Serine- γ PNA, Invader probes, and chimeras thereof: Three probe chemistries that enable sequence-unrestricted recognition of double-stranded DNA

Raymond G. Emehiser,^a Karishma Dhuri,^b Caroline Shepard,^a Saswata Karmakar,^a Raman

Bahal,^b and Patrick J. Hrdlicka.^{a,*}

^aDepartment of Chemistry, University of Idaho, Moscow, ID-83844, USA

^bPharmaceutical Sciences, University of Connecticut, Storrs, CT-06269, USA

E-mail: <u>hrdlicka@uidaho.edu</u>

ELECTRONIC SUPPLEMENTARY INFORMATION

Definition of zipper nomenclature	S 3
MALDI-MS of SyPNAs and Invader strands used in this study (Table S1)	S3
Position of target sequences within the DYZ-1 satellite gene (Fig. S1)	S4
MALDI-MS spectra and HPLC traces for probes studied herein (Figs. S2-S4)	S5
Representative thermal denaturation profiles for Invader, Invader:cDNA, and reference DNA duplexes (Fig. S5)	S 7
Representative thermal denaturation profiles for SyPNA:cDNA duplexes (Fig. S6)	S 8
Representative thermal denaturation profiles for single-stranded SyPNAs (Fig. S7)	S 9
Representative thermal denaturation curves of chimeric duplexes between SyPNA and individual Invader strands (Fig. S8)	S10
UV-Vis absorption spectra for single-stranded Invader probes and the corresponding duplexes with complementary DNA, SyPNA, and Invader strands (Fig. S9)	S11
Absorption maxima for single-stranded Invader probes and the corresponding duplexes with complementary DNA, SyPNA, or Invader strands (Table S2)	S12
Steady-state fluorescence emission spectra for Invader probes, chimeric SyPNA-Invader probes, and Invader:cDNA duplexes (Fig. S10)	S13
I_5/I_1 ratios for Invader probes, chimeric S γPNA -Invader probes, and Invader:cDNA duplexes (Table S3)	S14
Sequences and select intramolecular $T_{\rm m}$ s for DNA hairpins used herein (Table S4)	S15

Representative electrophoretograms for recognition experiments of various probes and their respective DNA hairpin targets (5-fold excess, 37 °C, 2.5 h) (Fig. S11)	S16
Representative electrophoretograms for recognition experiments of various probes and their respective DNA hairpin targets (5-fold excess, 37 °C, 15 h) (Fig. S12)	S17
Representative electrophoretograms from dose-response experiments using single-stranded SγPNA probes (37 °C, 2.5 h), double-stranded Invader probes (37 °C, 2.5 h or 15 h) or chimeric SγPNA:Invader probes (37 °C, 2.5 h or 15 h) (Figs. S13-S17)	S18
Dose-response curves for recognition of DNA hairpins using SγPNA, Invader or chimeric SγPNA-Invader probes following 2.5 or 15 h incubation (Figs. S18 and S19)	S22
Binding specificities of SγPNAs used at 25- or 100-fold excess (2.5 h at 37 °C) and of chimeric SγPNA:Invader probes used at 100-fold excess (15 h at 37 °C) (Figs. S20-S22)	S24
Representative fluorescence microscopy images of SγPNA probes incubated with fixed nuclei from a male bovine kidney cell line (Figs. S23-S28)	S26
Representative fluorescence microscopy images of chimeric SyPNA:Invader probes incubated with fixed nuclei from a male bovine kidney cell line (Figs. S29-S34)	S32
Representative fluorescence microscopy images of Invader or SγPNA probes incubated with fixed nuclei from a female bovine endothelial cell line (Figs. S35 and S36)	S38
Proportion of nuclei presenting single or multiple punctate signals per nucleus in nd-FISH experiments using probes at low or high concentration (Tables S5 and S6)	S40
Supplementary references	S41

Definition of zipper nomenclature. The following nomenclature is used to describe the relative arrangement between two 2'-O-(pyren-1-yl)methyl-RNA monomers on opposing strands in an Invader probe. The number n describes the distance measured in number of base-pairs and has a positive value if a monomer is shifted toward the 5'-side of its strand relative to a second reference monomer on the other strand. Conversely, n has a negative value if a monomer is shifted toward the 3'-side of its strand relative to a second reference monomer on the other strand.

