃F₂NO, [M+H]⁺: 284.1826, found, 284.1886.

N, N-dibenzyl-2,2-difluoro-5-(p-tolyl)-2,3-dihydrofuran-3-amine (2aj)

Light yellow solid, m.p. = 83-85 °C (56.3 mg, 72% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.0 Hz, 2H), 7.40 – 7.21 (m, 10H), 7.16 (d, J = 8.0 Hz, 2H), 5.43 (s, 1H), 4.36 (ddd, J = 14.6, 8.4, 2.2 Hz, 1H), 3.97 – 3.72 (m, 4H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 154.54 (d, J = 3.5 Hz), 140.09, 139.44, 131.72 (t, J = 273.0 Hz), 129.25, 128.74, 128.38, 127.17, 125.52, 125.23, 97.38 (d, J = 3.4 Hz), 66.10 (dd, J = 34.4, 19.2 Hz), 54.38, 21.45. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.98 (d, J = 150.5 Hz), -80.43 (d, J = 150.3 Hz). HRMS-ESI (m/z): calcd for C₂₅H₂₃F₂NO, [M+H]⁺: 392.1826, found, 392.1830.

2,2-difluoro-N, N-dimethyl-3,4-dihydro-2H-indeno[1,2-b]furan-3-amine (2ak)

Dark yellow oil, (32.2 mg, 68% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.2 Hz, 1H), 7.31 (d, J = 7.1 Hz, 1H), 7.26 (t, J = 7.1 Hz, 1H), 7.23 – 7.19 (m, 1H), 4.26 (dd, J = 13.8, 7.1 Hz, 1H), 3.31 (s, 2H), 2.41 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 159.34 (d, J = 4.4 Hz), 146.04, 136.28 (dd, J = 285.4, 282.5 Hz), 132.14, 126.83, 126.44, 124.97, 118.25, 117.39 (dd, J = 3.8, 1.7 Hz), 70.86 (dd, J = 33.4, 18.9 Hz), 41.00, 31.91. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -58.28 (d, J = 145.0 Hz), -77.21 (d, J = 145.1 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₃F₂NO, [M+H]⁺: 238.1043, found, 238.1038.

2,2-difluoro-N, N,4,4-tetramethyl-3,4-dihydro-2H-indeno[1,2-b]furan-3-amine (2al)

Dark yellow solid, m.p. = 128-130 °C (22.2 mg, 42% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.34 (m, 1H), 7.33 – 7.26 (m, 3H), 4.24 (dd, *J* = 14.1, 7.4 Hz, 1H), 2.60 – 2.40 (m, 6H), 1.45 (s, 3H), 1.36 (s, 3H). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -56.81 (d, *J* = 144.1 Hz), -76.82 (d, *J* = 144.1 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.92, 156.42 (d, *J* = 4.7 Hz), 136.34 (t, *J* = 286.1 Hz), 130.21, 126.89, 126.77, 121.84, 118.34, 70.15 (dd, *J* = 32.0, 19.0 Hz), 44.14, 40.70, 24.70, 24.04. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -56.81 (d, *J* = 144.1 Hz), -76.82 (d, *J* = 144.1 Hz). HRMS-ESI (m/z): calcd for C₁₃H₁₅F₂NO, [M+H]⁺: 266.1356, found, 266.1349.

2,2-difluoro-*N*, *N*-dimethyl-2,3,4,5-tetrahydronaphtho[1,2-b]furan-3-amine (2am)

Dark yellow oil, (26.1 mg, 52% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (dd, J = 5.9, 3.0 Hz, 1H), 7.25 – 7.22 (m, 2H), 7.20 – 7.16 (m, 1H), 4.09 (dd, J = 14.0, 7.8 Hz, 1H), 2.99 (t, J = 8.1 Hz, 2H), 2.52 (s, 6H), 2.47 – 2.42 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.46 (d, J = 4.0 Hz), 136.41, 132.57 (dd, J = 277.7, 276.0 Hz), 128.80, 127.72, 126.61, 125.65, 121.09, 110.14 (dd, J = 3.4, 1.3 Hz), 72.32 (dd, J = 33.2, 19.0 Hz), 40.49 (d, J = 3.0 Hz), 27.87, 20.35. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -59.83 (d, J = 149.3 Hz), -81.87 (d, J = 149.8 Hz). HRMS-ESI (m/z): calcd for C₁₄H₁₅F₂NO, [M+H]⁺: 252.1200, found, 252.1234.

