Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Visible-Light Promoted Photocatalyst-Free Aerobic α-Oxidation of Tertiary Amines to Amides

Xinpeng Xie^a, Xuan Guo^a, Kaikai Qiao^a, and Lei Shi^{a*}

^aState Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China

E-mail: shileichem@dlut.edu.cn

Table of Contents

1.	General information and materials	S1
2.	Extra optimization of the reaction conditions	S1
3.	Preparation of starting materials	S1-S3
	3.1 Synthesis of tetrahydroisoquinolines derivatives and derivatives	tetrahydroquinoline S1-S2
	3.2 Synthesis of isoindoline derivatives	S2
	3.3 Synthesis of 1-phenylpyrrolidine	S2-S3
	3.4 Synthesis of 1, 3-Dihydroisobenzofuran	S3
4. 5.	General procedure 3 for the oxidation of amines or ethers Synthetic application practicability	S3 S3-S6
	5.1 Gram-scale synthesis of 2aa	S3-S4
	5.2 Derivatization of the alkaloid julolidine 5	S4
	5.3 The synthesis of indoprofen 11a	S4-S5
	5.4 The synthesis of indobufen 11b	S5-S6
6.	Mechanistic experiments	S6-S9
	6.1 TEMPO trapping experiment	S6-S7
	6.2 UV-vis absorption spectra of 1aa, 1ba, 1ca, PIDA and	the initial mixtures
	1aa/2a, 1ba/2a, 1ca/2a	S7-S8
	6.3 Stoichiometry of the molecular complex in solution	S8-S9
	6.4 NMR titration experiments	S9-S11
	6.5 Quantum yield measurements	S11-S12
	6.6 Light ON-OFF Experiment	S12
7.	Characterization Data	S13-S24
8.	References	S25
9.	Copies of NMR	S26-S87

1. General information and materials

All reactions were carried out under an atmosphere of O_2 (balloon) with the irradiation of 10 W 390 nm LED, unless otherwise noted. Glassware was pre-dried in an oven at 110 °C for several hours and cooled prior to use. Flash column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC analysis. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at room temperature in CDCl₃ and DMSO-*d*₆, CDCl₃ on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Commercially available reagents were used throughout without further purification unless otherwise stated. All solvents were dried and distilled under N₂ prior to use.

2. Extra optimization of the reaction conditions

N.P	Ph +	$\begin{array}{c} \text{Ac} & \\ hv, \text{Cs}_2\text{CO}_3 \\ \text{OAc} & \\ O_2, \text{ solvent} \end{array}$	► N.Ph
1aa	PIDA		2aa
Entry ^a	Cs_2CO_3 (eq.)	Light source	Yield(%) ^b
1	0	390 nm	22
2	0.5	390 nm	67
3	1.0	390 nm	74
4	2.0	390 nm	80
5	2.5	390 nm	78
6	1.5	darkness	Trace
7	1.5	427 nm	77
8	1.5	460-470 nm	74
9	1.5	white light	60

Table S1 Optimization of the dosage of base and light source

^{*a*} Reaction conditions (unless otherwise specified): **1aa** (0.2 mmol, 1.0 eq.), **PIDA** (0.02 mmol, 0.1 eq.), O₂ (balloon), DMF (2.0 mL, 0.1 M), rt, 24 h. ^{*b*} Isolated yield.

3. Preparation of starting materials

3.1 Synthesis of tetrahydroisoquinolines derivatives and tetrahydroquinoline derivatives¹

Tetrahydroisoquinolines derivatives can be conveniently synthesized according to the known literature procedure. The tetrahydroisoquinolines derivatives **1aa~1al**, **1an~1av** and the tetrahydroquinoline derivatives **1ba**, **1bb**, **1bd~1bg**, **1bi**, **1bk** are the known compounds. The tetrahydroisoquinolines derivative **1am** and the tetrahydroquinoline derivative **1bc**, **1bh**, **1bj** are the unknown compounds.

General procedure 1: The 1aa ~ 1au and 1ba ~ 1bk were synthesized according to a published procedure. BINAP (622 mg, 0.55 mmol) were added into a Schlenk tube and degassed three time with N₂, then fresh distilled toluene (15 mL) was added into the Schlenk tube. The suspension was subsequently stirred at 100 °C for 5 min. After cooled down to room temperature, Pd(OAc)₂ (112 mg, 0.5 mmol) was added, after stir for a minute then NaO'Bu (1346 mg, 14 mmol), bromobenzene (10 mmol) and 1,2,3,4-tetrahydroisoquinoline (12 mmol) or 1,2,3,4- tetrahydroquinoline (12 mmol) were added into the solution. The mixture was then degassed three times with N₂ and stirred under reflux for 24 h. The mixture was then cooled down to the room temperature and filtered through celite. The celite was washed with ethyl acetate, the combined organic layer was evaporated to remove the solvent and the crude product was then purified by column.

3.2 Synthesis of isoindoline derivatives³

General procedure 2: 1, 2-Bis(bromomethyl)benzene (1.3 g, 5.0 mmol, 1.0 eq.), DIPEA (2.2 mL, 12.5 mmol, 2.5 eq.), and aromatic amine (7.5 mmol, 1.5 eq.) dissolved in toluene (25 mL) were added to a tube sealing before vigorously stirring at 110 °C under a N₂ atmosphere. The resulting mixture was cooled to room temperature and extracted with ethyl acetate (3×15 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1~50:1) to obtain compound 1ca~1cf as a white solid or pale yellow solid (64-88% yields).

3.3 Synthesis of 1-phenylpyrrolidine⁴

 K_2CO_3 (11.0 mmol, 1.1 eq.) was suspended in DMF (10.0 mL, 1.0 M) under N₂ atmosphere; aniline (10.0 mmol, 1.0 eq.) was then added followed by 1,4-dibromobutane (11.0 mmol, 1.1 eq.). The reaction was heated in an oil bath at 80 °C overnight. After reaching room temperature the mixture was diluted with ethyl acetate and the solution was extracted with 1.0 M HCl(aq.). The aqueous layers were combined and adjusted to pH 8~9 with 1.0 M NaOH(aq.) and then extracted with ethyl acetate. The organic layers were washed with brine, dried over MgSO₄, filtered, concentrated under reduced pressure. The title product **1ea** was obtained after purification by column chromatography (petroleum ether/ethyl acetate 100:1~50:1) as a colorless oil (0.77 g, 52 %).

3.4 Synthesis of 1,3-Dihydroisobenzofuran⁵

A mixture of 1, 2-Bis(bromomethyl)benzene (1.0 g, 3.8 mmol), sodium hydroxide (1.6 g, 40 mmol), DMAP (10 mg), 1,4-dioxane (5 mL) and water (5 mL), was put into a Schlenk tube and heated in a 110 °C oil bath for 24 h. The reaction mixture was diluted with water (15 mL) and extracted with ether (25 mL). The organic layer was washed with sat. NH₄Cl (aq.) (10 mL), water (10 mL), sat. NaCl (aq.) (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 10:1~5:1) to obtain compound **3b** as a colorless oil (62% yields).

4. General Procedure 3 for the Oxidation of Amines or Ethers

A mixture of substrates (0.2 mmol, 1.0 eq.) and cesium carbonate (Cs₂CO₃, 0.3 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (2.0 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.1~2.0 eq.). After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light (Kessil PR160L -390 nm lamp) for 24 h. After the reaction was completed, the reaction solution underwent an aqueous workup (using distilled water or brine in case of slurry phase separation) and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. And the desired products were purified by flash chromatography on silica gel using petroleum ether/ ethyl acetate as eluent.

5. Synthetic application practicability

5.1 Gram-scale synthesis of 2aa

A mixture of 1aa (5.0 mmol, 1.05 g, 1.0 eq.) and cesium carbonate (Cs₂CO₃, 7.5 mmol, 1.5

eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (50 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (1.0 mmol, 0.2 eq.). The tube was evacuated and backfilled with oxygen, repeating three times. After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O_2 balloon. The resulting mixture was stirred at rt with the irradiation of a 20 W blue LED light (Kessil PR160L -390 nm lamp) for 36 h. After the reaction was completed, the reaction solution underwent an aqueous workup and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. **2aa** was purified by flash chromatography on silica gel using petroleum ether/ ethyl acetate (10:1) as eluent.

