Supporting Information

Visible-Light Promoted Photocatalyst-Free Aerobic
α-Oxidation of Tertiary Amines to Amides

Xinpeng Xie a, Xuan Guo a, Kaikai Qiao a, and Lei Shi a*

aState Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China

E-mail: shileichem@dlut.edu.cn
Table of Contents

1. General information and materials ... S1
2. Extra optimization of the reaction conditions S1
3. Preparation of starting materials .. S1-S3
 3.1 Synthesis of tetrahydroisoquinolines derivatives and tetrahydroquinoline derivatives .. S1-S2
 3.2 Synthesis of isoindoline derivatives S2
 3.3 Synthesis of 1-phenylpyrrolidine S2-S3
 3.4 Synthesis of 1, 3-Dihydroisobenzofuran S3
4. General procedure 3 for the oxidation of amines or ethers S3
5. Synthetic application practicability S3-S6
 5.1 Gram-scale synthesis of 2aa S3-S4
 5.2 Derivatization of the alkaloid julolidine 5 S4
 5.3 The synthesis of indoprofen 11a S4-S5
 5.4 The synthesis of indobufen 11b S5-S6
6. Mechanistic experiments ... S6-S9
 6.1 TEMPO trapping experiment S6-S7
 6.2 UV-vis absorption spectra of 1aa, 1ba, 1ca, PIDA and the initial mixtures 1aa/2a, 1ba/2a, 1ca/2a S7-S8
 6.3 Stoichiometry of the molecular complex in solution S8-S9
 6.4 NMR titration experiments S9-S11
 6.5 Quantum yield measurements S11-S12
 6.6 Light ON-OFF Experiment S12
7. Characterization Data ... S13-S24
8. References .. S25
9. Copies of NMR .. S26-S87
1. General information and materials

All reactions were carried out under an atmosphere of O₂ (balloon) with the irradiation of 10 W 390 nm LED, unless otherwise noted. Glassware was pre-dried in an oven at 110 °C for several hours and cooled prior to use. Flash column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC analysis. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at room temperature in CDCl₃ and DMSO-d₆, CDCl₃ on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Commercially available reagents were used throughout without further purification unless otherwise stated. All solvents were dried and distilled under N₂ prior to use.

2. Extra optimization of the reaction conditions

Table S1 Optimization of the dosage of base and light source

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cs₂CO₃ (eq.)</th>
<th>Light source</th>
<th>Yield(%)ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>390 nm</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>390 nm</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>390 nm</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>390 nm</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>390 nm</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>darkness</td>
<td>Trace</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>427 nm</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>460-470 nm</td>
<td>74</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td>white light</td>
<td>60</td>
</tr>
</tbody>
</table>

ᵃ Reaction conditions (unless otherwise specified): ¹aa (0.2 mmol, 1.0 eq.), PIDA (0.02 mmol, 0.1 eq.), O₂ (balloon), DMF (2.0 mL, 0.1 M), rt, 24 h.ᵇ Isolated yield.

3. Preparation of starting materials

3.1 Synthesis of tetrahydroisoquinolines derivatives and tetrahydroquinoline derivatives

Tetrahydroisoquinolines derivatives can be conveniently synthesized according to the known literature procedure. The tetrahydroisoquinolines derivatives ¹aa–¹al, ¹an–¹av and the tetrahydroquinoline derivatives ¹ba, ¹bb, ¹bd–¹bg, ¹bi, ¹bk are the known compounds. The tetrahydroisoquinolines derivative ¹am and the tetrahydroquinoline derivative ¹bc, ¹bh, ¹bj are the unknown compounds.
to obtain compound \(\text{ML, 12.5 mmol, 2.5 eq.} \) and aromatic amine (7.5 mmol, 1.5 eq.) dissolved in toluene (25 mL) were added to a tube sealing before vigorously stirring at 110 °C under a \(\text{N}_2 \) atmosphere. The resulting mixture was cooled to room temperature and extracted with ethyl acetate (3 × 15 mL). The combined organic layer was evaporated to remove the solvent and the crude product was then purified by column chromatography (petroleum ether/ethyl acetate 100:1~50:1).

General procedure 1

The \(1\text{aa} \sim 1\text{au} \) and \(1\text{ba} \sim 1\text{bk} \) were synthesized according to a published procedure. BINAP (622 mg, 0.55 mmol) were added into a Schlenk tube and degassed three time with \(\text{N}_2 \), then fresh distilled toluene (15 mL) was added into the Schlenk tube. The suspension was subsequently stirred at 100 °C for 5 min. After cooled down to room temperature, \(\text{Pd(OAc)}_2 \) (112 mg, 0.5 mmol) was added, after stir for a minute then \(\text{NaO}^+\text{Bu} \) (1346 mg, 14 mmol), bromobenzene (10 mmol) and 1,2,3,4-tetrahydroisoquinoline (12 mmol) or 1,2,3,4-tetrahydroquinoline (12 mmol) were added into the solution. The mixture was then degassed three times with \(\text{N}_2 \) and stirred under reflux for 24 h. The mixture was then cooled down to the room temperature and filtered through celite. The celite was washed with ethyl acetate, the combined organic layer was evaporated to remove the solvent and the crude product was then purified by column chromatography (petroleum ether/ethyl acetate 100:1~50:1).

3.2 Synthesis of isoindoline derivatives\(^3\)

\[
\begin{align*}
\text{Br} + \text{ArNH}_2 & \quad \text{DIPEA, toluene, N}_2, \text{reflux} \\
\text{N}^\text{Ar} & \quad 1\text{c}
\end{align*}
\]

General procedure 2

1, 2-Bis(bromomethyl)benzene (1.3 g, 5.0 mmol, 1.0 eq.), DIPEA (2.2 mL, 12.5 mmol, 2.5 eq.), and aromatic amine (7.5 mmol, 1.5 eq.) dissolved in toluene (25 mL) were added to a tube sealing before vigorously stirring at 110 °C under a \(\text{N}_2 \) atmosphere. The resulting mixture was cooled to room temperature and extracted with ethyl acetate (3 × 15 mL). The combined organic phase was washed with brine, dried over anhydrous \(\text{Na}_2\text{SO}_4 \) and concentrated in \textit{vacuo}. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1~50:1) to obtain compound \(1\text{ca} \sim 1\text{ef} \) as a white solid or pale yellow solid (64-88% yields).

3.3 Synthesis of 1-phenylpyrrolidine\(^4\)

\[
\begin{align*}
\text{NH}_2 + \text{Br} & \quad \text{K}_2\text{CO}_3, \text{DMF, N}_2, 80 ^\circ \text{C} \\
\text{N} & \quad 1\text{ea}
\end{align*}
\]
K₂CO₃ (11.0 mmol, 1.1 eq.) was suspended in DMF (10.0 mL, 1.0 M) under N₂ atmosphere; aniline (10.0 mmol, 1.0 eq.) was then added followed by 1,4-dibromobutane (11.0 mmol, 1.1 eq.). The reaction was heated in an oil bath at 80 °C overnight. After reaching room temperature the mixture was diluted with ethyl acetate and the solution was extracted with 1.0 M HCl(aq.). The aqueous layers were combined and adjusted to pH 8~9 with 1.0 M NaOH(aq.) and then extracted with ethyl acetate. The organic layers were washed with brine, dried over MgSO₄, filtered, concentrated under reduced pressure. The title product 1ea was obtained after purification by column chromatography (petroleum ether/ethyl acetate 100:1~50:1) as a colorless oil (0.77 g, 52%).

3.4 Synthesis of 1,3-Dihydroisobenzofuran

\[
\text{[\text{Br-Br}]} + \text{NaOH} \xrightarrow{\text{DMAP}} \text{H₂O/1,4-dioxane (1:1)} \xrightarrow{\text{N₂, reflux}} \text{3b}
\]

A mixture of 1, 2-Bis(bromomethyl)benzene (1.0 g, 3.8 mmol), sodium hydroxide (1.6 g, 40 mmol), DMAP (10 mg), 1,4-dioxane (5 mL) and water (5 mL), was put into a Schlenk tube and heated in a 110 °C oil bath for 24 h. The reaction mixture was diluted with water (15 mL) and extracted with ether (25 mL). The organic layer was washed with sat. NH₄Cl (aq.) (10 mL), water (10 mL), sat. NaCl (aq.) (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 10:1~5:1) to obtain compound 3b as a colorless oil (62% yields).

4. General Procedure 3 for the Oxidation of Amines or Ethers

A mixture of substrates (0.2 mmol, 1.0 eq.) and cesium carbonate (Cs₂CO₃, 0.3 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (2.0 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.1~2.0 eq.). After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light (Kessil PR160L -390 nm lamp) for 24 h. After the reaction was completed, the reaction solution underwent an aqueous workup (using distilled water or brine in case of slurry phase separation) and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. And the desired products were purified by flash chromatography on silica gel using petroleum ether/ethyl acetate as eluent.

5. Synthetic application practicability

5.1 Gram-scale synthesis of 2aa

\[
\text{[1aa]} \xrightarrow{\text{PIDA (0.2 equiv)}} \text{[2aa]} \xrightarrow{\text{Cs₂CO₃ (1.5 equiv)}} \text{[2aa]}
\]

A mixture of 1aa (5.0 mmol, 1.05 g, 1.0 eq.) and cesium carbonate (Cs₂CO₃, 7.5 mmol, 1.5 eq.) was mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (2.0 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.2 equiv). After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light (Kessil PR160L -390 nm lamp) for 24 h. After the reaction was completed, the reaction solution underwent an aqueous workup (using distilled water or brine in case of slurry phase separation) and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. And the desired products were purified by flash chromatography on silica gel using petroleum ether/ethyl acetate as eluent.
equation) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (50 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (1.0 mmol, 0.2 eq.). The tube was evacuated and backfilled with oxygen, repeating three times. After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 20 W blue LED light (Kessil PR160L -390 nm lamp) for 36 h. After the reaction was completed, the reaction solution underwent an aqueous workup and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated in vacuo. 2aa was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (10:1) as eluent.