Strand	Sequence	Observed <i>m/z</i> Calculated <i>m/z</i>		
		$[M+H]^+$	$[M+H]^+$	
SyPNA2u	H-(TMR)-K-ATA CTG GTT TGT GTT C-K-NH2	5568	5565	
SyPNA2d	NH2-K-TAT GAC CAA ACA CAA G-K-(TMR)-H	5540	5540	
SyPNA4u	H-(TMR)-K-AGC CCT GTG CCC TG-K-NH2	4906	4901	
SyPNA4d	NH2-K-TCG GGA CAC GGG AC-K-(TMR)-H	5038 ^b	$5037^{\rm b}$	
SyPNA10u	H-(TMR)-K-GTG TAG TGT ATA TG-K-NH2	5044	5044	
SyPNA10d	NH2-K-CAC ATC ACA TAT AC-K-(TMR)-H	4873	4873	
INV2u	5'-Cy3-A <u>U</u> AC <u>U</u> GGTTTG <u>U</u> G <u>U</u> TC-3'	6266	6264	
INV2d	3'-TA <u>U</u> GA <u>C</u> CAAACA <u>C</u> A <u>A</u> G-Cy3-5'	6282	6279	
INV10u	5'-Cy3-G <u>U</u> G <u>U</u> AGTG <u>U</u> A <u>U</u> ATG-3'	5721	5720	
INV10d	3'-CA <u>C</u> A <u>U</u> CACA <u>U</u> A <u>U</u> AC-Cy3-5'	5562	5561	

Table S1. MALDI-MS of SyPNAs and Invader strands used in this study.^a

^a MALDI-MS data for INV4u and INV4d have been previously reported in reference S1.

^b The K⁺-adduct was observed.

1	atgcaagccc	gggatctcag	ccctgtggtc	tgggaactgt	gaaaccggct	tgagtatgtg
61	tgctgttatc	agcactgtgc	cctggcgact	ctgatactgg	tttgtgttca	tgtgtgtgtg
121	tgtgtgtgtg	tgtgttgctg	ttctc <mark>agccc</mark>	<mark>tgtgccctg</mark> g	cgattgtgca	accagtatct
181	gtatgcctgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgctgtt	ctcaacccat
241	tgccctggcg	attgttcaac	cagtttgtgt	atatgtgtgt	gtagatgtgt	gtgccatcct
301	gagccttgtg	ccctggcaac	tggggaaacg	gtgtgtgtgt	gttgtgtgtc	tgtgtgtgtg
361	ctgatttcag	ccatgtgccc	ttctgactgt	gcaactggtt	tgtgtgtgtg	tgcacgcgat
421	tctcacctct	gtgtcctggc	gactgtgtaa	ccgtttgtgt	gtgtgagtgt	gtgtaagtgt
481	gtgctctttt	cagccctgtt	tcctagagac	tgtggaaccg	gttggtgtgt	gtgtgtgtct
541	gtgtgtgtgt	gtgccattct	c <mark>agccctgtg</mark>	ccctggc <u>g</u> ac	tgtgcaatat	tttgtcgtgt
601	gtgtgtgtgt	gtgtatttgt	gtgtgcaatt	cacagccctg	ttccctggcg	actgtgcaag
661	cagattgttg	cgtatgtttc	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgta	tgtgctgttc
721	tc <mark>agccctgt</mark>	<mark>gccctg</mark> gcaa	ctgtgaaacc	ggtttgtatg	tgtgtgtgtg	tttgtgtgtg
781	ccattcac <mark>ag</mark>	ccctgtgccc	<mark>tg</mark> gcgactgt	gcaagcagtt	tgtgtgtgca	tgtgtctgtg
841	tgtgtatgtg	tctgtgtgtg	catgtgtctg	tgtgtgttat	atgctgttct	c <mark>agccctgtg</mark>
901	<mark>ccctg</mark> gcgac	tgagaaaccg	gttgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgccagtt
961	tcagccctgt	gccttggtac	tgtgcaagtg	gtttgtgtgt	gtgt <mark>gtgtag</mark>	<mark>tgtatatg</mark> tg
1021	tgtgtgtggt	ttgaccagtt	ttcagccctg	tgccttagtg	actgtgtaac	tggtgtgtgt
1081	gtgtgtgtgt	gtgtgtgtgc	tcttctc <mark>agc</mark>	cctgtgccct	<mark>g</mark> ttgactgtg	caagcggttt
1141	gtctgtgtat	gtgagtgggt	gctgttctca	tgcctgtgca	ctgg	