5.2 Derivatization of the alkaloid julolidine 5

A mixture of Julolidine (0.5 mmol, 87 mg, 1.0 eq.) and cesium carbonate (Cs_2CO_3 , 0.75 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (5.0 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.25 mmol, 0.5 eq.). The tube was evacuated and backfilled with oxygen, repeating three times. After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light (Kessil PR160L -390 nm lamp) for 24 h. After the reaction was completed, the reaction solution underwent an aqueous workup and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. And the desired product **6** was purified by flash chromatography on silica gel using petroleum ether/ ethyl (10:1) acetate as eluent.

5.3 The synthesis of indoprofen 11a

reaction conditions: a) 1,2-Bis(bromomethyl)benzene, DIPEA, toluene, N₂, reflux; b) LDA, MeI, THF, N₂, -78 $^{\circ}$ C; c) standard conditions; d) NaOH (aq.), THF-MeOH (*v*:*v* = 1:1), air, rt.

Synthesis of ethyl 2-(4-(isoindolin-2-yl) phenyl) acetate (8):

1,2-bis(bromomethyl)benzene (2.90 g, 11 mmol, 1.1 eq.), DIPEA (4.5 mL, 25 mmol, 2.5 eq.), and ethyl 2-(4-aminophenyl) acetate 7 (1.79 g, 10 mmol, 1.2 eq.) dissolved in toluene (20 mL) were

added to a tube sealing before vigorously stirring at 110 °C under a N₂ atmosphere. The resulting mixture was cooled to room temperature and extracted with ethyl acetate (3×15 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1~50:1) to obtain compound **8** as a white solid (1.96 g, 70%).

Synthesis of ethyl 2-(4-(isoindolin-2-yl) phenyl) propanoate (9a):

The 50 mL Schlenk bottle was evacuated and filled with nitrogen under hot-blowing heating and drying, repeated three times. Under nitrogen atmosphere, diisopropylamine (0.28 mL, 2.0 mmol, 1.3 eq.) and 2.5 ml of THF were injected, and after cooling to -78 °C, *n*-BuLi (1.1 ml, 1.6 M in *n*-hexane, 1.8 mmol, 1.2 eq.) was injected. After stirring for 10 min, 10 ml THF containing **8** (0.42 g, 1.5 mmol, 1.0 eq.) was injected. After stirring for 30 min, MeI (0.10 ml, 1.6 mmol, 1.05 eq.) was injected, and the mixture was stirred. The reaction was monitored by TLC. After the mixture was returned to room temperature, 15 ml of H₂O was added, and the mixture was stirred for 10 min. The resulting mixture was extracted with ethyl acetate (3×10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1) to obtain compound **9a** as a white solid (0.43 g, 97%).

Synthesis of ethyl 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoate (10a):

According to **General Procedure 3** starting from **9a** (1.0 mmol), the product **10a** was isolated after chromatography (petroleum ether/ethyl acetate 5:1), 192 mg white solid, 62% yield.

Synthesis of 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoic acid (11a):

Ethyl 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoate **10a** (93 mg, 0.3 mmol) was dissolved in MeOH-THF (1:1, 3 mL) and 6.0 M NaOH(aq.) (0.2 mL) was added. Reaction mixture was stirred at room temperature and followed by TLC. After reaction was completed, the mixture was acidified using 10% H₂SO₄. Product was extracted with ethyl acetate and the combined ethyl acetate fractions were washed with brine and dried over MgSO₄. Solvent was removed and 81 mg of yellow solid of indoprofen **11a** was obtained, 96% yield.

5.4 The synthesis of indobufen 11b

reaction conditions: a) LDA, Etl, THF, N₂, -78 $^{\circ}$ C; b) standard conditions; c) NaOH (aq.), THF-MeOH (*v*:*v* = 1:1), air, rt.

Synthesis of ethyl 2-(4-(isoindolin-2-yl) phenyl) propanoate (9b):

The 50 mL Schlenk bottle was evacuated and filled with nitrogen under hot-blowing heating

and drying, repeated three times. Under nitrogen atmosphere, diisopropylamine (0.42 mL, 3.0 mmol, 1.5 eq.) and 3.0 ml of THF were injected, and after cooling to -78 °C, *n*-BuLi (1.5 ml, 1.6 M in *n*-hexane, 2.4 mmol, 1.2 eq.) was injected. After stirring for 10 min, 10 ml THF containing **8** (0.56 g, 2.0 mmol, 1.0 eq.) was injected. After stirring for 30 min, EtI (0.20 ml, 2.4 mmol, 1.2 eq.) was injected, and the mixture was stirred. The reaction was monitored by TLC. After the mixture was returned to room temperature, 15 ml of H₂O was added, and the mixture was stirred for 10 min. The resulting mixture was extracted with ethyl acetate (3×10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 100:1) to obtain compound **9a** as a white solid (0.57 g, 92%).

Synthesis of 2-(4-(1-oxoisoindolin-2-yl) phenyl) propanoic acid (11a):

Starting from **9b** (0.31 g, 1.0 mmol), after completing the oxidation reaction according to **General Procedure 3**, add 10 mL MeOH-THF (1:1) to the reaction solution, and then add 6.0 M NaOH(aq.) (0.5 mL). Reaction mixture was stirred at room temperature and followed by TLC. After reaction was completed, the mixture was acidified using 10% H_2SO_4 . Product was extracted with ethyl acetate and the combined ethyl acetate fractions were washed with brine, dried over MgSO₄ and concentrated in *vacuo*. The crude product was purified by column chromatography (DCM/MeOH 25:1) to obtain compound **11a** as a white solid (0.20 g, 68%).

6. Mechanistic experiments

6.1 TEMPO trapping experiment

A mixture of *N*-phenyl-tetrahydroisoquinoline **1aa** (0.2 mmol) and cesium carbonate (Cs₂CO₃, 0.3 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (2 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.02 mmol, 0.1 eq.) and TEMPO (0.4 mmol, 2.0 eq.). The tube was evacuated and backfilled with oxygen, repeating three times. After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light. The reaction solution underwent an aqueous workup and was extracted three times with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*.

6.2 UV-vis absorption spectra of 1aa, 1ba, 1ca, PIDA and the initial mixtures 1aa/2a, 1ba/2a, 1ca/2a.⁷

Figure S2. UV-visible absorption spectra of 1aa, PIDA and 1aa/PIDA c(1aa) = 0.05 M, c(PIDA) = 0.01 M

Figure S3. UV-visible absorption spectra of of 1ba, PIDA and 1ba/PIDA c(1ba) = 0.05 M, c(PIDA) = 0.01 M

Figure S4. UV-visible absorption spectra of 1ca, PIDA and 1ca/PIDA

c(1ca) = 0.05 M, c(PIDA) = 0.01 M

6.3 Stoichiometry of the molecular complex in solution⁷

The stoichiometry of the EDA complexes was calculated using the Job's plot method. The Job's plot of the EDA complex between **1** and PIDA was calculated measuring the absorption of DMF solutions at 390 nm with different donor/acceptor ratios with constant concentration (0.10 M) of the two components. The absorbance values were plotted against the molar fraction of **1**. The Job's plot analysis of the EDA complex **1aa**/PIDA showed a maximal absorbance at 0.496 molar fraction of **1aa** indicated that the stoichiometry of the EDA complex in solution was most likely 1:1.

Figure S5: Job's plot of 1aa with PIDA in DMF.

6.4 NMR titration experiments

H¹NMR experiments of solutions with different donor/acceptor ratios of **1aa** and PIDA (covering the ratio 0%,10%, 20% to 100% donor) with constant concentration of the two components (0.1 M in CDCl₃), were measured.

	\wedge	1aa/PIDA
		100/0
		90/10
		80/20
		70/30
С		60/40
\land	\wedge	50/50
	\wedge	40/60
V v Ph — 1aa	\wedge	30/70
		20/80
		10/90
		0/100
		10/90 0/100

Figure S6: NMR titration of 1aa with PIDA in CDCl₃.

6.5 Quantum yield measurements

Purple LED ($\lambda_{max} = 390$ nm) was used for measurement of quantum yield.

Determination of the light intensity at 390 nm

According to the procedure of Guo⁸, the photon flux of the LED ($\lambda_{max} = 390$ nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (0.737 g) in H₂SO₄ (10 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (10.0 mg) and sodium acetate (2.26 g) in H₂SO₄ (10.0 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 60 seconds at $\lambda_{max} = 390$ nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A nonirradiated sample was also prepared and the absorbance at 510 nm was measured.