2,2-difluoro-*N*, *N*-dimethyl-3,4,5,6-tetrahydro-2H-benzo[6,7]cyclohepta[1,2-b]furan-3-amine (2an)

Light yellow oil, (23.8 mg, 45% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.65 (m, 1H), 7.25 – 7.20 (m, 2H), 7.15 – 7.10 (m, 1H), 3.99 (dd, J = 14.0, 7.3 Hz, 1H), 2.92 – 2.80 (m, 2H), 2.53 (s, 6H), 2.38 (dt, J = 18.2, 6.5 Hz, 2H), 2.01 – 1.88 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.49 (d, J = 3.0 Hz), 141.56, 130.58 (t, J = 271.3 Hz), 129.25, 128.88, 127.91, 126.82, 126.22, 115.10, 74.33 (dd, J = 33.4, 19.2 Hz), 40.08 (d, J = 3.0 Hz), 35.90, 27.67, 24.57. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -59.40 (d, J = 151.5 Hz), -84.06 (d, J = 153.5 Hz). HRMS-ESI (m/z): calcd for C₁₅H₁₇F₂NO, [M+H]⁺: 266.1356, found, 266.1384.

2,2-difluoro-*N*, *N*-dimethyl-4,5-diphenyl-2,3-dihydrofuran-3-amine (2ao)

Light yellow oil, (43.9 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.45 (d, J = 7.7 Hz, 2H), 7.31 (m, 8H), 4.35 (dd, J = 13.6, 5.7 Hz, 1H), 2.54 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 148.90, 132.83, 130.24 (dd, J = 275.1, 272.7 Hz), 129.70, 128.93, 128.68, 128.61, 128.29, 127.77, 127.71, 113.26, 73.64 (dd, J = 33.9, 18.9 Hz), 40.14. ¹⁹F NMR (377 MHz, CDCl₃) δ (ppm) -59.95 (d, J = 149.7 Hz), -85.95 (d, J = 149.7 Hz). HRMS-ESI (m/z): calcd for C₁₈H₁₇F₂NO, [M+H]⁺: 302.1356, found, 302.1343.

2,2-difluoro-5-(4-methoxyphenyl)-*N*, *N*-dimethyl-4-phenyl-2,3-dihydrofuran-3-amine(2ap) Light yellow oil, (53.6 mg, 81% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.36 (m, 4H), 7.26 (d, *J* = 10.3 Hz, 3H), 6.78 (d, *J* = 8.5 Hz, 2H), 4.31 (dd, *J* = 13.6, 5.6 Hz, 1H), 3.78 (s, 3H), 2.53 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.58, 148.85 (d, *J* = 2.9 Hz), 133.21, 130.27 (dd, *J* = 275.2, 272.3 Hz), 129.30, 128.67, 128.57, 127.48, 121.36, 113.70, 111.45, 73.65 (dd, *J* = 33.7, 18.9 Hz), 55.28, 40.11. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -59.92 (d, *J* = 149.6 Hz), -86.07 (d, *J* = 149.6 Hz). HRMS-ESI (m/z): calcd for C₁₉H₁₉F₂NO₂, [M+H]⁺: 332.1462, found, 332.1476.

5-(4-chlorophenyl)-2,2-difluoro-N, N-dimethyl-4-phenyl-2,3-dihydrofuran-3-amine (2aq)

Light yellow oil, (44.2 mg, 66% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, J = 8.0 Hz, 2H), 7.35 – 7.28 (m, 5H), 7.23 (d, J = 7.8 Hz, 2H), 4.33 (dd, J = 13.7, 5.9 Hz, 1H), 2.52 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.72 (d, J = 3.1 Hz), 135.59, 132.54, 130.15 (dd, J = 274.8, 272.3 Hz), 129.04, 128.75, 128.65, 128.60, 127.96, 127.36, 113.98, 73.72 (dd, J = 33.7, 18.9 Hz), 40.18. ¹⁹F NMR (377 MHz,

Chloroform-*d*) δ -60.02 (d, J = 149.5 Hz), -85.77 (d, J = 149.5 Hz). HRMS-ESI (m/z): calcd for C₁₈H₁₆ClF₂NO, [M+H]⁺: 336.0967, found, 336.0971.