Figure S1. Position of target sequences within the *DYZ-1* satellite gene on the bovine (*Bos taurus*) Y chromosome^{S2} for the different probes studied herein. Region "2" (grey) is the target for **S** γ **PNA2u**, **S** γ **PNA2d**, **INV2**, **S** γ **PNA2u**:**INV2d** and **S** γ **PNA2d**:**INV2u**. Region "4" (yellow) is the target for **S** γ **PNA4u**, **S** γ **PNA4d**, **INV4**, **S** γ **PNA4u**:**INV4d** and **S** γ **PNA4d**:**INV4u**. Region "10" (red) is the target for **S** γ **PNA10u**, **S** γ **PNA10d**, **INV10**, **S** γ **PNA10u**:**INV10d** and **S** γ **PNA10d**:**INV10u**. Region "4" is present six times within the tandem repeat (~6 × 10⁴ tandem repeats), while regions "2" and "10" are present once.

Figure S2. HPLC traces and MALDI-MS spectra for SyPNA2u and SyPNA2d.

Figure S3. HPLC traces and MALDI-MS spectra for SyPNA4u/d and SyPNA10u/d.

Figure S4. MALDI-MS spectra for INV2u/d and INV10u/d.

Figure S5. Representative thermal denaturation curves for Invader, Invader:cDNA, and reference DNA duplexes. Experimental conditions are as specified in Table 1.

Figure S6. Representative thermal denaturation (heating) and annealing (cooling) curves for SγPNA:cDNA duplexes. Duplexes were heated from 20 °C to 95 °C (blue), followed by cooling to 20 °C (orange). Experimental conditions are as specified in Table 1.

Figure S7. Representative melting (heating) and annealing (cooling) curves for single-stranded S γ PNAs. Solutions were heated from 20 °C to 95 °C (blue), followed by cooling to 20 °C (orange). Experimental conditions are specified in Table 1. Pronounced hysteresis is observed rendering $T_{\rm m}$ determination unreliable.

Figure S8. Representative thermal denaturation curves of chimeric duplexes between SγPNA and individual Invader strands. For experimental conditions, see Table 1.

Figure S9. UV-Vis absorption spectra for single-stranded Invader probes and the corresponding duplexes with complementary DNA, S γ PNA, and Invader strands. Spectra were recorded at 10 °C with each strand used at 1.0 μ M in T_m buffer.

		λ_{\max} (nm) [$\Delta\lambda_{\max}$]			
Probe	SSP	+cDNA	+SyPNA	+ssINV	
INV2u	350	353 [+3]	351 [+1]	351 [+1]	
INV2d	349	352 [+3]	350 [+1]	351 [+2]	
INV4u	349	353 [+4]	350 [+1]	348 [-1]	
INV4d	348	351 [+3]	348 [±0]	348 [±0]	
INV10u	349	352 [+3]	349 [±0]	350 [+1]	
INV10d	349	353 [+4]	349 [±0]	350 [+1]	

Table S2. Absorption maxima in the 340-365 nm region for single-stranded Invader probes and the corresponding duplexes with complementary DNA, SγPNA, or Invader strands.^a

^aSSP = single-stranded probe. $\Delta\lambda_{max}$ is calculated relative to the single-stranded Invader strand. Binding partners (listed in parenthesis) are as follows: INV2u (SyPNA2d and INV2d), INV2d (SyPNA2u and INV2u), INV4u (SyPNA4d and INV4d), INV4d (SyPNA4u and INV4u), INV10u (SyPNA10d and INV10d), and INV10d (SyPNA10u and INV10u). Measurements were performed at 10 °C in T_m buffer using quartz optical cells with a 1.0 cm path length. Spectra are shown in Figure S9.