The average of the absorption of the irradiated and non-irradiated samples was determined and used to calculate the conversion applying the following equation

$$mol Fe^{2+} = \frac{V \times \Delta A}{l \times \varepsilon} = \frac{(0.0020 L) \times 1.036}{(1 cm) \times (11100 \frac{L}{mol} cm)} = 1.87 \times 10^{-7} mol$$

where V (0.0020 *L*) is the quantitatively absorbed solution of potassium iron oxalate 1,10phenanthroline complex, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions (average of three replicates), 1 is the path length (1.000 cm), and ε is the molar absorptivity at 510 nm (11,100 L mol⁻¹ cm⁻¹). The photon flux can be calculated based on the following equation:

photo
$$flux = \frac{mol Fe^{2+}}{\emptyset \times t \times f} = \frac{1.87 \times 10^{-7} mol}{1.13 \times 60 \times (1 - 10^{-4})} = 2.76 \times 10^{-9} einstein/s$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.13 for a 0.15 M solution at λ = 390 nm),⁹ t is the time (60 s), and f is the fraction of light absorbed at λ = 390 nm (A>>3, $f \approx 1$). The photon flux was calculated to be 2.76 × 10⁻⁹ einstein/s.

The reaction mixture (standard condition) was stirred and irradiated by blue LED ($\lambda_{max} = 390$ nm) for 1 h. The yield of product was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. The yield of **2aa** was determined to be 37%. The photon flux is 2.76×10^{-9} einstein/s, t is the reaction time (1 h). An absorption spectrum of the reaction gave an absorbance value of 3.9548 at 390 nm.

$$\phi = \frac{mol \ product}{photo \ flux \times t \times f} = \frac{7.4 \times 10^{-5}}{2.76 \times 10^{-9} \times 3600 \times (1 - 10^{-3.9548})} = 7.45$$

The reaction quantum yield (Φ) was determined to be Φ = 7.45.

6.6 Light ON-OFF Experiment

A mixture of **1aa** (0.2 mmol, 1.0 eq.) and cesium carbonate (Cs_2CO_3 , 0.3 mmol, 1.5 eq.) were mixed in a 25mL Schlenk tube containing a magnetic stirring bar, then adding dry DMF (2.0 mL, 0.1 M) to the tube to dissolve the substrate and finally adding PIDA (0.1 eq.). After purging the tube three times with vacuum and two times with nitrogen, oxygen atmosphere was incorporated through an O₂ balloon. The resulting mixture was stirred at rt with the irradiation of a 10 W blue LED light. The light was switched ON and OFF alternatively for a period of 1 hours and the yield of product was determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Figure S7: The on-off-light experiment.

7. Characterization Data

2-(2-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinoline (1am): white solid, TLC $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/50); m.p. 63-65 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (dd, J = 7.9, 1.5 Hz, 1H), 7.58 (td, J = 7.7, 1.5 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.23 – 7.16 (m, 3H), 7.08 (dd, J = 7.4, 1.9 Hz, 1H), 4.19 (s, 2H), 3.26 (t, J = 5.7 Hz, 2H), 3.04

(t, J = 5.8 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.64, 135.13, 134.52, 132.88, 129.02, 127.74, 127.56 – 127.26 (m), 126.88, 126.32 (d, J = 8.7 Hz), 125.77, 125.56, 124.79, 124.12, 122.84, 55.62, 52.01, 29.76. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -60.33. IR(ATR): v = 2778, 2812, 1495, 1453, 1311, 1107, 930, 744 cm⁻¹. HRMS (ESI) *m/z* Calculated for C₁₆H₁₄F₃N [M+H]⁺ 278.1151, Found: 278.11465.

1-(4-chlorophenyl)-1,2,3,4-tetrahydroquinoline (1bc): light yellow solid, TLC $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/100); m.p. 90-92 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.30 (m, 2H), 7.26 – 7.16 (m, 2H), 7.11 (d, J = 7.3 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.87 – 6.72 (m, 2H), 3.65 (t, J = 6.0, 5.4 Hz, 2H), 2.89 (t, J = 6.3 Hz, 2H), 2.09 (p, J = 5.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.02, 143.92, 129.51, 129.44, 128.28, 126.49, 125.49, 125.21, 118.98, 116.13, 50.78, 27.70, 22.78. IR(ATR): v = 3029, 2946, 2926, 2843, 1489, 1455, 1301, 1234, 1092, 822, 751, 735, 702 cm⁻¹. HRMS (ESI) *m/z* Calculated for C₁₅H₁₄N [M+H]⁺ 244.0888, Found:

244.08868.

1-(3-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinoline(1bh): colorless

oil, R_f = 0.30 (ethyl acetate/petroleum ether = 1/100); ¹H NMR (400 MHz, Chloroform-d) δ 7.50 (s, 1H), 7.44 (d, J = 4.9 Hz, 2H), 7.31 (t, J = 3.9 Hz, 1H), 7.13 (d, J = 7.4 Hz, 1H), 7.03 (t, J = 7.7 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 6.84 (t, J = 7.3 Hz, 1H), 3.69 (t, J = 6.1, 5.7 Hz, 2H), 2.88 (t, J = 6.4 Hz, 2H), 2.08 (p, J = 6.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.83, 143.19, 131.89, 131.58, 129.63 (d, *J* = 18.3 Hz), 126.52 , 126.28 (d, *J* = 6.7 Hz), 119.81, 119.68 (q, *J* = 3.8 Hz), 119.13 (q, *J* = 3.9 Hz), 116.74, 50.34, 27.58, 22.98. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -62.67. IR(ATR): v = 3032, 2945, 2842, 1577, 1492, 1442, 1334, 1162, 1116, 1068, 792, 747 , 698 cm⁻¹. HRMS (ESI) *m/z* Calculated for C₁₆H₁₄F₃N [M+H]⁺ 278.1151, Found: 278.11490.

1-(2-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinoline (1bj): colorless oil, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/100); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (dd, J = 8.0, 1.5 Hz, 1H), 7.69 (td, J = 7.7, 1.6 Hz, 1H), 7.54 – 7.40 (m, 2H), 7.18 – 7.07 (m, 1H), 7.02 – 6.87 (m, 1H), 6.74 (td, J = 7.4, 1.1 Hz, 1H), 6.07 (d, J = 8.2 Hz, 1H), 3.71 – 3.41 (m, 2H), 3.00 (dt, J = 28.5, 7.0 Hz, 2H), 2.34 – 2.03 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.36, 146.02, 133.98, 131.50, 130.41 (q, J = 29.7 Hz), 129.31, 127.62 (q, J = 5.2 Hz), 127.01 ,

126.52, 125.09, 122.68, 122.37, 117.56, 115.03, 52.27, 27.78, 22.05. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.76. IR(ATR): ν = 3065, 3035, 2932, 2842, 1492, 1451, 1312, 1128, 1107, 1055, 1033, 765, 744 cm⁻¹. HRMS (ESI) *m/z* Calculated for C₁₆H₁₄F₃N [M+H]⁺ 278.1151, Found: 278.11505.

2-(4-(trifluoromethyl)phenyl)isoindoline (1ce): light yellow solid, $R_f = 0.25$ (ethyl acetate/petroleum ether = 1/50); m.p. 200-201 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 8.6 Hz, 2H), 7.42 – 7.32 (m, 4H), 6.71 (d, J = 8.6 Hz, 2H), 4.71 (s, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 7.56 (d, J = 8.6 Hz, 2H), 4.71 (s, 4H).

Chloroform-*d*) δ 149.11, 137.15, 127.51, 126.67 (q, J = 3.9 Hz), 123.89, 122.69, 118.03, 117.70, 111.04, 53.80. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -60.73. IR(ATR): v = 2868, 2836, 1611, 1382, 1322, 1151, 1100, 1090, 1066, 814, 750 cm⁻¹. HRMS (ESI) *m*/*z* Calculated for C₁₅H₁₂F₃N [M+H]⁺ 264.0995, Found:264.09945.