2,2-difluoro-5-((R)-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-N,N-dimethyl-2,3-dihydrofuran-3-amine (2ar)

Yellow solid, m.p. = 71-73 °C (39.9 mg, 55% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (s, 1H), 7.20 (s, 1H), 5.30 (t, J = 2.3 Hz, 1H), 4.14 (ddt, J = 14.8, 7.3, 1.6 Hz, 1H), 2.50 (s, 6H), 2.41 (s, 3H), 1.87 (ddd, J = 12.9, 6.7, 2.5 Hz, 1H), 1.64 (d, J = 13.3 Hz, 1H), 1.40 – 1.36 (m, 1H), 1.33 – 1.29 (m, 6H), 1.26 (d, J = 2.0 Hz, 3H), 1.06 (s, 3H), 0.99 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) 154.71 (d, J = 3.6 Hz), 147.94, 142.63, 133.49 – 128.04 (m), 133.42, 129.76, 126.28, 125.35, 100.93, 71.18 (dd, J = 34.7, 18.9 Hz), 43.57, 41.20, 37.73, 34.46, 34.11, 32.38 (d, J = 2.4 Hz), 31.97, 28.47, 24.84, 21.44, 16.83. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.54 (dd, J = 151.5, 10.4 Hz), -84.94 (dd, J = 151.4, 16.8 Hz). HRMS-ESI (m/z): calcd for C₂₂H₃₁F₂NO, [M+H]⁺: 364.2452, found, 364.2417.

(8S,9S,10R,13S,14S)-17-(4-(dimethylamino)-5,5-difluoro-4,5-dihydrofuran-2-yl)-10,13dimethyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one (2as)

Yellow solid, m.p. = 62-64 °C (51.9 mg, 62% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 5.73 (s, 1H), 4.88 (s, 1H), 4.02 – 3.83 (m, 1H), 2.43 (d, *J* = 6.2 Hz, 6H), 2.40 – 2.33 (m, 2H), 2.32 – 2.19 (m, 2H), 2.05 (tt, *J* = 13.0, 3.4 Hz, 2H), 1.88 (ddt, *J* = 13.0, 9.3, 5.9 Hz, 2H), 1.75 (dddd, *J* = 23.0, 18.4, 11.0, 5.7 Hz, 3H), 1.62 – 1.49 (m, 2H), 1.47 – 1.38 (m, 1H), 1.27 (tdd, *J* = 13.3, 8.3, 4.0 Hz, 3H), 1.19 (s, 3H), 1.13 – 0.92 (m, 3H), 0.70 (d, *J* = 27.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.57, 171.12, 159.28, 123.90, 98.80 (d, *J* = 2.7 Hz), 98.63 (d, *J* = 2.2 Hz), 70.58 (m), 55.13, 55.10, 53.78, 53.76, 49.22, 49.12, 43.67, 43.64, 41.13, 40.93, 38.63, 38.05, 37.97, 35.80, 35.70, 33.95, 32.81, 31.92, 24.32, 23.85, 20.86, 17.37, 13.13, 12.91. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.10 (dd, *J* = 151.8, 55.7 Hz), -84.16 (dd, *J* = 521.5, 151.8 Hz). HRMS-ESI (m/z): calcd for C₂₅H₃₅F₂NO₂, [M+H]⁺: 420.2714, found, 420.2693.