5.2 Derivatization of the alkaloid julolidine 5

A mixture of Julolidine (0.5 mmol, 87 mg, 1.0 eq.) and cesium carbonate (Cs₂CO₃, 0.75 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (5.0 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.25 mmol, 0.5 eq.). The tube was evacuated and backfilled with oxygen, repeating three times. After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light (Kessil PR160L -390 nm lamp) for 24 h. After the reaction was completed, the reaction solution underwent an aqueous workup and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. And the desired product 6 was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (10:1) as eluent.

5.3 The synthesis of indoprofen 11a

\[\text{reaction conditions: a) 1,2-Bis(bromomethyl)benzene, DIPEA, toluene, N₂, reflux; b) LDA, MeI, THF, N₂, -78°C; c) standard conditions; d) NaOH (aq.), THF-MeOH (v:v = 1:1), air, rt.} \]

Synthesis of ethyl 2-(4-(isoindolin-2-yl) phenyl) acetate (8):

1,2-bis(bromomethyl)benzene (2.90 g, 11 mmol, 1.1 eq.), DIPEA (4.5 mL, 25 mmol, 2.5 eq.), and ethyl 2-(4-aminophenyl) acetate 7 (1.79 g, 10 mmol, 1.2 eq.) dissolved in toluene (20 mL) were
added to a tube sealing before vigorously stirring at 110 °C under a N_{2} atmosphere. The resulting mixture was cooled to room temperature and extracted with ethyl acetate (3 × 15 mL). The combined organic phase was washed with brine, dried over anhydrous Na_{2}SO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1--50:1) to obtain compound 8 as a white solid (1.96 g, 70%).

Synthesis of ethyl 2-(4-(isoindolin-2-yl) phenyl) propanoate (9a):

The 50 mL Schlenk bottle was evacuated and filled with nitrogen under hot-blowing heating and dried, repeated three times. Under nitrogen atmosphere, diisopropylamine (0.28 mL, 2.0 mmol, 1.3 eq.) and 2.5 ml of THF were injected, and after cooling to -78 °C, n-BuLi (1.1 ml, 1.6 M in n-hexane, 1.8 mmol, 1.2 eq.) was injected. After stirring for 10 min, 10 ml THF containing 8 (0.42 g, 1.5 mmol, 1.0 eq.) was injected. After stirring for 30 min, MeI (0.10 ml, 1.6 mmol, 1.05 eq.) was injected, and the mixture was stirred. The reaction was monitored by TLC. After the mixture was returned to room temperature, 15 ml of H_{2}O was added, and the mixture was stirred for 10 min. The resulting mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic phase was washed with brine, dried over anhydrous Na_{2}SO_{4} and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1) to obtain compound 9a as a white solid (0.43 g, 97%).

Synthesis of ethyl 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoate (10a):

According to General Procedure 3 starting from 9a (1.0 mmol), the product 10a was isolated after chromatography (petroleum ether/ethyl acetate 5:1), 192 mg white solid, 62% yield.

Synthesis of 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoic acid (11a):

Ethyl 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoate 10a (93 mg, 0.3 mmol) was dissolved in MeOH-THF (1:1, 3 mL) and 6.0 M NaOH(aq.) (0.2 mL) was added. Reaction mixture was stirred at room temperature and followed by TLC. After reaction was completed, the mixture was acidified using 10% H_{2}SO_{4}. Product was extracted with ethyl acetate and the combined ethyl acetate fractions were washed with brine and dried over MgSO_{4}. Solvent was removed and 81 mg of yellow solid of indoprofen 11a was obtained, 96% yield.

5.4 The synthesis of indobufen 11b

- **Synthesis of ethyl 2-(4-(isoindolin-2-yl) phenyl) propanoate (9b):**

The 50 mL Schlenk bottle was evacuated and filled with nitrogen under hot-blowing heating
and drying, repeated three times. Under nitrogen atmosphere, diisopropylamine (0.42 mL, 3.0 mmol, 1.5 eq.) and 3.0 ml of THF were injected, and after cooling to -78 °C, n-BuLi (1.5 ml, 1.6 M in n-hexane, 2.4 mmol, 1.2 eq.) was injected. After stirring for 10 min, 10 ml THF containing 8 (0.56 g, 2.0 mmol, 1.0 eq.) was injected. After stirring for 30 min, EtI (0.20 ml, 2.4 mmol, 1.2 eq.) was injected, and the mixture was stirred. The reaction was monitored by TLC. After the mixture was returned to room temperature, 15 ml of H₂O was added, and the mixture was stirred for 10 min. The resulting mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1) to obtain compound 9a as a white solid (0.57 g, 92%).

Synthesis of 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoic acid (11a):

Starting from 9b (0.31 g, 1.0 mmol), after completing the oxidation reaction according to General Procedure 3, add 10 mL MeOH-THF (1:1) to the reaction solution, and then add 6.0 M NaOH(aq.) (0.5 mL). Reaction mixture was stirred at room temperature and followed by TLC. After reaction was completed, the mixture was acidified using 10% H₂SO₄. Product was extracted with ethyl acetate and the combined ethyl acetate fractions were washed with brine, dried over MgSO₄ and concentrated in vacuo. The crude product was purified by column chromatography (DCM/MeOH 25:1) to obtain compound 11a as a white solid (0.20 g, 68%).

6. **Mechanistic experiments**

6.1 **TEMPO trapping experiment**

A mixture of N-phenyl-tetrahydroisoquinoline 1aa (0.2 mmol) and cesium carbonate (Cs₂CO₃, 0.3 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (2 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.02 mmol, 0.1 eq.) and TEMPO (0.4 mmol, 2.0 eq.). The tube was evacuated and backfilled with oxygen, repeating three times. After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light. The reaction solution underwent an aqueous workup and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo.
6.2 UV-vis absorption spectra of 1aa, 1ba, 1ca, PIDA and the initial mixtures 1aa/2a, 1ba/2a, 1ca/2a.7

Figure S2. UV-visible absorption spectra of 1aa, PIDA and 1aa/PIDA
c(1aa) = 0.05 M, c(PIDA) = 0.01 M
6.3 Stoichiometry of the molecular complex in solution

The stoichiometry of the EDA complexes was calculated using the Job’s plot method. The Job’s plot of the EDA complex between 1 and PIDA was calculated measuring the absorption of DMF solutions at 390 nm with different donor/acceptor ratios with constant concentration (0.10 M) of the two components. The absorbance values were plotted against the molar fraction of 1. The Job’s plot analysis of the EDA complex 1aa/PIDA showed a maximal absorbance at 0.496 molar fraction of 1aa indicated that the stoichiometry of the EDA complex in solution was most likely 1:1.
6.4 NMR titration experiments

H1NMR experiments of solutions with different donor/acceptor ratios of 1aa and PIDA (covering the ratio 0%, 10%, 20% to 100% donor) with constant concentration of the two components (0.1 M in CDCl\textsubscript{3}), were measured.

Figure S5: Job’s plot of 1aa with PIDA in DMF.
Figure S6: NMR titration of 1aa with PIDA in CDCl₃.

6.5 Quantum yield measurements

Purple LED (λ_max = 390 nm) was used for measurement of quantum yield.

Determination of the light intensity at 390 nm
According to the procedure of Guo8, the photon flux of the LED ($\lambda_{\text{max}} = 390$ nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H$_2$SO$_4$ (10 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (10.0 mg) and sodium acetate (2.26 g) in H$_2$SO$_4$ (10.0 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 60 seconds at $\lambda_{\text{max}} = 390$ nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A nonirradiated sample was also prepared and the absorbance at 510 nm was measured.

The average of the absorption of the irradiated and non-irradiated samples was determined and used to calculate the conversion applying the following equation

$$mol\ Fe^{2+} = \frac{V \times \Delta A}{l \times \varepsilon} = \frac{(0.0020\ L) \times 1.036}{(1\ cm) \times 11100\ \frac{L}{mol\ cm}} = 1.87 \times 10^{-7}\ mol$$

where V (0.0020 L) is the quantitatively absorbed solution of potassium iron oxalate 1,10-phenanthroline complex, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions (average of three replicates), l is the path length (1.000 cm), and ε is the molar absorptivity at 510 nm (11,100 L mol$^{-1}$ cm$^{-1}$). The photon flux can be calculated based on the following equation:

$$\frac{\text{photoflux}}{\Phi \times t \times f} = \frac{1.87 \times 10^{-7}\ mol}{1.13 \times 60 \times (1 - 10^{-A})} = 2.76 \times 10^{-9}\ \text{einstein/s}$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.13 for a 0.15 M solution at $\lambda = 390$ nm),9 t is the time (60 s), and f is the fraction of light absorbed at $\lambda = 390$ nm ($A >> 3$, $f \approx 1$). The photon flux was calculated to be $2.76 \times 10^{-9}\ \text{einstein/s}$.