2-phenyl-3,4-dihydroisoquinolin-1(*2H*)-one (2aa)¹⁰: white solid, 81% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 7.7 Hz, 1H), 7.49 (td, *J* = 7.4, 1.2 Hz, 1H), 7.41 (q, *J* = 7.2 Hz, 5H), 7.28 (t, *J* = 7.1 Hz, 2H), 4.00 (t, *J* = 6.6 Hz, 2H), 3.16 (t, *J* = 6.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.21, 143.17, 138.39, 132.07,

 $129.77,\,128.94,\,128.75,\,127.21,\,127.03,\,126.25,\,125.35,\,49.44,\,28.65.$

2-(*p***-tolyl)-3,4-dihydroisoquinolin-1(2***H***)-one (2ab)⁶: white solid, 75% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-d) \delta 8.19 (d, J = 7.6 Hz, 1H), 7.52 – 7.45 (m, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.33 – 7.21 (m, 5H), 3.98 (t, J = 6.5 Hz, 2H), 3.15 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) \delta 164.24, 140.63,**

138.37, 136.03, 131.96, 129.85, 129.56, 128.72, 127.16, 126.98, 125.23, 49.53, 28.66, 21.09.

72% yield, $R_f = 0.25$ (ethyl acetate/petroleum ether = 1/5); m.p. 126-127 °C ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, *J* = 7.5 Hz, 1H), 7.48 (td, *J* = 7.4, 1.3 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.27 (dd, J = 8.0, 3.2 Hz, 3H), 3.99 (t, J = 6.5 Hz, 2H), 3.15

(t, J = 6.5 Hz, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) & 164.25, 142.34, 140.76, 138.36, 131.97, 129.85, 128.74, 128.38, 127.17, 126.96, 125.24, 49.53, 28.66, 28.50, 15.62. IR(ATR): v = 2968, 1656, 1510, 1399, 1322, 1225, 824, 760, 747 cm⁻¹. HRMS (ESI) *m/z* Calculated for C₁₇H₁₇NO [M+H]⁺ 252.1383, Found: 252.13781.

2-(4-(tert-butyl)phenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ad)⁶: white solid, 78% yield, $R_f =$ 0.25 (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, *J* = 7.6 Hz, 1H), 7.52 – 7.43 (m, 3H), 7.40 (t, J = 7.5 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.26 (d, J = 7.4 Hz, 1H), 4.01 (t, Ô J = 6.5 Hz, 2H), 3.15 (t, J = 6.4 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (101 ^tBu MHz, Chloroform-d) δ 164.23, 149.08, 140.46, 138.34, 131.97,

129.87, 128.75, 127.18, 126.94, 125.86, 124.75, 49.43, 34.55, 31.40, 28.66.

2-(4-methoxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ae)¹⁰: white solid, 68% yield, $R_f =$ 0.30 (ethyl acetate/petroleum ether = 1/2); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 7.5 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 3.96 (t, J = 6.4 Hz, 2H), 3.84 (s, 3H), OMe 3.15 (t, J = 6.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ

164.39, 157.84, 138.33, 136.13, 131.94, 129.79, 128.69, 127.16, 126.96, 126.68, 114.26, 55.53, 49.72, 28.66.

2-(4-chlorophenyl)-3,4-dihydroisoquinolin-1(2H)-one (2af)¹⁰: white solid, 79% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform*d*) δ 8.14 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.3 Hz, 1H), 7.42 - 7.30 (m, 5H), 7.24 (d, *J* = 7.5 Hz, 1H), 3.96 (t, *J* = 6.4 Hz, 2H), 3.14 (t, *J* = 6.4 || 0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.23, 141.59, 138.27, CI 132.27, 131.57, 129.44, 128.99, 128.78, 127.30, 127.05, 126.58, 49.33,

28.56.

0

2-(4-fluorophenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ag)⁶: white solid, 79% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform*d*) δ 8.17 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.50 (td, *J* = 7.5, 1.5 Hz, 1H), 7.46 – 7.32 (m, 3H), 7.27 (d, J = 7.4 Hz, 1H), 7.12 (t, J = 8.6 Hz, 2H), 3.99 (t,

J = 6.5 Hz, 2H), 3.17 (t, J = 6.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 164.36, 161.92, 159.48, 139.11, 109.08, 138.30, 132.17, 129.52, 128.72, 127.26, 127.16, 127.08, 127.04, 115.86, 115.63, 49.58, 28.60. ¹⁹F NMR (377 MHz, Chloroform-d) δ -115.69.

2-(4-(trifluoromethyl)phenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ah)⁶: colorless oil, 82% yield, $R_f = 0.40$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.53 (dd, J = 19.7, 7.8 Hz, 3H), 7.41 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 7.3 Hz, 1H), 4.04 (t, J = 5.9 Hz, 2H), 3.18 (t, J = 6.1 Hz, 2H). ¹³C CF₃ NMR (101 MHz, Chloroform-d) & 164.26, 146.10, 138.33, 132.51,

129.23, 128.84, 127.93, 127.61, 127.61, 127.37, 127.14, 125.92 (q, *J* = 3.8, 3.3 Hz), 125.40, 125.13, 122.70, 120.00, 49.09, 28.47. ¹⁹F NMR (377 MHz, Chloroform-d) δ -62.35.

Ö

2-([1,1'-biphenyl]-4-yl)-3,4-dihydroisoquinolin-1(2H)-one

(2ai)¹¹: white solid, 76% yield, $R_f = 0.40$ (ethyl acetate/petroleum ether = 1/5; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, J = 7.2 Hz, 1H), 7.65 (dd, J = 14.6, 7.8 Hz, 4H), 7.48 (dd, J = 14.7, 8.2 Hz, 5H), 7.40 (dt, J = 14.7, 7.4 Hz, 2H), 7.28 (d, J = 7.4 Hz, 1H), 4.07 (t, J = 6.5 Hz, 2H), 3.20 (t, J = 6.4 Hz, 2H). ¹³C NMR (101

MHz, Chloroform-d) δ 164.30, 142.31, 140.62, 139.14, 138.35, 132.13, 129.73, 128.83, 127.64, 127.35, 127.27, 127.13, 127.01, 125.52, 49.42, 28.65.

2-(o-tolyl)-3,4-dihydroisoquinolin-1(2H)-one (2aj)⁶: colorless oil, 65% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/5; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.36 -7.32 (m, 1H), 7.31 – 7.26 (m, 3H), 7.26 – 7.20 (m, 1H), 3.97 (td, *J* = 11.3, ö 10.4, 4.6 Hz, 1H), 3.74 (dt, *J* = 11.9, 5.6 Hz, 1H), 3.25 (ddd, *J* = 15.3, 10.1, 5.1 Hz, 1H), 3.10 (dt, J = 15.7, 5.2 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ

163.82, 142.26, 138.52, 135.41, 132.03, 131.07, 129.73, 128.64, 127.68, 127.19, 127.15, 127.10, 126.74, 49.42, 28.82, 18.25.

2-(2-methoxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ak)¹²: white solid, 70% yield, $R_f =$ 0.35 (ethyl acetate/petroleum ether = 1/2); ¹H NMR (400 MHz, OMe Chloroform-*d*) δ 8.18 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.27 (d, *J* = 7.4 Hz, 1H), 7.03 (t, Ô J = 7.4 Hz, 2H), 3.86 (s, 5H), 3.17 (t, J = 6.6 Hz, 2H). ¹³C NMR (101 MHz,

Chloroform-d) & 164.25, 154.76, 138.92, 131.83, 131.59, 129.86, 129.08, 128.68, 128.61, 127.04, 126.99, 120.86, 112.19, 55.76, 49.15, 28.70.

2-(2-chlorophenyl)-3,4-dihydroisoquinolin-1(2H)-one (2al)¹²: white solid, 76% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ CI 8.19 (d, J = 7.5 Hz, 1H), 7.50 (ddd, J = 14.4, 7.6, 1.2 Hz, 2H), 7.44 - 7.24

(m, 5H), 3.87 (qt, *J* = 12.1, 5.2 Hz, 2H), 3.32 (ddd, *J* = 14.9, 8.9, 5.7 Hz, 1H), 3.10 (dt, *J* = 15.7, 5.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.05, 140.50, 138.72, 132.23, 132.20, 130.41, 129.60, 129.31, 128.91, 128.70, 127.88, 127.19, 127.16, 49.09, 28.61.