Figure S10. Steady-state fluorescence emission spectra for Invader probes, chimeric S γ PNA-Invader probes, and Invader:cDNA duplexes. Spectra were recorded at 5 °C in $T_{\rm m}$ buffer using $\lambda_{\rm ex}$ = 350 nm and quartz optical cells with a 1.0 cm path length.

Table S3. I_5/I_1 ratios for Invader probe duplexes and duplexes between individual Invader strandsand complementary DNA or S γ PNA.^a

	I_5/I_1 ratios				
Probe	+cINV	+cDNA	+SyPNA		
INV2u	1.3	1.3	1.0		
INV2d	1.3	1.3	1.0		
INV4u	1.1	1.2	1.0		
INV4d	1.1	1.3	1.0		
INV10u	1.4	1.3	1.2		
INV10d	1.4	1.1	1.3		

^aI₅/I₁ ratios were calculated based on observed emission maxima in the 396-400 nm range for I₅ and 376-387 nm range for I₁. Measurements were performed at 5 °C in T_m buffer using quartz optical cells with a 1.0 cm path length. Spectra are shown in Fig. S10.

Hairpin	Sequence	$T_{\rm m}$ (°C)
DH2	5'-ATA CTG GTT TGT GTT C 3'-TAT GAC CAA ACA CAA G	72.0
DH4	5'-AGC CCT GTG CCC TG 3'-TCG GGA CAC GGG AC	82.0
DH10	5'-GTG TAG TGT ATA TG 3'-CAC ATC ACA TAT AC	62.0
DH2m	5'-ATA CTG GAT TGT GTT C 3'-TAT GAC CTA ACA CAA G	nd
DH2mm	5'-ATA CAG GTT TGA GTT C 3'-TAT GTC CAA ACT CAA G	nd
DH4m	5'-AGC CCT CTG CCC TG 3'-TCG GGA GAC GGG AC	nd
DH4mm	5'-AGC CGT GTG GCC TG 3'-TCG GCA CAC CGG AC	nd
DH10m	5'-GTG TAG AGT ATA TG 3'-CAC ATC TCA TAT AC	nd
DH10mm	5'-GTG TTG TGT TTA TG 3'-CAC AAC ACA AAT AC	nd

Table S4. Sequences and select intramolecular $T_{\rm ms}$ for DNA hairpins used herein.^a

^a $T_{\rm m}$ were determined as described in Table 1. Hairpins **DH2m/mm**, **DH4m/mm**, **and DH10m/mm** differ by either one (m) or two (mm) base pairs relative to the corresponding **DH2**, **DH4**, and **DH10**, as indicated by the red letters. "nd" = not determined.

Figure S11. Representative electrophoretograms for recognition experiments entailing a 5-fold molar excess of various probes and their respective DNA hairpin targets **DH2**, **DH4**, or **DH10**. Histograms depict averaged results from at least three experiments with error bars representing standard deviation. RC = band corresponding to recognition complex. DH = band corresponding to DNA hairpin. DIG-labeled **DH2**, **DH4**, and **DH10** (sequences shown in Table S4) were incubated with the specified probe in HEPES buffer (50 mM HEPES, 100 mM NaCl, 5 mM MgCl₂, pH 7.2, 10% sucrose, 1.44 mM spermine tetrahydrochloride) at 37 °C for 2.5 h. Binding partners are as follows: **DH2** (target for SγPNA2u, SγPNA2d, and INV2), **DH4** (target for SγPNA4u, SγPNA4d, and INV4), and DH10 (target for SγPNA10u, SγPNA10d, and INV10). SγPNA2d, SγPNA10u, SγPNA2u, SγPNA4u, and SγPNA4u.