(8R,9S,13S,14S)-3-((4-(dimethylamino)-3,3-difluoro-2,3-dihydrofuran-2-yl)benzyl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (2at) Yellow solid, m.p. = 144-146 °C (45.6 mg, 45% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.6 Hz, 1H), 6.79 – 6.74 (m, 1H), 6.71 (s, 1H), 5.55 (s, 1H), 5.06 (s, 2H), 4.15 (ddd, J = 15.0, 7.3, 2.7 Hz, 1H), 2.89 (dd, J = 10.4, 4.5 Hz, 2H), 2.48 (s, 6H), 2.42 – 2.35 (m, 1H), 2.24 (t, J = 10.3 Hz, 1H), 2.17 – 1.94 (m, 4H), 1.61 – 1.38 (m, 6H), 1.27 (d, J = 12.1 Hz, 1H), 0.90 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 220.96, 156.58, 154.08 (d, J = 3.7 Hz), 139.31, 137.90, 132.55, 131.17 (dd, J = 274.1, 271.4 Hz), 127.71, 127.39, 126.42, 125.56, 114.93, 112.36, 97.51 (d, J = 3.0 Hz), 71.03 (dd, J = 34.5, 19.0 Hz), 69.39, 50.41, 48.02, 43.99, 41.18 (d, J = 3.0 Hz), 38.33, 35.89, 31.59, 29.67, 26.53, 25.92, 21.60, 13.87. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ - 61.27 (d, J = 150.9 Hz), -83.79 (d, J = 150.7 Hz). HRMS-ESI (m/z): calcd for C₃₁H₃₅F₂NO₃, [M+H]⁺: 508.2663, found, 508.2688.

2-(4-(dimethylamino)-5,5-difluoro-4,5-dihydrofuran-2-yl)phenyl 4-methylbenzoate (4b) Yellow oil, (30.8 mg, 43% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (d, J = 8.2 Hz, 2H), 7.79 – 7.71 (m, 1H), 7.49 – 7.42 (m, 1H), 7.40 – 7.30 (m, 3H), 7.28 – 7.20 (m, 1H), 5.65 – 5.51 (m, 1H), 4.04 (ddd, J = 15.0, 7.6, 2.9 Hz, 1H), 2.46 (s, 3H), 2.35 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.57, 150.13 (d, J = 3.8 Hz), 148.57, 144.96, 133.21 – 127.68 (m), 130.64, 130.27, 129.57, 128.24, 126.25, 126.16, 123.50, 121.65, 102.48 (d, J = 2.7 Hz), 71.05 (dd, J = 34.4, 18.9 Hz), 40.98, 21.80. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.88 (d, J = 151.2 Hz), -84.74 (d, J = 151.2 Hz). HRMS-ESI (m/z): calcd for C₂₀H₁₉F₂NO₃, [M+H]⁺: 360.1411, found, 360.1436.

3-(4-methylbenzoyl)-4H-chromen-4-one (5b)^[2]

White solid, m.p. = 126-128 °C (22.7 mg, 37% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 – 8.23 (m, 2H), 7.80 – 7.75 (m, 2H), 7.74 – 7.69 (m, 1H), 7.56 – 7.51 (m, 1H), 7.50 – 7.44 (m, 1H), 7.28 – 7.23 (m, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 191.40, 174.76, 158.35, 156.08, 144.52, 134.64, 134.34, 129.78, 129.16,

126.49, 126.06, 125.39, 125.00, 118.30, 21.80.

benzene-1,3,5-triyltris(p-tolylmethanone) (6)^[3]

Yellow solid, m.p. = 152-154 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (s, 3H), 7.76 (d, *J* = 8.1 Hz, 6H), 7.30 (d, *J* = 8.1 Hz, 6H), 2.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.76, 144.24, 138.45, 133.86, 133.71, 130.35, 129.35, 21.75.

References

- 1. J. Ying, T. Liu, Y. Liu, J.-P. Wan, Org. Lett. 2022, 24, 2404-2408.
- 2. S. Mkrtchyan, V. O. Iaroshenko, Eur. J. Org. Chem. 2018, 2018, 6867-6875.
- 3. J.-P. Wang, Y. Lin, K. Hu, Y. Liu, RSC Adv. 2014, 4, 20499-20505.