2-(2-(trifluoromethyl)phenyl)-3,4-dihydroisoquinolin-1(2H)-one (2am): unknown compound,

white solid, 73% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/5); m.p. 93-96 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (dd, J = 7.7, 1.4 Hz, 1H), 7.78 (dd, J = 7.9, 1.4 Hz, 1H), 7.65 (td, J = 7.7, 1.5 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 2H), 7.39 (d, J = 7.5 Hz, 2H), 7.27 (d, J = 7.6 Hz, 1H), 3.96 (td, J = 11.8, 4.2 Hz, 1H), 3.74 (dt, J = 12.0, 5.0 Hz, 1H), 3.36 (ddd, J = 7.5 Hz, 2H), 7.27 (dz = 7.6 Hz, 1H), 3.26 (ddd, J = 11.8, 4.2 Hz, 1H), 3.74 (dt, J = 12.0, 5.0 Hz, 1H), 3.26 (ddd, J = 12.0, 5.0 Hz, 1H), 3.26 (ddz), 5.0 Hz, 1H), 3.26 (ddz), 5.0 Hz, 1H), 5.0 Hz,

16.7, 11.7, 5.5 Hz, 1H), 2.99 (dt, J = 15.9, 4.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.01, 141.40, 138.76, 133.47, 132.32, 130.19, 129.02, 128.62, 128.50, 128.31, 128.20, 127.42, 127.37, 127.32, 127.29, 127.14, 124.91, 122.19, 50.17, 28.19. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.39. IR(ATR): v = 3047, 3023, 2957, 2936, 2902, 2814, 1602, 1495, 1454, 1312, 1107, 1035, 930, 762, 744 cm⁻¹. HRMS (ESI) *m*/*z* Calculated for C₁₆H₁₂F₃NO [M+H]⁺ 292.0944, Found: 292.09380.

2-(*m***-tolyl)-3,4-dihydroisoquinolin-1(***2H***)-one (2an)⁶: colorless oil, 71% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/5; ¹H NMR (400 MHz, Chloroform-***d***) \delta 8.20 (dd, J = 7.8, 1.4 Hz, 1H), 7.47 (td, J = 7.5, 1.6 Hz, 1H), 7.38 (td, J = 7.6, 1.3 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.27 - 7.21 (m, 2H), 7.21 - 7.16 (m, 1H), 7.09 (d, J = 7.6 Hz, 1H), 3.98 - 3.89**

(t, *J* = 6.2 Hz, 2H), 3.11 (t, *J* = 6.5 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) & 164.19, 143.15, 138.75, 138.47, 132.05, 129.82, 128.81, 128.66, 127.16, 127.13, 127.08, 126.23, 122.37, 49.51, 28.62, 21.50.

2-(3-(trifluoromethyl)phenyl)-3,4-dihydroisoquinolin-1(*2H*)-one (2ao)⁶: white solid, 83% yield, $R_f = 0.65$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 7.7 Hz, 1H), 7.71 (s, 1H), 7.61 (d, *J* = 7.3 Hz, 1H), 7.51 (p, *J* = 7.5 Hz, 3H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 4.01 (t, *J* = 6.4 Hz, 2H), 3.16 (t, *J* = 6.3 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 164.31, 143.52, 138.39, 132.48, 131.14 (q, J = 32.7, 32.0 Hz), 129.41, 129.20, 128.72, 128.56, 127.99, 127.32, 127.20, 125.28, 122.74 (q, J = 3.7 Hz), 122.57, 122.04 (q, J = 3.9 Hz), 119.86, 49.17, 28.44. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -62.55. IR(ATR): v = 2966, 2923, 2873, 1656, 1403, 1324, 1308, 1162, 1114, 1065, 895, 796, 694 cm⁻¹.

2-(3,5-dimethylphenyl)-3,4-dihydroisoquinolin-1(2H)-one (2ap): unknown compound, white

solid, 61% yield, $R_f = 0.25$ (ethyl acetate/petroleum ether = 1/5); m.p. 107-108 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (dd, J = 7.7, 1.4 Hz, 1H), 7.48 (td, J = 7.4, 1.5 Hz, 1H), 7.40 (td, J = 7.6, 1.3 Hz, 1H), 7.26 (dd, J = 7.5, 1.2 Hz, 1H), 7.03 (d, J = 1.6 Hz, 2H), 6.93 (s, 1H), 4.01 – 3.93 (m, 2H), 3.15 (t, J = 6.5 Hz, 2H), 2.37 (s, 6H). ¹³C NMR (101

MHz, Chloroform-d) & 164.25, 143.05, 138.67, 138.34, 131.94, 129.86, 128.74, 128.20, 127.17,

126.94, 123.26, 49.61, 28.68, 21.35. IR(ATR): v = 2988, 2972, 2901, 1646, 1464, 1406, 1256, 1232, 1066, 1051, 739, 728, 697 cm⁻¹. HRMS (ESI) *m/z* Calculated for C₁₇H₁₇NO [M+H]⁺ 252.1383, Found: 252.13799.

2-(naphthalen-1-yl)-3,4-dihydroisoquinolin-1(*2H*)-one (2aq)¹²: white solid, 78% yield, $R_f = 0.25$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform*d*) δ 8.20 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.98 – 7.82 (m, 3H), 7.57 – 7.48 (m, 4H), 7.48 – 7.37 (m, 2H), 7.30 (d, *J* = 7.5 Hz, 1H), 4.07 (ddd, *J* = 12.1, 10.4, 4.6 Hz, 1H), 3.89 (dt, *J* = 12.3, 5.6 Hz, 1H), 3.39 (ddd, *J* = 15.8,

10.4, 5.3 Hz, 1H), 3.15 (dt, *J* = 15.9, 5.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.82, 140.17, 138.55, 134.69, 132.20, 129.76, 129.63, 128.88, 128.62, 128.20, 127.31, 127.19, 126.89, 126.35, 125.89, 124.54, 122.90, 50.20, 28.92.

2-(naphthalen-2-yl)-3,4-dihydroisoquinolin-1(*2H***)-one (2ar)**¹²: white solid, 81% yield, $R_f = 0.20$

(ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, *J* = 7.6 Hz, 1H), 7.95 – 7.75 (m, 4H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.57 – 7.47 (m, 3H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 7.3 Hz, 1H), 4.11 (t, *J* = 6.3 Hz, 2H), 3.20 (t, *J* = 6.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.45, 140.93, 138.44,

133.64, 132.18, 131.78, 129.76, 128.80, 128.54, 127.82, 127.70, 127.27, 127.09, 126.34, 125.92, 124.69, 122.62, 49.69, 28.73.

2-(pyridin-2-yl)-3,4-dihydroisoquinolin-1(*2H***)-one (2as)**¹²: white solid, 82% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/2); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (ddd, *J* = 4.7, 1.9, 0.9 Hz, 1H), 8.20 (dd, *J* = 7.8, 1.4 Hz, 1H), 8.07 – 8.00 (m, 1H), 7.73 (ddd, *J* = 8.4, 7.3, 2.0 Hz, 1H), 7.50 (td, *J* = 7.5, 1.4 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.11 (ddd, *J* = 7.3, 4.9, 1.1 Hz, 1H), 4.32 (dd, *J* = 7.0, 5.9 Hz, 2H), 3.13 (t, *J* = 6.4 Hz, 2H). ¹³C

NMR (101 MHz, Chloroform-*d*) δ 164.79, 154.11, 147.66, 139.18, 136.93, 132.43, 129.79, 128.93, 127.13 (d, *J* = 9.5 Hz), 120.25, 45.73, 28.52.

6,7-dimethoxy-2-phenyl-3,4-dihydroisoquinolin-1(2*H*)-one (2at)¹²: white solid, 69% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/2); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.63 (m, 1H), 7.40 (td, J = 6.6, 3.1 Hz, 4H), 7.28 – 7.19 (m, 1H), 6.75 – 6.65 (m, 1H), 4.08 – 3.88 (m, 8H), 3.16 – 2.99 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.20, 152.16, 148.10, 143.32, 132.17, 128.83, 126.03, 125.29, 122.20,

110.85, 109.27, 56.09, 49.61, 28.24.

Ö

7-chloro-2-phenyl-3,4-dihydroisoquinolin-1(*2H*)-one (2au)¹³: yellow solid, 78% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (t, *J* = 2.1 Hz, 1H), 7.45 (dt, *J* = 8.8, 3.3 Hz, 3H), 7.42 – 7.37 (m, 2H), 7.33 – 7.26 (m, 1H), 7.22 (dd, J = 8.1, 2.2 Hz, 1H), 4.01 (t, J = 5.5 Hz, 2H), 3.14 (t, J = 5.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.04, 142.80, 136.57, 133.30, 132.01, 131.29, 129.05, 128.70, 128.47, 126.54, 125.31, 49.35, 28.10.