The reaction mixture (standard condition) was stirred and irradiated by blue LED ($\lambda_{\text{max}} = 390$ nm) for 1 h. The yield of product was determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. The yield of 2aa was determined to be 37%. The photon flux is $2.76 \times 10^{-9}\ \text{einstein/s}$, t is the reaction time (1 h). An absorption spectrum of the reaction gave an absorbance value of 3.9548 at 390 nm.

$$\Phi = \frac{\text{mol product}}{\text{photoflux} \times t \times f} = \frac{7.4 \times 10^{-5}}{2.76 \times 10^{-9} \times 3600 \times (1 - 10^{-3.9548})} = 7.45$$

The reaction quantum yield (Φ) was determined to be $\Phi = 7.45$.

6.6 Light ON-OFF Experiment
A mixture of 1aa (0.2 mmol, 1.0 eq.) and cesium carbonate (Cs$_2$CO$_3$, 0.3 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (2.0 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.1 eq.). After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O$_2$ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light. The light was switched ON and OFF alternatively for a period of 1 hours and the yield of product was determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

![Figure S7: The on-off-light experiment.](image)

7. Characterization Data

2-(2-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinoline (1am): white solid, TLC $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/50); m.p. 63-65 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.70 (dd, $J = 7.9$, 1.5 Hz, 1H), 7.58 (td, $J = 7.7$, 1.5 Hz, 1H), 7.46 (d, $J = 8.0$ Hz, 1H), 7.32 – 7.25 (m, 1H), 7.23 – 7.16 (m, 3H), 7.08 (dd, $J = 7.4$, 1.9 Hz, 1H), 4.19 (s, 2H), 3.26 (t, $J = 5.7$ Hz, 2H), 3.04 (t, $J = 5.8$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 152.64, 135.13, 134.52, 132.88, 129.02, 127.74, 127.56 – 127.26 (m), 126.88, 126.32 (d, $J = 8.7$ Hz), 125.77, 125.56, 124.79, 124.12, 122.84, 55.62, 52.01, 29.76. 19F NMR (377 MHz, Chloroform-d) δ -60.33. IR(ATR): $\tilde{\nu}$ = 2778, 2812, 1495, 1453, 1311, 1107, 930, 744 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{14}$F$_3$N [$M+H]^+$ 278.1151, Found: 278.11465.

1-(4-chlorophenyl)-1,2,3,4-tetrahydroquinoline (1bc): light yellow solid, TLC $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/100); m.p. 90-92 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.43 – 7.30 (m, 2H), 7.26 – 7.16 (m, 2H), 7.11 (d, $J = 7.3$ Hz, 1H), 7.01 (t, $J = 7.6$ Hz, 1H), 6.87 – 6.72 (m, 2H), 3.65 (t, $J = 6.0$, 5.4 Hz, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 2.09 (p, $J = 5.6$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 147.02, 143.92, 129.51, 129.44, 128.28, 126.49, 125.49, 125.21, 118.98, 116.13, 50.78, 27.70, 22.78. IR(ATR): $\tilde{\nu}$ = 3029, 2946, 2926, 2843, 1489, 1455, 1301, 1234, 1092, 822, 751, 735, 702 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{14}$F$_3$N [$M+H]^+$ 244.0886, Found: 244.08868.

1-(3-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinoline(1bh): colorless

![image]
oil, \(R_f = 0.30 \) (ethyl acetate/petroleum ether = 1/100); \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta \) 7.50 (s, 1H), 7.44 (d, \(J = 4.9 \) Hz, 2H), 7.31 (t, \(J = 3.9 \) Hz, 1H), 7.13 (d, \(J = 7.4 \) Hz, 1H), 7.03 (t, \(J = 7.7 \) Hz, 1H), 6.90 (d, \(J = 8.1 \) Hz, 1H), 6.84 (t, \(J = 7.3 \) Hz, 1H), 3.69 (t, \(J = 6.1, 5.7 \) Hz, 2H), 2.88 (t, \(J = 6.4 \) Hz, 2H), 2.08 (p, \(J = 6.3 \) Hz, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta \) 148.83, 143.19, 131.89, 131.58, 129.63 (d, \(J = 18.3 \) Hz), 126.52, 126.28 (d, \(J = 6.7 \) Hz), 119.81, 119.68 (q, \(J = 3.8 \) Hz), 119.13 (q, \(J = 3.9 \) Hz), 116.74, 50.34, 27.58, 22.98. \(^{19}\)F NMR (377 MHz, Chloroform-d) \(\delta \) -62.67. IR(ATR): \(\nu = 3032, 2945, 2842, 1577, 1492, 1442, 1334, 1162, 1116, 1068, 792, 747, 698 \text{ cm}^{-1}. \) HRMS (ESI) \(m/z \) Calculated for C\(_{16}\)H\(_{14}\)F\(_3\)N [M+H]\(^+\) 278.1151, Found: 278.11490.

1-(2-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinoline (1bj): colorless oil, \(R_f = 0.30 \) (ethyl acetate/petroleum ether = 1/100); \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta \) 7.86 (dd, \(J = 8.0, 1.5 \) Hz, 1H), 7.69 (td, \(J = 7.7, 1.6 \) Hz, 1H), 7.54 – 7.40 (m, 2H), 7.18 – 7.07 (m, 1H), 7.02 – 6.87 (m, 1H), 6.07 (d, \(J = 8.2 \) Hz, 1H), 3.71 – 3.41 (m, 2H), 3.00 (dt, \(J = 28.5, 7.0 \) Hz, 2H), 2.34 – 2.03 (m, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta \) 147.36, 146.02, 133.98, 131.50, 130.41 (q, \(J = 29.7 \) Hz), 129.31, 127.62 (q, \(J = 5.2 \) Hz), 127.01, 126.52, 125.09, 122.68, 122.37, 117.56, 115.03, 52.27, 27.78, 22.05. \(^{19}\)F NMR (377 MHz, Chloroform-d) \(\delta \) -61.76. IR(ATR): \(\nu = 3065, 3035, 2932, 1492, 1451, 1312, 1128, 1107, 1055, 1033, 765, 744 \text{ cm}^{-1}. \) HRMS (ESI) \(m/z \) Calculated for C\(_{16}\)H\(_{14}\)F\(_3\)N [M+H]\(^+\) 278.11505, Found: 278.1151, Found: 278.11490.

2-(4-(trifluoromethyl)phenyl)isoindoline (1ce): light yellow solid, \(R_f = 0.25 \) (ethyl acetate/petroleum ether = 1/5); m.p. 200-201°C. \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta \) 7.56 (d, \(J = 8.6 \) Hz, 2H), 7.42 – 7.32 (m, 4H), 6.71 (d, \(J = 8.6 \) Hz, 2H), 4.71 (s, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta \) 149.11, 137.15, 127.51, 126.67 (q, \(J = 3.9 \) Hz), 123.89, 122.69, 118.03, 117.70, 111.04, 53.80. \(^{19}\)F NMR (377 MHz, Chloroform-d) \(\delta \) -60.73. IR(ATR): \(\nu = 2868, 2836, 1611, 1382, 1322, 1151, 1100, 1090, 1066, 814, 750 \text{ cm}^{-1}. \) HRMS (ESI) \(m/z \) Calculated for C\(_{15}\)H\(_{12}\)F\(_3\)N [M+H]\(^+\) 264.0995, Found: 264.09945.

2-phenyl-3,4-dihydroisoquinolin-1(2H)-one (2aa): white solid, 81% yield, \(R_f = 0.30 \) (ethyl acetate/petroleum ether = 1/2); \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta \) 8.20 (d, \(J = 7.7 \) Hz, 1H), 7.49 (td, \(J = 7.4, 1.2 \) Hz, 1H), 7.41 (q, \(J = 7.2 \) Hz, 5H), 7.28 (t, \(J = 7.1 \) Hz, 2H), 4.00 (t, \(J = 6.6 \) Hz, 2H), 3.16 (t, \(J = 6.5 \) Hz, 1H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta \) 164.21, 143.17, 138.39, 132.07, 129.77, 128.94, 128.75, 127.21, 127.03, 126.25, 125.35, 49.44, 28.65.

2-(p-tolyl)-3,4-dihydroisoquinolin-1(2H)-one (2ab): white solid, 75% yield, \(R_f = 0.30 \) (ethyl acetate/petroleum ether = 1/5); \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta \) 8.19 (d, \(J = 7.6 \) Hz, 1H), 7.52 – 7.45 (m, 1H), 7.40 (t, \(J = 7.4 \) Hz, 1H), 7.28 (t, \(J = 7.1 \) Hz, 2H), 4.00 (t, \(J = 6.6 \) Hz, 2H), 3.16 (t, \(J = 6.5 \) Hz, 1H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta \) 164.24, 140.63, 138.37, 136.03, 131.96, 129.85, 129.56, 128.72, 127.16, 126.98, 125.23, 49.53, 28.66, 21.09.
2-(4-ethylphenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ac): unknown compound, white solid, 72% yield, R_f = 0.25 (ethyl acetate/petroleum ether = 1/5); m.p. 126–127 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.19 (d, J = 7.5 Hz, 1H), 7.48 (td, J = 7.4, 1.3 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.27 (dd, J = 8.0, 3.2 Hz, 3H), 3.99 (t, J = 6.5 Hz, 2H), 3.15 (t, J = 6.5 Hz, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 164.25, 142.34, 140.76, 138.36, 131.97, 129.85, 128.74, 128.38, 127.17, 126.96, 125.24, 49.53, 28.66, 28.50, 15.62. IR(ATR): ν = 2968, 1656, 1510, 1399, 1322, 1225, 824, 760, 747 cm⁻¹. HRMS (ESI) m/z Calculated for C_{17}H_{17}NO [M+H]^+ 252.1383, Found: 252.13781.