Figure S12. Representative electrophoretograms for recognition experiments entailing DNA hairpin targets **DH2**, **DH4**, or **DH10** and a 5-fold molar excess of the corresponding probes following 15 h of incubation using the same buffer conditions as described in Figure S11.

Figure S13. Dose-response experiments. Representative electrophoretograms for recognition of DNA hairpin targets **DH2**, **DH4**, or **DH10** (34.4 nM) using different concentrations of single-stranded SγPNA probes following incubation at 37 °C for 2.5 h. Conditions are otherwise as described in Figure S11.

Figure S14. Dose-response experiments. Representative electrophoretograms for recognition of DNA hairpin targets **DH2** or **DH10** (34.4 nM) using different concentrations of Invader probes following incubation at 37 °C for 2.5 h. Conditions are otherwise as described in Figure S11.

Figure S15. Dose-response experiments. Representative electrophoretograms for recognition of DNA hairpin targets **DH2** or **DH10** (34.4 nM) using different concentrations of Invader probes following incubation at 37 °C for 15 h. Conditions are otherwise as described in Figure S11.

Figure S16. Dose-response experiments. Representative electrophoretograms for recognition of DNA hairpin targets **DH2** or **DH10** (34.4 nM) using different concentrations of chimeric SγPNA:Invader probes at 37 °C for 2.5 hours. Incubation conditions are otherwise as described in Figure S11.

Figure S17. Dose-response experiments. Representative electrophoretograms for recognition of DNA hairpin targets **DH2** or **DH10** (34.4 nM) using different concentrations of chimeric SγPNA:Invader probes following incubation at 37 °C for 15 h. Conditions are otherwise as described in Figure S11.

Figure S18. Dose-response curves for recognition of DNA hairpin targets **DH2** or **DH10** using the corresponding SγPNA, Invader or chimeric SγPNA-Invader probes. Incubation conditions are as described in Figure S11 except for variable probe concentrations and different incubation times, i.e., 2.5 h for SγPNAs and 15 h for Invader and chimeric SγPNA-Invader probes. Bars denote standard deviations. For corresponding electrophoretograms, see Figs. S13, S15 and S17.

Figure S19. Dose-response curves for recognition of DNA hairpin targets DH2 or DH10 using the corresponding Invader and chimeric S γ PNA-Invader probes. Bars denote standard deviations. Incubation conditions are as described in Figure S11 except for the use of variable probe concentrations and an incubation time of 2.5 h. For the corresponding electrophoretograms, see Figs. S14 and S16.

Figure S20. Binding specificity of SγPNAs. A 25-fold molar probe excess was incubated (2.5 h at 37 °C) with the corresponding DNA hairpins featuring stems of identical sequence or differing in sequence at one ("m") or two positions ("mm"), relative to the probes. For sequences of DNA hairpins, see Table S4. Incubation conditions are otherwise as described in Figure S11.

Figure S21. Binding specificity of SγPNAs. A 100-fold molar probe excess was incubated (2.5 h at 37 °C) with the corresponding DNA hairpins featuring stems differing in sequence at one ("m") or two positions ("mm"), relative to the probes. For sequences of DNA hairpins, see Table S4. Incubation conditions are otherwise as described in Figure S11.

Figure S22. Binding specificity of chimeric SγPNA:Invader probes. A 100-fold molar probe excess was incubated (15 h at 37 °C) with corresponding DNA hairpins featuring stems differing in sequence at one ("m") or two positions ("mm"), relative to the probes. For sequences of DNA hairpins, see Table S4. Incubation conditions are otherwise as described in Figure S11.

Figure S23. Representative fluorescence microscopy images of S γ PNA2u incubated (5.0 or 12.5 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μ m.

Figure S24. Representative fluorescence microscopy images of S γ PNA2d incubated (5.0 or 12.5 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μ m.