2-methyl-3,4-dihydroisoquinolin-1(*2H*)-one (2av)¹¹: colorless oil, 72% yield, $R_f = 0.45$ (ethyl acetate/petroleum ether/triethylamine = 2/2/1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.35 (td, *J* = 7.4, 1.5 Hz, 1H), 7.27 (td, *J* = 7.5, 1.3 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 3.50 (t, *J* = 6.7 Hz, 2H), 3.10 (s, 3H), 2.94 (t, *J* = 6.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.75, 137.99, 131.50, 129.26, 127.95, 126.90, 48.05, 35.11, 27.80.

1-phenyl-3,4-dihydroquinolin-2(*1H*)-one (2ba)¹³: colorless oil, 71% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (t, J = 7.6 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.26 (dd, J = 12.0, 7.4 Hz, 3H), 7.05 (dt, J = 22.2, 7.1 Hz, 2H), 6.39 (d, J = 7.9 Hz, 1H), 3.11 (t, J = 6.8 Hz, 2H), 2.96 - 2.80 (t, J = 6.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.25, 141.70, 138.49, 129.88, 129.06, 128.21, 127.81, 127.16, 125.71, 123.00, 117.06, 32.27, 25.70.

1-(*p***-tolyl)-3,4-dihydroquinolin-2(***1H***)-one (2bb)¹³: colorless oil, 46% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-***d***) \delta 7.34 (d,** *J* **= 8.0 Hz, 2H), 7.23 (d,** *J* **= 7.1 Hz, 1H), 7.15 (d,** *J* **= 8.2 Hz, 2H), 7.04 (dtd,** *J* **= 24.3, 7.5, 1.4 Hz, 2H), 6.42 (d,** *J* **= 8.2 Hz, 1H), 3.09 (dd,** *J* **= 8.7, 6.1 Hz, 2H), 2.89 – 2.82 (m, 2H), 2.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-***d***) \delta 170.33, 141.79, 138.10, 135.74, 130.58, 128.73, 127.76, 127.11, 125.63, 122.88, 117.01, 32.25, 25.69, 21.26.**

1-(4-chlorophenyl)-3,4-dihydroquinolin-2(*1H*)-one (2bc): unknown compound, yellow solid, 65% yield, TLC $R_f = 0.50$ (ethyl acetate/petroleum ether = 1/10); m.p. 179-181 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.46 (m, 2H), 7.31 – 7.17 (m, 3H), 7.06 (dtd, *J* = 22.8, 7.5, 1.4 Hz, 2H), 6.40 (d, *J* = 8.0 Hz, 1H), 3.14 – 3.05 (m, 2H), 2.85 (dd, *J* = 8.4, 6.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.22, 141.35, 136.97, 134.00, 130.45, 130.12, 127.95, 127.25, 125.79, 123.26, 116.92, 32.21, 25.61. IR(ATR): v = 3050, 3026, 2924, 2854, 1671, 1487, 1457, 1357, 1332, 1265, 1085, 1014, 844, 829, 757 cm⁻¹. HRMS (ESI) *m/z* calculated for

C₁₅H₁₂ClNO [M+H]⁺ 258.0680, found 258.06786.

1-(4-fluorophenyl)-3,4-dihydroquinolin-2(*1H*)**-one (2bd)**¹³: yellow solid, 66% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 - 7.17 (m, 5H), 7.06 (dtd, *J* = 24.6, 7.5, 1.5 Hz, 2H), 6.39 (dt, *J* = 8.0, 1.8

Hz, 1H), 3.10 (dd, J = 8.7, 6.1 Hz, 2H), 2.86 (dd, J = 8.7, 6.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.36, 163.32, 160,85, 141.56, 134.28, 130.83, 130.74, 127.92, 127.23, 125.71, 123.16, 116.97, 116.86, 116.75, 32.20, 25.62. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -113.35.

1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(*1H*)-one (2be): unknown compound, white solid, 68% yield, $R_f = 0.25$ (ethyl acetate/petroleum ether = 1/10); m.p. 182-183 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.27 (dd, J = 7.4, 1.8 Hz, 1H), 7.15 – 7.01 (m, 2H), 6.37 (d, J = 8.3 Hz, 1H), 3.12 (dd, J = 8.6, 6.0 Hz, 2H), 2.87 (dd, J = 8.6, 6.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.15, 141.87, 141.12, 130.38, 130.05, 129.62, 128.04, 127.32, 127.11 – 126.80 (m), 125.99, 125.24, 123.50, 122.53, 117.02, 32.24, 25.59. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -62.56. IR(ATR): v

= 3047, 2927, 2855, 1672, 1323, 1168, 1160, 1108, 1065, 1020, 854, 764 cm⁻¹. HRMS (ESI) m/z Calculated for C₁₆H₁₂F₃NO [M+H]⁺ 292.0944. Found: 292.09411.

1-(*m***-tolyl)-3,4-dihydroquinolin-2(***1H***)-one (2bf)¹³: colorless oil, 59% yield, R_f = 0.30 (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-***d***) \delta 7.43 (t,** *J* **= 7.7 Hz, 1H), 7.34 – 7.18 (m, 2H), 7.08 (dd,** *J* **= 7.8, 4.9 Hz, 3H), 7.01 (td,** *J* **= 7.4, 1.2 Hz, 1H), 6.46 – 6.33 (m, 1H), 3.16 – 3.03 (m, 2H), 2.86 (dd,** *J* **= 8.5, 6.2 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, Chloroform-***d***) \delta 170.29, 141.71, 139.91, 138.34, 129.67, 129.57, 129.08, 127.77, 127.14, 125.99, 125.62, 122.94, 117.09, 32.25, 25.70, 21.40.**

1-(3-methoxyphenyl)-3,4-dihydroquinolin-2(*IH*)-one (2bg): unknown compound, write solid, 51% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/5); m.p. 88-91 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (t, *J* = 8.1 Hz, 1H), 7.23 (dd, *J* = 7.3, 1.6 Hz, 1H), 7.08 (td, *J* = 7.8, 1.7 Hz, 1H), 7.05 – 6.94 (m, 2H), 6.85 (ddd, *J* = 7.7, 1.9, 0.9 Hz, 1H), 6.80 (t, *J* = 2.2 Hz, 1H), 6.43 (dd, *J* = 8.0, 1.2 Hz, 1H), 3.83 (s, 3H), 3.10 (dd, *J* = 8.7, 6.1 Hz, 2H), 2.90 – 2.81 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.18, 160.84, 141.54, 139.52, 130.53,

127.78, 127.18, 125.56, 123.01, 121.19, 117.04, 114.39 (d, J = 16.7 Hz), 55.41, 32.25, 25.66. IR(ATR): v = 3005, 2924, 2842, 1680, 1490, 1456, 1256, 1212, 1190, 1148, 1031, 751, 693 cm⁻¹. HRMS (ESI) *m/z* Calculated for C₁₆H₁₅NO₂ [M+H]⁺ 254.1176. Found: 254.11740.

1-(3-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one (2bh)¹⁴: white solid, 66% yield,

 $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (dt, *J* = 15.5, 7.8 Hz, 2H), 7.56 (s, 1H), 7.50 (d, *J* = 7.7 Hz, 1H), 7.27 (dd, *J* = 7.0, 1.6 Hz, 1H), 7.08 (dtd, *J* = 19.3, 7.5, 1.5 Hz, 2H), 6.34 (d, *J* = 7.8 Hz, 1H), 3.12 (dd, *J* = 8.6, 6.0 Hz, 2H), 2.87 (dd, *J* = 8.6, 6.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.22, 141.18, 139.11, 132.81, 132.55, 132.22, 130.39, 128.06, 127.35, 126.19 (q, *J* = 3.9 Hz),

125.90, 125.04 (q, J = 3.6 Hz), 123.45, 122.28, 116.86, 32.21, 25.59. ¹⁹F NMR (377 MHz, Chloroform-d) δ -62.57.

1-(o-tolyl)-3,4-dihydroquinolin-2(1H)-one (2bi)¹³: colorless oil, 71% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.33 (m, 3H), 7.26 (d, J = 7.3 Hz, 1H), 7.22 – 7.15 (m, 1H), 7.04 (dt, J = 14.5, 7.5 Hz, 2H), 6.29 (d, J = 7.9 Hz, 1H), 3.12 (hept, J = 7.5, 7.0 Hz, 2H), 2.88 (t, J =7.4 Hz, 2H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.75, 140.82, 137.20, 136.59, 131.49, 129.28, 128.74, 127.92, 127.57, 127.41, 125.48, 123.02, 116.24, 32.13, 25.76, 17.47.