2-(4-(tert-butyl)phenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ad): white solid, 78% yield, R_f = 0.25 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.19 (d, J = 7.6 Hz, 1H), 7.52 – 7.43 (m, 3H), 7.40 (t, J = 7.5 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.26 (d, J = 7.4 Hz, 1H), 4.01 (t, J = 6.5 Hz, 2H), 3.15 (t, J = 6.4 Hz, 2H), 1.37 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 164.23, 149.08, 140.46, 138.34, 131.97, 129.87, 128.75, 127.18, 126.94, 125.86, 124.75, 49.43, 34.55, 31.40, 28.66.

2-(4-methoxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ae): white solid, 68% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/2); 1H NMR (400 MHz, Chloroform-d) δ 8.17 (d, J = 7.7 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 4.01 (t, J = 6.4 Hz, 2H), 3.84 (s, 3H), 3.15 (t, J = 6.3 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.39, 157.84, 138.33, 136.13, 131.94, 129.79, 128.69, 127.16, 126.96, 126.68, 114.26, 55.53, 49.72, 28.66.

2-(4-chlorophenyl)-3,4-dihydroisoquinolin-1(2H)-one (2af): white solid, 79% yield, R_f = 0.35 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.14 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.42 – 7.35 (m, 5H), 7.24 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.5 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 3.96 (t, J = 6.4 Hz, 2H), 3.84 (s, 3H), 3.15 (t, J = 6.3 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.23, 141.59, 138.37, 132.27, 131.57, 129.44, 128.99, 128.78, 127.30, 125.04, 124.75, 121.68, 114.26, 55.53, 49.72, 28.56.

2-(4-fluorophenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ag): white solid, 79% yield, R_f = 0.35 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.17 (dd, J = 7.8, 1.4 Hz, 1H), 7.50 (td, J = 7.5, 1.5 Hz, 1H), 7.46 – 7.32 (m, 3H), 7.27 (d, J = 7.4 Hz, 1H), 7.12 (t, J = 8.6 Hz, 2H), 3.99 (t,
$J = 6.5$ Hz, 2H), 3.17 (t, $J = 6.4$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.36, 161.92, 159.48, 139.11, 109.08, 138.30, 132.17, 129.52, 128.72, 127.26, 127.16, 127.08, 127.04, 115.86, 115.63, 49.58, 28.60. 19F NMR (377 MHz, Chloroform-d) δ -115.69.

2-(4-(trifluoromethyl)phenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ah): colorless oil, 82% yield, R$_f$ = 0.40 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.18 (d, $J = 7.7$ Hz, 1H), 7.68 (d, $J = 8.1$ Hz, 2H), 7.53 (dd, $J = 19.7$, 7.8 Hz, 3H), 7.41 (t, $J = 7.5$ Hz, 1H), 7.28 (d, $J = 7.3$ Hz, 1H), 4.04 (t, $J = 5.9$ Hz, 2H), 3.18 (t, $J = 6.1$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.26, 146.10, 138.33, 132.51, 129.23, 128.84, 127.93, 127.61, 127.37, 127.14, 125.92 (q, $J = 3.8$, 3.3 Hz), 125.40, 125.13, 122.70, 120.00, 49.09, 28.47. 19F NMR (377 MHz, Chloroform-d) δ -62.35.

2-(1,1'-biphenyl)-4-yl)-3,4-dihydroisoquinolin-1(2H)-one (2ai): white solid, 76% yield, R$_f$ = 0.40 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.21 (d, $J = 7.2$ Hz, 1H), 7.65 (dd, $J = 14.6$, 7.8 Hz, 4H), 7.48 (dd, $J = 14.7$, 8.2 Hz, 5H), 7.40 (dt, $J = 14.7$, 7.4 Hz, 2H), 7.28 (d, $J = 7.4$ Hz, 1H), 4.07 (t, $J = 6.5$ Hz, 2H), 3.20 (t, $J = 6.4$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.30, 142.31, 140.62, 139.14, 138.35, 132.13, 129.73, 128.83, 127.64, 127.35, 127.27, 127.13, 127.01, 125.52, 49.42, 28.47. 19F NMR (377 MHz, Chloroform-d) δ -42.35.

2-(o-tolyl)-3,4-dihydroisoquinolin-1(2H)-one (2aj): colorless oil, 65% yield, R$_f$ = 0.30 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.21 (d, $J = 7.6$ Hz, 1H), 7.50 (t, $J = 7.4$ Hz, 1H), 7.36 – 7.32 (m, 1H), 7.31 – 7.26 (m, 3H), 7.26 – 7.20 (m, 1H), 3.97 (td, $J = 11.3$, 10.4, 4.6 Hz, 1H), 3.74 (dt, $J = 11.9$, 5.6 Hz, 1H), 3.25 (d, $J = 15.3$, 10.1, 5.1 Hz, 1H), 3.10 (dt, $J = 15.7$, 5.2 Hz, 1H), 2.33 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 163.82, 142.26, 138.52, 131.83, 131.59, 129.86, 128.64, 127.68, 127.19, 127.15, 127.10, 126.74, 49.42, 28.82, 18.25.

2-(2-methoxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ak): white solid, 70% yield, R$_f$ = 0.35 (ethyl acetate/petroleum ether = 1/2); 1H NMR (400 MHz, Chloroform-d) δ 8.18 (d, $J = 7.6$ Hz, 1H), 7.48 (t, $J = 7.4$ Hz, 1H), 7.39 (t, $J = 7.4$ Hz, 1H), 7.33 (t, $J = 7.4$ Hz, 2H), 7.27 (d, $J = 7.4$ Hz, 1H), 7.03 (t, $J = 7.4$ Hz, 2H), 3.86 (s, 5H), 3.17 (t, $J = 6.6$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.25, 154.76, 138.92, 131.83, 131.59, 129.86, 129.08, 128.68, 128.61, 127.04, 126.99, 120.86, 112.19, 55.76, 49.15, 28.70.

2-(2-chlorophenyl)-3,4-dihydroisoquinolin-1(2H)-one (2al): white solid, 76% yield, R$_f$ = 0.20 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.19 (d, $J = 7.5$ Hz, 1H), 7.50 (ddd, $J = 14.4$, 7.6, 1.2 Hz, 2H), 7.44 – 7.24.
(m, 5H), 3.87 (qt, J = 14.9, 8.9, 5.7 Hz, 1H), 3.10 (dt, J = 15.7, 5.5 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 164.05, 140.50, 138.72, 132.23, 132.20, 130.41, 129.60, 129.31, 128.91, 128.70, 127.88, 127.19, 127.16, 49.09, 28.61.

2-[(trifluoromethyl)phenyl]-3,4-dihydroisoquinolin-1(2H)-one (2am): unknown compound, white solid, 73% yield, R$_f$ = 0.30 (ethyl acetate/petroleum ether = 1/5); m.p. 93-96 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.17 (dd, J = 7.7, 1.4 Hz, 1H), 7.78 (dd, J = 7.9, 1.4 Hz, 1H), 7.65 (td, J = 7.7, 1.5 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 2H), 7.39 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 3.96 (td, J = 11.8, 4.2 Hz, 1H), 3.74 (dt, J = 12.0, 5.0 Hz, 1H), 3.36 (ddd, J = 16.7, 11.7, 5.5 Hz, 1H), 2.99 (dt, J = 15.9, 4.4 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 165.01, 141.40, 138.76, 133.47, 132.32, 130.19, 129.02, 128.62, 128.50, 128.31, 128.20, 127.42, 127.37, 127.32, 127.29, 127.14, 124.91, 122.19, 50.17, 28.19.

19F NMR (377 MHz, Chloroform-d) δ -61.39. IR(ATR): $\tilde{\nu}$ = 3047, 3023, 2957, 2936, 2902, 2814, 1602, 1495, 1454, 1312, 1107, 1035, 930, 762, 744 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{12}$F$_3$NO [M+H]$^+$ 292.0944, Found: 292.09380.

2-[(m-tolyl)-3,4-dihydroisoquinolin-1(2H)-one (2an): colorless oil, 71% yield, R$_f$ = 0.30 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.20 (dd, J = 7.8, 1.4 Hz, 1H), 7.47 (td, J = 7.5, 1.6 Hz, 1H), 7.38 (td, J = 7.6, 1.3 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.21 – 7.16 (m, 1H), 7.09 (d, J = 7.6 Hz, 1H), 3.98 – 3.89 (t, J = 6.2 Hz, 2H), 3.11 (t, J = 6.5 Hz, 2H), 2.40 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 164.19, 143.15, 138.75, 138.47, 132.05, 129.82, 128.81, 128.66, 127.16, 127.13, 127.08, 126.23, 122.37, 49.51, 28.62, 21.50.

19F NMR (377 MHz, Chloroform-d) δ -62.55. IR(ATR): $\tilde{\nu}$ = 2966, 2923, 2873, 1656, 1403, 1324, 1308, 1162, 1114, 1065, 956, 764 cm$^{-1}$.