NMR Spectra for All Compounds

¹H NMR of compound 2a

¹³C NMR of compound 2a

¹⁹F NMR of compound 2a

¹H NMR of compound 2b

¹³C NMR of compound 2b

¹⁹F NMR of compound 2b

¹H NMR of compound 2c

¹³C NMR of compound 2c

¹⁹F NMR of compound 2c

¹H NMR of compound 2d

¹³C NMR of compound 2d

¹⁹F NMR of compound 2d

¹H NMR of compound 2e

¹³C NMR of compound 2e

¹⁹F NMR of compound 2e

¹H NMR of compound 2f

¹³C NMR of compound 2f

¹⁹F NMR of compound 2f

¹³C NMR of compound 2g

¹⁹F NMR of compound 2g

¹H NMR of compound 2h

¹³C NMR of compound 2h

¹⁹F NMR of compound 2h

¹³C NMR of compound 2i

¹⁹F NMR of compound 2i

¹H NMR of compound 2j

¹³C NMR of compound 2j

¹⁹F NMR of compound 2j

¹³C NMR of compound 2k

¹⁹F NMR of compound 2k

¹H NMR of compound 2l

¹³C NMR of compound 21

¹⁹F NMR of compound 21

¹H NMR of compound 2m

¹³C NMR of compound 2m

¹⁹F NMR of compound 2m

¹H NMR of compound 2n

¹³C NMR of compound 2n

¹⁹F NMR of compound 2n

¹H NMR of compound 20

¹³C NMR of compound 20

¹⁹F NMR of compound 20

¹H NMR of compound 2p

¹³C NMR of compound 2p

¹⁹F NMR of compound 2p

¹³C NMR of compound 2q

¹⁹F NMR of compound 2q

¹H NMR of compound 2r

¹³C NMR of compound 2r

¹⁹F NMR of compound 2r

¹H NMR of compound 2s


```
<sup>13</sup>C NMR of compound 2s
```


¹⁹F NMR of compound 2s

¹H NMR of compound 2t

¹³C NMR of compound 2t

¹⁹F NMR of compound 2t

¹H NMR of compound 2u

¹³C NMR of compound 2u

¹⁹F NMR of compound 2u

¹H NMR of compound 2v

¹³C NMR of compound 2v

¹⁹F NMR of compound 2v

¹H NMR of compound 2w

¹³C NMR of compound 2w

¹⁹F NMR of compound 2w

¹H NMR of compound 2x

¹³C NMR of compound 2x

¹⁹F NMR of compound 2x

¹H NMR of compound 2y

¹³C NMR of compound 2y

¹⁹F NMR of compound 2y

¹H NMR of compound 2z

¹³C NMR of compound 2z

¹⁹F NMR of compound 2z

¹H NMR of compound 2aa

¹³C NMR of compound 2aa

¹⁹F NMR of compound 2aa

¹H NMR of compound 2ab

¹³C NMR of compound 2ab

¹⁹F NMR of compound 2ab

¹H NMR of compound 2ac

¹³C NMR of compound 2ac

¹⁹F NMR of compound 2ac

¹H NMR of compound 2ad

¹³C NMR of compound 2ad

¹⁹F NMR of compound 2ad

¹H NMR of compound 2ae

¹³C NMR of compound 2ae

¹⁹F NMR of compound 2ae

¹H NMR of compound 2af

¹³C NMR of compound 2af

¹⁹F NMR of compound 2af

¹⁹F NMR of compound 2ag

¹H NMR of compound 2ah

¹³C NMR of compound 2ah

¹⁹F NMR of compound 2ah

¹³C NMR of compound 2ai

¹⁹F NMR of compound 2ai

¹H NMR of compound 2aj

¹³C NMR of compound 2aj

¹⁹F NMR of compound 2aj

¹H NMR of compound 2ak

¹³C NMR of compound 2ak

¹⁹F NMR of compound 2ak

¹H NMR of compound 2al

¹³C NMR of compound 2al

¹⁹F NMR of compound 2al

¹H NMR of compound 2am

¹³C NMR of compound 2am

¹⁹F NMR of compound 2am

¹H NMR of compound 2an

¹³C NMR of compound 2an

¹⁹F NMR of compound 2an

¹H NMR of compound 2ao

¹³C NMR of compound 2ao

¹⁹F NMR of compound 2ao

¹H NMR of compound 2ap

¹³C NMR of compound 2ap

¹⁹F NMR of compound 2ap

¹H NMR of compound 2aq

¹³C NMR of compound 2aq

¹⁹F NMR of compound 2aq

¹³C NMR of compound 2ar

¹⁹F NMR of compound 2ar

¹H NMR of compound 2as

¹³C NMR of compound 2as

¹⁹F NMR of compound 2as

¹H NMR of compound 2at

¹³C NMR of compound 2at

¹⁹F NMR of compound 2at

¹H NMR of compound 4b

¹³C NMR of compound 4b

¹⁹F NMR of compound 4b

¹H NMR of compound 5b

¹³C NMR of compound 5b

¹H NMR of compound 6

¹³C NMR of compound 6