1-(2-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one (2bj): unknown compound, colorless oil, 62% yield, m.p. 90-92 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.87 (dd, J = 7.9, 1.5 Hz, 1H), 7.76 (td, J = 7.7, 1.5 Hz, 1H), 7.62 (t, J = 7.7) Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.25 (dd, J = 7.2, 1.7 Hz, 1H), 7.12 - 6.99 ٦) CF₃ (m, 2H), 6.23 (dd, J = 7.9, 1.4 Hz, 1H), 3.21 - 3.01 (m, 2H), 2.96 - 2.78 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.54, 141.31, 136.40, 133.56, 132.28, 129.65, 129.35, 129.10, 128.73, 128.07 (q, J = 5.0 Hz), 127.87,

127.14, 125.29, 124.47, 123.17, 121.75, 119.03, 116.39, 32.03, 25.46. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ 61.68. IR(ATR): v = 2924, 2854, 1694, 1495, 1455, 1316, 1165, 1133, 1114, 1061, 1023, 857, 756 cm⁻¹. HRMS (ESI) m/z Calculated for C₁₆H₁₂F₃NO [M+H]⁺ 292.0944. Found: 292.09401.

1-(pyridin-2-yl)-3,4-dihydroquinolin-2(1H)-one (2bk)¹⁵: white solid, 70% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/5). ¹H NMR (400 MHz, Chloroform-d) δ 8.68 (d, J = 3.6 Hz, 1H), 7.92 (td, J = 7.7, 1.6 Hz, 1H), 7.39 (dd, J = 11.4, 6.4 Hz, 2H), 7.24 (d, J = 7.0 Hz, 1H), 7.15 – 6.96 (m, 2H), 6.29 (d, J = 7.9 Hz, 1H), 3.23 – 3.02 (m, 2H), 2.85 (dd, J = 8.4, 6.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.40, 151.91, 150.07, 140.51, 138.84, 127.99, 127.15, 125.90, 124.67, 123.43, 116.96, 32.28, 25.63.

2-phenylisoindolin-1-one (2ca)¹⁶: white solid, 77% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/10). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.91 (m, 1H), 7.91 – \cap 7.85 (m, 2H), 7.63 - 7.56 (m, 1H), 7.51 (d, J = 7.3 Hz, 2H), 7.46 - 7.39 (m, 2H), 7.23 – 7.14 (m, 1H), 4.82 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 167.51, 140.15, 139.52, 133.23, 132.08, 129.16, 128.36, 124.44, 124.10,

122.66, 119.41, 50.71.

2-(p-tolyl)isoindolin-1-one (2cb)¹⁶: white solid, 78% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether

= 1/10). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 7.9 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.23 (d, J = 8.3 Hz, 2H), 4.81 (s, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz,

Chloroform-*d*) δ 167.36, 140.17, 136.99, 134.15, 133.36, 131.91, 129.67, 128.31, 124.04, 122.60, 119.55, 50.84, 20.87.

2-(4-fluorophenyl)isoindolin-1-one (2cc)¹⁷: white solid, 77% yield, $R_f = 0.30$ (ethyl

acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.65 – 7.59 (m, 1H), 7.56 – 7.48 (m, 2H), 7.13 (t, *J* = 8.7 Hz, 2H), 4.84 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.41, 160.75, 158.32, 139.98, 135.61 (d, *J* =

2.9 Hz), 133.00, 132.15, 128.47, 124.18, 122.64, 121.26 (d, J = 7.6 Hz), 115.95, 115.73, 50.99. ¹⁹F NMR (377 MHz, Chloroform-d) δ -117.83.

2-(4-methoxyphenyl)isoindolin-1-one (2cd)¹⁷: white solid, 62% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroformd) δ 7.91 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 9.1 Hz, 2H), 7.58 (t, J =

acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroformd) δ 7.91 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 9.1 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.50 (dd, J = 7.1, 3.8 Hz, 2H), 6.96 (d, J = 9.1 Hz, 2H), 4.79 (s, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ

167.22, 156.59, 140.17, 133.29, 132.67, 131.81, 128.30, 123.98, 122.59, 121.42, 114.32, 55.49, 51.14.

2-(4-(trifluoromethyl)phenyl)isoindolin-1-one (2ce)¹⁸: white solid, 71% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroformd) δ 8.06 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 7.5 Hz, 1H), 7.67 (dd, J = 20.6, 7.8 Hz, 3H), 7.56 (d, J = 7.7 Hz, 2H), 4.91 (s, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 167.84, 142.51, 139.89, 132.71 (d, J =

8.1 Hz), 128.67, 126.38 (q, J = 4.0 Hz), 124.43, 122.75, 118.59, 50.49. ¹⁹F NMR (377 MHz, Chloroform-d) δ -62.13.

2-(2,6-dimethylphenyl)isoindolin-1-one (**2cf**)¹⁹: white solid, 67% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 7.0 Hz, 1H), 7.63 (t, J = 6.8 Hz, 1H), 7.55 (d, J = 7.4 Hz, 2H), 7.23 (dd, J = 8.7, 6.1 Hz, 1H), 7.17 (d, J = 6.5 Hz, 2H), 4.61 (s, 2H), 2.22 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.82, 141.78, 136.82,

135.62, 132.39, 131.74, 128.54 (d, *J* = 10.3 Hz), 128.24, 124.29, 123.07, 51.22, 18.03.

1-phenyl-1H-indole (2da')²¹: colorless oil, 79% yield, ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.1 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.47 (d, *J* = 4.4 Hz, 4H), 7.32 (dd, *J* = 8.4, 4.0 Hz, 2H), 7.18 (dtd, *J* = 18.7, 7.1, 1.2 Hz, 2H), 6.67 (d, *J* = 3.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.94, 135.97, 129.71, 129.45, 128.05, 126.53, 124.46, 122.48, 121.26, 120.49, 110.63, 103.70. 1-phenylindoline-2,3-dione (2da")²⁰: red solid, 9% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether

= 1/2); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.62 – 7.52 (m, 3H), 7.52 – 7.41 (m, 3H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 182.93, 157.34, 151.69, 138.37, 132.90, 129.99, 128.85, 126.02, 125.63, 124.33, 117.51, 111.31.

1-phenylpyrrolidin-2-one (2ea)²³: light yellow solid, 56% yield, $R_f = 0.4$ (ethyl acetate/ dichloromethane = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 7.9 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 3.84 (t, *J* = 7.0 Hz, 2H), 2.59 (t, *J* = 8.1 Hz, 2H), 2.13 (p, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.27, 139.42, 128.82, 124.47, 119.93, 48.77, 32.79, 18.00.

N-(4-bromophenyl)-N-methylformamide (2eb)²⁴: light yellow solid, 61% yield, $R_f = 0.35$ (ethyl acetate/ dichloromethane = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 7.54 (dd, J = 8.8, 2.2 Hz, 2H), 7.07 (dd, J = 8.7, 1.8 Hz, 2H), 3.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.93, 141.24, 132.72, 123.74, 119.66, 31.97.

N-methyl-N-phenylbenzamide $(2ec)^{25}$: white solid, 52% yield, $R_f = 0.30$ (ethyl acetate/ dichloromethane = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.29 (m, 2H), 7.27 – 7.20 (m, 3H), 7.20 – 7.11 (m, 3H), 7.05 (d, *J* = 7.7 Hz, 2H), 3.52 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.73, 144.91, 135.92, 129.60, 129.16, 128.73, 127.73, 126.92, 126.51, 38.43.

isochroman-1-one (4a)¹⁰: colorless oil, 38% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/10); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 7.6 Hz, 1H), 7.54 (td, J = 7.5, 1.4 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 4.54 (t, J = 6.0 Hz, 2H), 3.07 (t, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.14, 139.58, 133.69, 130.38, 127.69, 127.28, 125.32, 67.33, 27.83.

isobenzofuran-1(*3H*)-one (4b)²⁰: white solid, 45% yield, $R_f = 0.20$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 7.7 Hz, 1H), 7.72 – 7.65 (m, 1H), 7.56 – 7.47 (m, 2H), 5.32 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.14, 146.57, 134.05, 129.03, 125.68, 122.18, 69.70.

7.2 Hz, 3H), 2.81 (t, *J* = 6.2 Hz, 2H), 2.67 (t, *J* = 7.0 Hz, 3H), 1.96 (p, *J* = 6.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.68, 136.09, 127.76, 125.72, 125.46, 125.31, 122.42, 40.95, 31.53, 27.32, 25.28, 21.45.