2-(3-(trifluoromethyl)phenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ao): white solid, 83% yield, R$_f$ = 0.65 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.17 (d, J = 7.7 Hz, 1H), 7.71 (s, 1H), 7.61 (d, J = 7.3 Hz, 1H), 7.51 (p, J = 7.5 Hz, 3H), 7.39 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 4.01 (t, J = 6.4 Hz, 2H), 3.16 (t, J = 6.3 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.31, 143.52, 138.39, 132.48, 131.14 (q, J = 32.7, 32.0 Hz), 129.41, 129.20, 128.72, 128.56, 127.99, 127.32, 127.20, 125.28, 122.74 (q, J = 3.7 Hz), 122.57, 122.04 (q, J = 3.9 Hz), 119.86, 49.17, 28.44. 19F NMR (377 MHz, Chloroform-d) δ -62.55. IR(ATR): $\tilde{\nu}$ = 2966, 2923, 2873, 1656, 1403, 1324, 1308, 1162, 1114, 1065, 956, 764 cm$^{-1}$.

2-(3,5-dimethylphenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ap): unknown compound, white solid, 61% yield, R$_f$ = 0.25 (ethyl acetate/petroleum ether = 1/5); m.p. 107-108 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.48 (td, J = 7.4, 1.5 Hz, 1H), 7.40 (td, J = 7.6, 1.3 Hz, 1H), 7.26 (dd, J = 7.5, 1.2 Hz, 1H), 7.03 (d, J = 1.6 Hz, 2H), 6.93 (s, 1H), 4.01 - 3.93 (m, 2H), 3.15 (t, J = 6.5 Hz, 2H), 2.37 (s, 6H). 13C NMR (101 MHz, Chloroform-d) δ 164.25, 143.05, 138.67, 138.34, 131.94, 129.86, 128.74, 128.20, 127.17,
2-(naphthalen-1-yl)-3,4-dihydroisoquinolin-1(2H)-one (2aq): white solid, 78% yield, R_f = 0.25 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.20 (dt, J = 7.8, 1.8 Hz, 1H), 7.98 – 7.82 (m, 3H), 7.57 – 7.48 (m, 4H), 7.48 – 7.37 (m, 2H), 7.30 (d, J = 7.5 Hz, 1H), 4.07 (ddd, J = 12.1, 10.4, 4.6 Hz, 1H), 3.89 (dt, J = 12.3, 5.6 Hz, 1H), 3.39 (ddd, J = 15.8, 10.4, 5.3 Hz, 1H), 3.15 (dt, J = 15.9, 5.2 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 164.82, 140.17, 138.55, 134.69, 132.20, 129.76, 129.63, 128.88, 128.62, 128.20, 127.31, 127.19, 126.89, 126.35, 125.89, 124.54, 122.90, 50.20, 28.92.

2-(naphthalen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (2ar): white solid, 81% yield, R_f = 0.20 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 7.6 Hz, 1H), 7.95 – 7.75 (m, 4H), 7.62 (d, J = 8.6 Hz, 1H), 7.57 – 7.47 (m, 3H), 7.43 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 7.3 Hz, 1H), 4.11 (t, J = 6.3 Hz, 2H), 3.20 (t, J = 6.3 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.45, 140.93, 138.44, 133.64, 132.18, 131.78, 129.76, 128.80, 128.54, 127.82, 127.70, 127.09, 126.34, 125.92, 124.69, 122.62, 49.69, 28.73.

2-(pyridin-2-yl)-3,4-dihydroisoquinolin-1(2H)-one (2as): white solid, 82% yield, R_f = 0.20 (ethyl acetate/petroleum ether = 1/2); 1H NMR (400 MHz, Chloroform-d) δ 8.46 (ddd, J = 4.7, 1.9, 0.9 Hz, 1H), 8.20 (dd, J = 7.8, 1.4 Hz, 1H), 8.07 – 8.00 (m, 1H), 7.73 (ddd, J = 8.4, 7.3, 2.0 Hz, 1H), 7.50 (td, J = 7.5, 1.4 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.11 (ddd, J = 7.3, 4.9, 1.1 Hz, 1H), 4.32 (dd, J = 7.0, 5.9 Hz, 2H), 3.13 (t, J = 6.4 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.79, 154.11, 147.66, 139.18, 136.93, 132.43, 129.79, 128.93, 127.13 (d, J = 9.5 Hz), 120.25, 45.73, 45.73.

6,7-dimethoxy-2-phenyl-3,4-dihydroisoquinolin-1(2H)-one (2at): white solid, 69% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/2); 1H NMR (400 MHz, Chloroform-d) δ 7.71 – 7.63 (m, 1H), 7.40 (td, J = 6.6, 3.1 Hz, 4H), 7.28 – 7.19 (m, 1H), 6.75 – 6.65 (m, 1H), 4.08 – 3.88 (m, 8H), 3.16 – 2.99 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.20, 152.16, 148.10, 143.32, 132.17, 128.83, 126.03, 125.29, 122.20, 110.85, 109.27, 56.09, 49.61, 28.24.

7-chloro-2-phenyl-3,4-dihydroisoquinolin-1(2H)-one (2au): yellow solid, 78% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 8.15 (t, J = 2.1 Hz, 1H), 7.45 (dt, J = 8.8, 3.3 Hz, 3H),
7.42 – 7.37 (m, 2H), 7.33 – 7.26 (m, 1H), 7.22 (dd, \(J = 8.1, 2.2 \) Hz, 1H), 4.01 (t, \(J = 5.5 \) Hz, 2H), 3.14 (t, \(J = 5.5 \) Hz, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d \)) \(\delta \) 163.04, 142.80, 136.57, 133.30, 132.01, 131.29, 129.05, 128.70, 128.47, 126.54, 125.31, 49.35, 28.10.

2-methyl-3,4-dihydroisoquinolin-1(2H)-one (2av): colorless oil, 72% yield, \(R_f = 0.45 \) (ethyl acetate/petroleum ether/triethylamine = 2/2/1); \(^1\)H NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 8.02 (dd, \(J = 7.7, 1.4 \) Hz, 1H), 7.35 (td, \(J = 7.4, 1.5 \) Hz, 1H), 7.27 (td, \(J = 7.5, 1.3 \) Hz, 1H), 7.11 (d, \(J = 7.4 \) Hz, 1H), 3.50 (t, \(J = 6.7 \) Hz, 2H), 3.10 (s, 3H), 2.94 (t, \(J = 6.7 \) Hz, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d \)) \(\delta \) 164.75, 137.99, 131.50, 129.26, 127.95, 126.90, 48.05, 35.11, 27.80.

1-phenyl-3,4-dihydroquinolin-2(1H)-one (2ba): colorless oil, 71% yield, \(R_f = 0.30 \) (ethyl acetate/petroleum ether = 1/10); \(^1\)H NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 7.54 (t, \(J = 7.6 \) Hz, 2H), 7.45 (t, \(J = 7.4 \) Hz, 1H), 7.26 (dd, \(J = 12.0, 7.4 \) Hz, 3H), 7.05 (dt, \(J = 22.2, 7.1 \) Hz, 2H), 6.39 (d, \(J = 7.9 \) Hz, 1H), 3.11 (t, \(J = 6.8 \) Hz, 2H), 2.96 – 2.80 (t, \(J = 6.7 \) Hz, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d \)) \(\delta \) 170.25, 141.70, 138.49, 129.88, 129.06, 128.21, 127.81, 127.16, 125.71, 123.00, 117.06, 32.27, 25.70.

1-(\(p \)-tolyl)-3,4-dihydroquinolin-2(1H)-one (2bb): colorless oil, 46% yield, \(R_f = 0.30 \) (ethyl acetate/petroleum ether = 1/10); \(^1\)H NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 7.34 (d, \(J = 8.0 \) Hz, 2H), 7.23 (d, \(J = 7.1 \) Hz, 1H), 7.15 (d, \(J = 8.2 \) Hz, 2H), 6.42 (d, \(J = 8.2 \) Hz, 1H), 3.09 (dd, \(J = 8.7, 6.1 \) Hz, 2H), 2.89 – 2.82 (m, 2H), 2.45 (s, 3H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d \)) \(\delta \) 170.33, 141.79, 138.10, 135.74, 130.58, 128.73, 127.76, 127.11, 125.63, 122.88, 117.01, 32.25, 25.69, 21.26.

1-(4-chlorophenyl)-3,4-dihydroquinolin-2(1H)-one (2bc): unknown compound, yellow solid, 65% yield, TLC \(R_f = 0.50 \) (ethyl acetate/petroleum ether = 1/10); m.p. 179-181 °C. \(^1\)H NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 7.56 – 7.46 (m, 2H), 7.31 – 7.17 (m, 3H), 7.06 (dtd, \(J = 22.8, 7.5, 1.4 \) Hz, 2H), 6.40 (d, \(J = 8.0 \) Hz, 1H), 3.14 – 3.05 (m, 2H), 2.85 (dd, \(J = 8.4, 6.2 \) Hz, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d \)) \(\delta \) 170.22, 141.35, 136.97, 134.00, 130.45, 130.12, 127.95, 127.25, 125.79, 123.26, 116.92, 32.21, 25.61. IR(ATR): \(\tilde{v} \) = 3050, 3026, 2924, 2854, 1671, 1487, 1457, 1357, 1332, 1265, 1085, 1014, 844, 829, 757 cm\(^{-1}\). HRMS (ESI) \(m/z \) calculated for \(\text{C}_{15}\text{H}_{12}\text{ClNO} \ [\text{M}+\text{H}]^+ \) 258.0680, found 258.06786.

1-(4-fluorophenyl)-3,4-dihydroquinolin-2(1H)-one (2bd): yellow solid, 66% yield, \(R_f = 0.30 \) (ethyl acetate/petroleum ether = 1/10); \(^1\)H NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 7.29 – 7.17 (m, 5H), 7.06 (dtd, \(J = 22.8, 7.5, 1.4 \) Hz, 2H), 6.40 (d, \(J = 8.0 \) Hz, 1H), 3.14 – 3.05 (m, 2H), 2.85 (dd, \(J = 8.4, 6.2 \) Hz, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d \)) \(\delta \) 170.22, 141.35, 136.97, 134.00, 130.45, 130.12, 127.95, 127.25, 125.79, 123.26, 116.92, 32.21, 25.61. IR(ATR): \(\tilde{v} \) = 3050, 3026, 2924, 2854, 1671, 1487, 1457, 1357, 1332, 1265, 1085, 1014, 844, 829, 757 cm\(^{-1}\). HRMS (ESI) \(m/z \) calculated for \(\text{C}_{15}\text{H}_{12}\text{ClNO} \ [\text{M}+\text{H}]^+ \) 258.0680, found 258.06786.
Hz, 1H), 3.10 (dd, J = 8.7, 6.1 Hz, 2H), 2.86 (dd, J = 8.7, 6.1 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 170.36, 163.32, 160.85, 141.56, 134.28, 130.83, 130.74, 127.92, 127.23, 125.71, 123.16, 116.97, 116.86, 116.75, 32.20, 25.62. 19F NMR (377 MHz, Chloroform-d) δ -113.35.

1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2($1H$)-one (2be): unknown compound, white solid, 68% yield, R_f = 0.25 (ethyl acetate/petroleum ether = 1/10); m.p. 182-183 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.80 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.37 (dd, J = 7.4, 1.8 Hz, 1H), 7.15 – 7.01 (m, 2H), 3.12 (dd, J = 8.6, 6.0 Hz, 2H), 2.87 (dd, J = 8.6, 6.0 Hz, 2H).

13C NMR (101 MHz, Chloroform-d) δ 170.15, 141.87, 141.12, 130.38, 130.05, 129.62, 128.04, 127.32, 127.11 – 126.80 (m), 125.99, 125.24, 123.50, 122.53, 117.02, 32.24, 25.59. 19F NMR (377 MHz, Chloroform-d) δ -62.56. IR(ATR): ν = 3047, 2927, 2855, 1672, 1323, 1168, 1160, 1108, 1065, 854, 764 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{12}$F$_3$NO [M+H]$^+$ 292.0944. Found: 292.09411.

1-(m-tolyl)-3,4-dihydroquinolin-2($1H$)-one (2bf): colorless oil, 59% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/10); 1H NMR (400 MHz, Chloroform-d) δ 7.43 (t, J = 7.7 Hz, 1H), 7.34 – 7.18 (m, 2H), 7.08 (dd, J = 7.8, 4.9 Hz, 3H), 7.01 (td, J = 7.4, 1.2 Hz, 1H), 6.46 – 6.33 (m, 1H), 3.16 – 3.03 (m, 2H), 2.86 (dd, J = 8.5, 6.2 Hz, 2H), 2.43 (s, 3H).

13C NMR (101 MHz, Chloroform-d) δ 170.29, 141.71, 139.91, 138.34, 129.67, 129.57, 129.08, 127.77, 127.14, 125.62, 122.94, 117.09, 32.25, 25.70, 21.40.

1-(3-methoxyphenyl)-3,4-dihydroquinolin-2($1H$)-one (2bg): unknown compound, white solid, 51% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/5); m.p. 88-91 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.44 (t, J = 8.1 Hz, 1H), 7.23 (dd, J = 7.3, 1.6 Hz, 1H), 7.08 (td, J = 7.8, 1.7 Hz, 1H), 7.05 – 6.94 (m, 2H), 6.43 (dd, J = 7.7, 1.9, 0.9 Hz, 1H), 6.34 (d, J = 2.2 Hz, 1H), 6.43 (dd, J = 8.0, 1.2 Hz, 1H), 3.83 (s, 3H), 3.10 (dd, J = 8.7, 6.1 Hz, 2H), 2.90 – 2.81 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 170.18, 160.84, 141.54, 139.52, 130.53, 127.78, 127.18, 125.56, 123.01, 121.19, 117.04, 114.39 (d, J = 16.7 Hz), 55.41, 32.25, 25.66. IR(ATR): ν = 3005, 2924, 2842, 1680, 1490, 1456, 1256, 1212, 1190, 1148, 1031, 751, 693 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{15}$NO$_2$ [M+H]$^+$ 254.1176. Found: 254.11740.

1-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2($1H$)-one (2bh): unknown compound, white solid, 66% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/10); 1H NMR (400 MHz, Chloroform-d) δ 7.69 (dt, J = 15.5, 7.8 Hz, 2H), 7.56 (s, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.27 (dd, J = 7.0, 1.6 Hz, 1H), 7.08 (dd, J = 19.3, 7.5, 1.5 Hz, 2H), 6.34 (d, J = 7.8 Hz, 1H), 3.12 (dd, J = 8.6, 6.0 Hz, 2H), 2.87 (dd, J = 8.6, 6.0 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 170.22, 141.18, 139.11, 132.81, 132.55, 132.22, 130.39, 128.06, 127.35, 126.19 (q, J = 3.9 Hz), 125.71, 123.16, 116.97, 116.86, 116.75, 32.20, 25.62. 19F NMR (377 MHz, Chloroform-d) δ -113.35.
125.90, 125.04 (q, $J = 3.6$ Hz), 123.45, 122.28, 116.86, 32.21, 25.59. 19F NMR (377 MHz, Chloroform-d) δ -62.57.

1-(o-tolyl)-3,4-dihydroquinolin-2(1H)-one (2bi)13: colorless oil, 71% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.33 (m, 3H), 7.26 (d, $J = 7.3$ Hz, 1H), 7.22 – 7.15 (m, 1H), 7.04 (dt, $J = 14.5, 7.5$ Hz, 2H), 6.29 (d, $J = 7.9$ Hz, 1H), 3.12 (hept, $J = 7.5, 7.0$ Hz, 2H), 2.88 (t, $J = 7.4$ Hz, 2H), 2.14 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 169.75, 140.82, 137.20, 136.59, 131.49, 129.28, 128.74, 127.92, 127.57, 127.41, 125.48, 123.02, 116.24, 32.13, 25.76, 17.47.

1-(2-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one (2bj): unknown compound, colorless oil, 62% yield, m.p. 90-92 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.87 (dd, $J = 7.9, 1.5$ Hz, 1H), 7.76 (td, $J = 7.7, 1.5$ Hz, 1H), 7.62 (t, $J = 7.7$ Hz, 1H), 7.38 (d, $J = 7.8$ Hz, 1H), 7.25 (dd, $J = 7.2, 1.7$ Hz, 1H), 7.12 – 6.99 (m, 2H), 6.23 (dd, $J = 7.9, 1.4$ Hz, 1H), 3.21 – 3.01 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 170.54, 141.31, 136.40, 133.56, 132.28, 129.65, 129.35, 129.10, 128.73, 128.07 (q, $J = 5.0$ Hz), 127.87, 127.14, 125.29, 124.47, 123.17, 121.75, 119.03, 116.39, 32.03, 25.46. 19F NMR (377 MHz, Chloroform-d) δ 61.68. IR(ATR): ν = 2924, 2854, 1694, 1495, 1455, 1316, 1165, 1133, 1114, 1061, 1023, 857, 756 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{12}$F$_3$NO [M+H]$^+$ 292.0944. Found: 292.09401.

1-(pyridin-2-yl)-3,4-dihydroquinolin-2(1H)-one (2bk)15: white solid, 70% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/5). 1H NMR (400 MHz, Chloroform-d) δ 8.68 (d, $J = 3.6$ Hz, 1H), 7.92 (td, $J = 7.7, 1.6$ Hz, 1H), 7.39 (dd, $J = 11.4, 6.4$ Hz, 2H), 7.24 (d, $J = 7.0$ Hz, 1H), 7.15 – 6.96 (m, 2H), 6.29 (d, $J = 7.9$ Hz, 1H), 3.23 – 3.02 (m, 2H), 2.85 (dd, $J = 8.4, 6.2$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 170.40, 151.91, 150.07, 140.51, 133.56, 132.07, 129.65, 129.35, 129.10, 128.73, 128.07 (q, $J = 5.0$ Hz), 127.87, 127.14, 125.29, 124.47, 123.17, 121.75, 119.03, 116.39, 32.03, 25.46. 19F NMR (377 MHz, Chloroform-d) δ 61.68. IR(ATR): ν = 2924, 2854, 1694, 1495, 1455, 1316, 1165, 1133, 1114, 1061, 1023, 857, 756 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{12}$F$_3$NO [M+H]$^+$ 292.0944. Found: 292.09401.

2-phenylisoindolin-1-one (2ca)16: white solid, 77% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/5). 1H NMR (400 MHz, Chloroform-d) δ 8.68 (d, $J = 3.6$ Hz, 1H), 7.92 (td, $J = 7.7, 1.6$ Hz, 1H), 7.39 (dd, $J = 11.4, 6.4$ Hz, 2H), 7.24 (d, $J = 7.0$ Hz, 1H), 7.15 – 6.96 (m, 2H), 6.29 (d, $J = 7.9$ Hz, 1H), 3.23 – 3.02 (m, 2H), 2.85 (dd, $J = 8.4, 6.2$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 170.40, 151.91, 150.07, 140.51, 133.56, 132.07, 129.65, 129.35, 129.10, 128.73, 128.07 (q, $J = 5.0$ Hz), 127.87, 127.14, 125.29, 124.47, 123.17, 121.75, 119.03, 116.39, 32.03, 25.46. 19F NMR (377 MHz, Chloroform-d) δ 61.68. IR(ATR): ν = 2924, 2854, 1694, 1495, 1455, 1316, 1165, 1133, 1114, 1061, 1023, 857, 756 cm$^{-1}$. HRMS (ESI) m/z Calculated for C$_{16}$H$_{12}$F$_3$NO [M+H]$^+$ 292.0944. Found: 292.09401.