Ethyl 2-(4-(isoindolin-2-yl)phenyl)acetate (8): white solid, 70% yield, $R_f = 0.30$ (ethyl acetate/petroleum ether = 1/20); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.30 (m, 4H), 7.25 (d, *J* = 8.1 Hz, 2H), 6.68 (d, *J* = 8.2 Hz, 2H), 4.67 (s, 4H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.57 (s, 2H), 1.29 (t, *J* = 5.4 Hz, 5H).

Ethyl 2-(4-(isoindolin-2-yl)phenyl)propanoate (9a)¹⁰: white solid, 97% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/20); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (ddt, J = 14.9, 5.9, 3.4 Hz, 4H), 7.29 – 7.26 (m, 2H), 6.67 (d, J = 8.6 Hz, 2H), 4.67 (s, 4H), 4.21 – 4.08

(m, 2H), 3.67 (q, J = 7.1 Hz, 1H), 1.51 (d, J = 7.2 Hz, 3H), 1.25

Ethyl 2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoate (10a)¹⁰: white solid, 62% yield, $R_f = 0.45$ (ethyl acetate/petroleum ether = 1/5); ¹H NMR (400 MHz, OEt OEt Chloroform-*d*) δ 7.93 (d, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.61 (t, *J* = 7.0 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 4.85 (s, 2H), 4.15 (dtt, *J* = 14.2, 7.1, 3.6 Hz,

2H), 3.74 (q, *J* = 7.1 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.52, 167.48, 140.11, 138.43, 136.76, 133.18, 132.11, 128.41, 128.25, 124.14, 122.66, 119.63, 60.83, 50.73, 45.01, 18.58, 14.17.

2-(4-(1-oxoisoindolin-2-yl)phenyl)propanoic acid (Indoprofen, 11a)¹⁰: white solid, 96% yield,

(t, J = 7.1 Hz, 3H).

 $R_{f} = 0.60 \text{ (MeOH/DCM} = 1/5); {}^{1}\text{H NMR} (400 \text{ MHz, DMSO-}d_{6})$ $\delta 12.35 \text{ (s, 1H)}, 7.86 \text{ (d, } J = 8.3 \text{ Hz, 2H)}, 7.79 \text{ (d, } J = 7.6 \text{ Hz,}$ 1H), 7.68 (d, J = 5.4 Hz, 2H), 7.55 (td, J = 6.6, 5.6, 2.5 Hz, 1H),7.36 (d, J = 8.3 Hz, 2H), 5.02 (s, 2H), 3.70 (q, J = 7.1 Hz, 1H),

1.38 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 175.87, 167.03, 141.50, 138.62, 137.49, 132.90, 132.70, 128.67, 128.42, 123.82, 123.69, 119.93, 50.92, 44.57, 18.96.

Ethyl 2-(4-(isoindolin-2-yl)phenyl)butanoate (9b)¹⁰: white solid, 94% yield, $R_f = 0.35$ (ethyl acetate/petroleum ether = 1/20); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.29 (m, 6H), 6.68 (d, *J* = 7.9 Hz, 2H), 4.67 (s, 4H), 4.18 (tdd, *J* = 19.0, 8.7, 3.4 Hz, 2H), 3.43 (t, *J* = 7.5 Hz, 1H), 2.15 (dd, *J* = 13.6, 7.1 Hz, 1H), 1.93 – 1.78 (m, 1H), 1.28 (t, *J* = 6.9 Hz, 3H), 0.97 (t, *J* = 7.1 Hz, 3H).

2-(4-(1-oxoisoindolin-2-yl)phenyl)butanoic acid (Indobufen, 11b)¹⁰: white solid, 68% yield, $R_f = 0.60$ (MeOH/DCM = 1/5); ¹H NMR (400 MHz, DMSO- d_6) δ **12.37** (s, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 5.6 Hz, 2H), 7.54 (t, J = 7.0 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 5.01 (s, 2H), 3.55 – 3.25 (m, 1H), 1.99 (dp, J = 14.8, 7.4 Hz, 1H), 1.68 (dp, J = 14.4, 7.3 Hz, 1H), 0.85 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz,

DMSO- d_6) δ 175.34, 167.04, 141.48, 138.72, 135.88, 132.91, 132.68, 128.80, 128.65, 123.79, 123.69, 119.82, 52.50, 50.87, 26.59, 12.53.

8. References

1. J. Meneyrol, P. Helissey, C. Tratrat, S. Giorgi-Renaolt, and H.-P. Husson, *Synth. Commun.*, 2001, **31**, 987-992.

2. H. Zhou, Y. Liu, S.-H. Yang, L. Zhou, and M.-X. Chang, *Angew. Chem. Int. Ed.*, 2017, **56**, 2725–2729.

3. C. Lin, L. Zhen, Y. Cheng, H.-J. Du, H. Zhao, X.-A. Wen, L.-Y. Kong, Q.-L. Xu and H.-B. Sun, *Org. Lett.*, 2015, **17**, 2684–2687.

4. E. Bergamaschi, C. Weike, V. J. Mayerhofer, I. Funes-Ardoiz, and C. J. Teskey, *Org. Lett.*, 2021, 23, 5378–5382.

5. D.-R. Hou, Y.-D. Hsieh, and Y.-W. Heich, Tetrahedron Letters, 2005, 46, 5927-5929.

6. T. Thatikonda, S. K. Deepake, and U. Das, Org. Lett., 2019, 21, 2532-2535.

7. L. Marzo, S. Wang, and B. König, Org. Lett., 2017, 19, 5976-5979.

8. X. Guo, B.-R. Shao, W.-F. Jiang and L. Shi, J. Org. Chem., 2021, 86, 15743-15752.

9. Hatchard, C. G.; Parker, C. A. Proc. Roy. Soc. (London) 1956, A235, 518.

10. S.-S. Geng, B.-J. Xiong, Y. Zhang, J. Zhang, Y. He and F. Zhang, *Chem. Commun.*, 2019, 55, 12699-12702.

11. S.-Y. Liu, M. Tian, X.-B. Bu, H. Tian and X.-B. Yang, *Chemistry - A European Journal*, 2021, **27**, 7738–7744.

12. K. Aganda, B. Hong and A. Lee, Advanced Synthesis and Catalysis, 2019, 361, 1124-1129.

13. L.-G. Wu, Y.-N. Hao, Y.-X. Liu and Q.-M. Wang, Org. Biomol. Chem., 2019, 17, 6762-6770.

14. L. Zhang, L.Sonaglia, J.Stacey and M.Lautens, Org. Lett., 2013, 15, 2128-2131.

15. Z.-J. Wu, K.L. Huang and Z.-Z. Huang, Org. Biomol. Chem., 2017, 15, 4978-4983.

16. L.-Y. Shi, L. Hu, J.-Q. Wang, X.-Q. Cao and H.-W. Gu, Org. Lett., 2012, 14, 1876-1879.

17. N.-K. Kanako, K. Jun, K. Takehiro, Org. Lett., 2015, 17, 4479-4481.

18. G.-N. Ding, X.-Y. Wu, L.-L. Jiang, Z.-G. Zhang and X.-M. Xie, Org. Lett., 2017, 19, 6048-6051.

19. C. Tsukano, M. Okuno and Y. Takemoto, Angew. Chem. Int. Ed., 2012, 51, 2763-2766.

20. X.-F. Bai, F. Ye, L.-S. Zheng, G.-Q. Lai and C.-G. Xia, Chem. Commun., 2012, 48, 8592-8594.

21. H.-H. Wang, Y.-M. Li, F.-F. Sun, Y. Feng, K. Jin and X.-N. Wang, J. Org. Chem., 2008, 73, 8639-8642.

- 22. P.-C. Huang, P. Gandeepan and C.-H. Cheng, Chem. Commun., 2013, 48, 8592-8594.
- 23. H.-B. Zhao, and L. Daniele, Angew. Chem. Int. Ed., 2021, 60, 7669-7674.
- 24. S. Yang, P.-H. Li, Z.-H. Wang, and L. Wang, Org. Lett., 2017, 19, 3386-3389.
- 25. Y.-M. Li, F. Jia, and Z.-P. Li, Chemistry A European Journal, 2013, 19, 82-86.
- 26. X.-D. Cao, Y.-F. Zhang, Y. Chen, and G.-S. Zhang, J. Med. Chem., 2018, 61, 10017-10039.

9. Copies of NMR

) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

S31

) -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm)

(