2-(p-tolyl)isoindolin-1-one (2cb)16: white solid, 78% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/10). 1H NMR (400 MHz, Chloroform-d) δ 7.93 (d, $J = 7.9$ Hz, 1H), 7.75 (d, $J = 8.4$ Hz, 2H), 7.59 (t, $J = 7.2$ Hz, 1H), 7.55 – 7.46 (m, 2H), 7.23 (d, $J = 8.3$ Hz, 2H), 4.81 (s, 2H), 2.36 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 167.51, 140.15, 139.52, 133.23, 132.08, 129.16, 128.36, 124.44, 124.10, 122.66, 119.41, 50.71.
Chloroform-d) δ 167.36, 140.17, 136.99, 134.15, 133.36, 131.91, 129.67, 128.31, 124.04, 122.60, 119.55, 50.84, 20.87.

2-(4-fluorophenyl)isoindolin-1-one (2cc)\(^1\): white solid, 77% yield, \(R_f = 0.30\) (ethyl acetate/petroleum ether = 1/10); \(^1\)H NMR (400 MHz, Chloroform-d) δ 7.94 (d, \(J = 8.0\) Hz, 1H), 7.87 – 7.79 (m, 2H), 7.65 – 7.59 (m, 1H), 7.56 – 7.48 (m, 2H), 7.13 (t, \(J = 8.7\) Hz, 2H), 4.84 (s, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-d) δ 167.41, 160.75, 158.32, 139.98, 135.61 (d, \(J = 2.9\) Hz), 133.00, 132.15, 128.47, 124.18, 122.64, 121.26 (d, \(J = 7.6\) Hz), 115.95, 115.73, 50.99. \(^{19}\)F NMR (377 MHz, Chloroform-d) δ -117.83.

2-(4-methoxyphenyl)isoindolin-1-one (2cd)\(^1\): white solid, 62% yield, \(R_f = 0.20\) (ethyl acetate/petroleum ether = 1/5); \(^1\)H NMR (400 MHz, Chloroform-d) δ 7.91 (d, \(J = 8.1\) Hz, 1H), 7.74 (d, \(J = 9.1\) Hz, 2H), 7.58 (t, \(J = 7.4\) Hz, 1H), 7.50 (dd, \(J = 7.1, 3.8\) Hz, 2H), 4.79 (s, 2H), 3.82 (s, 3H). \(^{13}\)C NMR (101 MHz, Chloroform-d) δ 167.22, 156.59, 140.17, 133.29, 132.67, 131.81, 128.30, 123.98, 122.59, 121.42, 114.32, 55.49, 51.14.

2-(4-(trifluoromethyl)phenyl)isoindolin-1-one (2ce)\(^1\): white solid, 71% yield, \(R_f = 0.20\) (ethyl acetate/petroleum ether = 1/10); \(^1\)H NMR (400 MHz, Chloroform-d) δ 8.06 (d, \(J = 8.5\) Hz, 2H), 7.96 (d, \(J = 7.5\) Hz, 1H), 7.67 (dd, \(J = 20.6, 7.8\) Hz, 3H), 7.56 (d, \(J = 7.7\) Hz, 2H), 4.91 (s, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-d) δ 167.84, 142.51, 139.89, 132.71 (d, \(J = 8.1\) Hz), 128.67, 126.38 (q, \(J = 4.0\) Hz), 124.43, 122.75, 118.59, 50.49. \(^{19}\)F NMR (377 MHz, Chloroform-d) δ -62.13.

2-(2,6-dimethylphenyl)isoindolin-1-one (2cf)\(^1\): white solid, 67% yield, \(R_f = 0.35\) (ethyl acetate/petroleum ether = 1/10); \(^1\)H NMR (400 MHz, Chloroform-d) δ 7.99 (d, \(J = 7.0\) Hz, 1H), 7.63 (t, \(J = 6.8\) Hz, 1H), 7.55 (d, \(J = 7.4\) Hz, 2H), 7.23 (dd, \(J = 8.7, 6.1\) Hz, 1H), 7.17 (d, \(J = 6.5\) Hz, 2H), 4.61 (s, 2H), 2.22 (s, 6H). \(^{13}\)C NMR (101 MHz, Chloroform-d) δ 167.82, 141.78, 136.82, 135.62, 132.39, 131.74, 128.54 (d, \(J = 10.3\) Hz), 128.24, 124.29, 123.07, 51.22, 18.03.

1-phenyl-1H-indole (2da')\(^2\): colorless oil, 79% yield, \(^1\)H NMR (400 MHz, Chloroform-d) δ 7.68 (d, \(J = 7.1\) Hz, 1H), 7.55 (d, \(J = 8.3\) Hz, 1H), 7.47 (d, \(J = 4.4\) Hz, 4H), 7.32 (dd, \(J = 8.4, 4.0\) Hz, 2H), 7.18 (dd, \(J = 18.7, 7.1, 1.2\) Hz, 2H), 6.67 (d, \(J = 3.3\) Hz, 1H). \(^{13}\)C NMR (101 MHz, Chloroform-d) δ 139.94, 135.97, 129.71, 129.45, 128.05, 126.53, 124.46, 122.48, 121.26, 120.49, 110.63, 103.70.
1-phenylindoline-2,3-dione (2da)**: red solid, 9% yield, R_f = 0.20 (ethyl acetate/petroleum ether = 1/2); ^1H NMR (400 MHz, Chloroform-d) δ 7.71 (dd, J = 7.5, 1.3 Hz, 1H), 7.62 – 7.52 (m, 3H), 7.52 – 7.41 (m, 3H), 7.19 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H). ^13C NMR (101 MHz, Chloroform-d) δ 182.93, 157.34, 151.69, 138.37, 132.90, 129.99, 128.85, 126.02, 125.63, 124.33, 117.51, 111.31.

1-phenylpyrrolidin-2-one (2ea): light yellow solid, 56% yield, R_f = 0.4 (ethyl acetate/dichloromethane = 1/10); ^1H NMR (400 MHz, Chloroform-d) δ 7.61 (d, J = 7.9 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 3.84 (t, J = 7.0 Hz, 2H), 2.59 (t, J = 8.1 Hz, 2H), 2.13 (p, J = 7.5 Hz, 2H). ^13C NMR (101 MHz, Chloroform-d) δ 174.27, 139.42, 128.82, 124.47, 119.93, 48.77, 32.79, 18.00.

N-(4-bromophenyl)-N-methylformamide (2eb): light yellow solid, 61% yield, R_f = 0.35 (ethyl acetate/dichloromethane = 1/10); ^1H NMR (400 MHz, Chloroform-d) δ 8.47 (s, 1H), 7.54 (dd, J = 8.8, 2.2 Hz, 2H), 7.07 (dd, J = 8.7, 1.8 Hz, 2H), 3.31 (s, 3H). ^13C NMR (101 MHz, Chloroform-d) δ 161.93, 141.24, 132.72, 123.74, 119.66, 31.97.

N-methyl-N-phenylbenzamide (2ec): white solid, 52% yield, R_f = 0.30 (ethyl acetate/dichloromethane = 1/10); ^1H NMR (400 MHz, Chloroform-d) δ 7.35 – 7.29 (m, 2H), 7.27 – 7.20 (m, 3H), 7.20 – 7.11 (m, 3H), 7.05 (d, J = 7.7 Hz, 2H), 3.52 (s, 3H). ^13C NMR (101 MHz, Chloroform-d) δ 170.73, 144.91, 135.92, 129.60, 129.16, 128.73, 127.73, 126.92, 126.51, 38.43.

isochroman-1-one (4a): colorless oil, 38% yield, R_f = 0.35 (ethyl acetate/petroleum ether = 1/10); ^1H NMR (400 MHz, Chloroform-d) δ 8.09 (d, J = 7.6 Hz, 1H), 7.54 (td, J = 7.5, 1.4 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 4.54 (t, J = 6.0 Hz, 2H), 3.07 (t, J = 6.0 Hz, 2H). ^13C NMR (101 MHz, Chloroform-d) δ 165.14, 139.58, 133.69, 130.38, 127.69, 127.28, 125.32, 67.33, 27.83.

isobenzofuran-1(3H)-one (4b): white solid, 45% yield, R_f = 0.20 (ethyl acetate/petroleum ether = 1/5); ^1H NMR (400 MHz, Chloroform-d) δ 7.90 (d, J = 7.7 Hz, 1H), 7.27 – 7.65 (m, 1H), 7.56 – 7.47 (m, 2H), 5.32 (s, 2H). ^13C NMR (101 MHz, Chloroform-d) δ 171.14, 146.57, 134.05, 129.03, 125.68, 122.18, 69.70.

2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-5-one (6): light yellow solid, 48%, R_f = 0.30 (ethyl acetate/petroleum ether = 1/5); ^1H NMR (400 MHz, Chloroform-d) δ 7.02 (t, J = 4.0 Hz, 2H), 6.93 (t, J = 7.4 Hz, 1H), 3.90 (t, J = 5.7 Hz, 3H), 2.90 (t, J = 7.8, S22
7.2 Hz, 3H), 2.81 (t, J = 6.2 Hz, 2H), 2.67 (t, J = 7.0 Hz, 3H), 1.96 (p, J = 6.1 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 169.68, 136.09, 127.76, 125.72, 125.46, 125.31, 122.42, 40.95, 31.53, 27.32, 25.28, 21.45.

Ethyl 2-(4-(isoindolin-2-yl)phenyl)acetate (8): white solid, 70% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/20); 1H NMR (400 MHz, Chloroform-d) δ 7.41 – 7.30 (m, 4H), 7.25 (d, J = 8.1 Hz, 2H), 6.68 (d, J = 8.2 Hz, 2H), 4.67 (s, 4H), 4.18 (q, J = 7.1 Hz, 2H), 3.57 (s, 2H), 1.29 (t, J = 5.4 Hz, 5H).

Ethyl 2-(4-(isoindolin-2-yl)phenyl)propanoate (9a): white solid, 97% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/20); 1H NMR (400 MHz, Chloroform-d) δ 7.35 (dt, J = 14.9, 5.9, 3.4 Hz, 4H), 7.29 – 7.26 (m, 2H), 6.67 (d, J = 8.6 Hz, 2H), 4.67 (s, 4H), 4.21 – 4.08 (m, 2H), 3.67 (q, J = 7.1 Hz, 1H), 1.51 (d, J = 7.2 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H).

Ethyl 2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoate (10a): white solid, 62% yield, $R_f = 0.45$ (ethyl acetate/petroleum ether = 1/5); 1H NMR (400 MHz, Chloroform-d) δ 7.93 (d, J = 7.5 Hz, 1H), 7.84 (d, J = 8.6 Hz, 2H), 7.61 (t, J = 7.0 Hz, 1H), 7.53 (d, J = 7.7 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 4.85 (s, 2H), 4.15 (dtt, J = 14.2, 7.1, 3.6 Hz, 2H), 3.74 (q, J = 7.1 Hz, 1H), 1.53 (d, J = 7.2 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 174.52, 167.48, 140.11, 138.43, 136.76, 133.18, 132.11, 128.41, 128.25, 124.14, 122.66, 119.63, 60.83, 50.73, 45.01, 18.58, 14.17.

2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoic acid (Indoprofen, 11a): white solid, 96% yield, $R_f = 0.60$ (MeOH/DCM = 1/5); 1H NMR (400 MHz, DMSO-d_6) δ 12.35 (s, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 5.4 Hz, 2H), 7.55 (td, J = 6.6, 5.6, 2.5 Hz, 1H), 7.36 (d, J = 8.3 Hz, 2H), 5.02 (s, 2H), 3.70 (q, J = 7.1 Hz, 1H), 1.38 (d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, DMSO-d_6) δ 175.87, 167.03, 141.50, 138.62, 137.49, 132.90, 132.70, 128.67, 128.42, 123.82, 123.69, 119.93, 50.92, 44.57, 18.96.

Ethyl 2-(4-(isoindolin-2-yl)phenyl)butanoate (9b): white solid, 94% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/20); 1H NMR (400 MHz, Chloroform-d) δ 7.43 – 7.29 (m, 6H), 6.68 (d, J = 7.9 Hz, 2H), 4.67 (s, 4H), 4.18 (tdd, J = 19.0, 8.7, 3.4 Hz, 2H), 3.43 (t, J = 7.5 Hz, 1H), 2.15 (dd, J = 13.6, 7.1 Hz, 1H), 1.93 – 1.78 (m, 1H), 1.28 (t, J = 6.9 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H).
2-(4-(1-oxoisindolin-2-yl)phenyl)butanoic acid (Indobufen, 11b): white solid, 68% yield,

\[R_f = 0.60 \ (\text{MeOH}/\text{DCM} = 1/5); \]

\[^1H \text{NMR} (400 \text{ MHz}, \text{DMSO-}d_6) \delta \]

12.37 (s, 1H), 7.87 (d, \(J = 8.2 \text{ Hz}, 2H \)), 7.79 (d, \(J = 7.6 \text{ Hz}, 1H \)), 7.67 (d, \(J = 5.6 \text{ Hz}, 2H \)), 7.54 (t, \(J = 7.0 \text{ Hz}, 1H \)), 7.36 (d, \(J = 8.2 \text{ Hz}, 2H \)), 5.01 (s, 2H), 3.55 - 3.25 (m, 1H), 1.99 (dp, \(J = 14.8, 7.4 \text{ Hz}, 1H \)), 1.68 (dp, \(J = 14.4, 7.3 \text{ Hz}, 1H \)), 0.85 (t, \(J = 7.3 \text{ Hz}, 3H \)).

\[^{13}C \text{NMR} (101 \text{ MHz}, \text{DMSO-}d_6) \delta \]

175.34, 167.04, 141.48, 138.72, 135.88, 132.91, 132.68, 128.80, 128.65, 123.79, 123.69, 119.82, 52.50, 50.87, 26.59, 12.53.

8. References

9. Copies of NMR

1H NMR (400 MHZ, Chloroform-d)

13C NMR (101 MHZ, Chloroform-d)
19F NMR (377 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
13C NMR (101 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
13C NMR (101 MHz, Chloroform-d)

19F NMR (377 MHz, Chloroform-d)
^{1}H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)
19F NMR (377 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
1H NMR (377 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)

19F NMR (377 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)
NMR Spectra

1H NMR (400 MHz, Chloroform-d)

![1H NMR spectrum 400 MHz](image)

13C NMR (101 MHz, Chloroform-d)

![13C NMR spectrum 101 MHz](image)
$\text{1H NMR (400 MHz, Chloroform-d)}$

$\text{13C NMR (101 MHz, Chloroform-d)}$
^{1}H NMR (400 MHz, Chloroform-d)

^{13}H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-\(d\))

13H NMR (101 MHz, Chloroform-\(d\))
\[\text{2ag} \]

$^{19}\text{F NMR (377 MHz, Chloroform-d)}$

$^{1}\text{H NMR (400 MHz, Chloroform-d)}$
NO_2CF_3

$\text{H NMR (101 MHz, Chloroform-d)}$

NO_2CF_3

$\text{F NMR (377 MHz, Chloroform-d)}$
\(^{1}H\) NMR (400 MHz, Chloroform-d)

\(^{13}C\) NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

1H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)
^{1}H NMR (400 MHz, Chloroform-d)

^{13}H NMR (101 MHz, Chloroform-d)
^{1}H NMR (400 MHz, Chloroform-d)

^{1}H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)

19F NMR (377 MHz, Chloroform-d)
13C NMR (101 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
13H NMR (101 MHz, Chloroform-d)

19F NMR (377 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)
^{1}H NMR (400 MHz, Chloroform-d)

^{13}C NMR (101 MHz, Chloroform-d)
$^{1}\text{H NMR (400 MHz, Chloroform-d)}$

$^{13}\text{C NMR (101 MHz, Chloroform-d)}$
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)

2at
Cl

$\text{1H NMR (400 MHz, Chloroform-d)}$

Cl

$\text{13C NMR (101 MHz, Chloroform-d)}$

2au

S55
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)
NO_2ba

$^1\text{H NMR (400 MHz, Chloroform-d)}$

NO

$^1\text{H NMR (101 MHz, Chloroform-d)}$

2ba

$^1\text{H NMR (400 MHz, Chloroform-d)}$

2ba

$^1\text{H NMR (101 MHz, Chloroform-d)}$
^{1}H NMR (400 MHz, Chloroform-d)

^{13}H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)
19F NMR (377 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
13H NMR (101 MHz, Chloroform-d)

19F NMR (377 MHz, Chloroform-d)
13H NMR (101 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
S64

1H NMR (400 MHz, Chloroform-d)

1H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)
19F NMR (377 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
1H NMR (101 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
13H NMR (101 MHz, Chloroform-d)

19F NMR (377 MHz, Chloroform-d)
\(^1H \text{NMR} (400 \text{ MHz}, \text{Chloroform-d}) \)

\(^1H \text{NMR} (101 \text{ MHz}, \text{Chloroform-d}) \)
1H NMR (400 MHz, Chloroform-d)

13NMR (101 MHz, Chloroform-d)

2ca
$^{1}\text{H NMR (400 MHz, Chloroform-}d)$

$^{13}\text{H NMR (101 MHz, Chloroform-}d)$
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)

2cc
19F NMR (377 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
13H NMR (101 MHz, Chloroform-d)

1H NMR (400 MHz, Chloroform-d)
13H NMR (101 MHz, Chloroform-d)

19F NMR (377 MHz, Chloroform-d)
S76
1H NMR (400 MHz, Chloroform-d)

13H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

1H NMR (101 MHz, Chloroform-d)

3da$^-$
1H NMR (400 MHz, Chloroform-d)

2ea

1H NMR (101 MHz, Chloroform-d)

2ea
1H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, Chloroform-d)
^{1}H NMR (400 MHz, Chloroform-d)

^{13}H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

1H NMR (101 MHz, Chloroform-d)
1H NMR (400 MHz, Chloroform-d)

1H NMR (101 MHz, Chloroform-d)
13H NMR (400 MHz, Chloroform-d)

1H NMR (101 MHz, Chloroform-d)
11a (indoprofen)
1H NMR (400 MHz, DMSO-d_6)

13a (indoprofen)
1H NMR (101 MHz, DMSO-d_6)
^{1}H NMR (400 MHz, DMSO-d_6)

^{1}H NMR (101 MHz, DMSO-d_6)