Figure S25. Representative fluorescence microscopy images of **SγPNA4u** incubated (5.0 or 12.5 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μm.

Figure S26. Representative fluorescence microscopy images of **SyPNA4d** incubated (5.0 or 12.5 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μ m.

Figure S27. Representative fluorescence microscopy images of **SyPNA10u** incubated (5.0 or 12.5 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μ m.

Figure S28. Representative fluorescence microscopy images of **SyPNA10d** incubated (5.0 or 12.5 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μ m.

Figure S29. Representative fluorescence microscopy images of **SγPNA2u:INV2d** incubated (2.5 or 6.25 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μm.

Figure S30. Representative fluorescence microscopy images of **SγPNA2d:INV2u** incubated (2.5 or 6.25 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μm.

Figure S31. Representative fluorescence microscopy images of **SγPNA4u:INV4d** incubated (2.5 or 6.25 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μm.

Figure S32. Representative fluorescence microscopy images of **SγPNA4d**:**INV4u** incubated (2.5 or 6.25 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μm.

Figure S33. Representative fluorescence microscopy images of S γ PNA10u:INV10d incubated (2.5 or 6.25 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μ m.

Figure S34. Representative fluorescence microscopy images of **SγPNA10d:INV10u** incubated (2.5 or 6.25 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a male bovine kidney cell line (MDBK). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 10 μm.

Figure S35. Representative fluorescence microscopy images of **INV2** or **INV10** incubated (12.5 nM, 5 min, 80 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a female bovine endothelial cell line (CPAE). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 16 μm.

Figure S36. Representative fluorescence microscopy images of **SyPNA2d** or **SyPNA10d** incubated (12.5 nM or 6.25 nM, 3 h, 37 °C, Tris-Cl/EDTA buffer, pH 8.0) with fixed nuclei from a female bovine endothelial cell line (CPAE). Images are overlays of Cy3/TAMRA (red) and DAPI channels (blue). Scale bar denotes 16 μ m.

Table S5. Proportion of nuclei presenting either a single or multiple punctate signals per nucleus in nd-FISH experiments when using low or high probe concentration.^a

	Low Probe Concentration			High Probe Concentration		
	Proportion of nuclei with		_	Proportion of	Proportion of nuclei with	
Probe	1 Signal	\geq 2 Signals		1 Signal	\geq 2 Signals	
SyPNA2u	10%	80%		HB	HB	
SyPNA2d	70%	10%		80%	10%	
SyPNA4u	10%	0%		10%	40%	
SyPNA4d	0%	0%		HB^{b}	HB^{b}	
SyPNA10u	0%	100%		0%	100%	
SyPNA10d	70%	10%		30%	70%	
SyPNA2u:INV2d	40%	50%		10%	80%	
SyPNA2d:INV2u	50%	30%		20%	70%	
SyPNA4u:INV4d	60%	10%		80%	0%	
SyPNA4d:INV4u	HB	HB		HB^{b}	HB^{b}	
SyPNA10u:INV10d	30%	40%		40%	30%	
SyPNA10d:INV10u	40%	10%		60%	10%	
INV2	85%	<15%		ND	ND	
INV4	90%	<10%		ND	ND	
INV10	90%	<10%		ND	ND	

^a HB designates high background rendering it impossible to have a meaningfully signal count. S γ PNA, chimeric and Invader probes were used at concentrations of 5.0/12.5 nM, 2.5/6.25 nM, and 12.5 nM (INV4 ~3.125 nM), respectively. ND = not determined.

^bThe use of **SγPNA4d or SγPNA4d:INV4u** results in the formation of many bright punctate dots scattered across the slide, indicative of poor solubility and aggregation.

SUPPLEMENTARY REFERENCES

S1) D. C. Guenther, G. H. Anderson, S. Karmakar, B. A. Anderson, B. A. Didion, W. Guo, J. P. Verstegen and P. J. Hrdlicka, *Chem. Sci.*, 2015, **6**, 5006-5015.

S2) J. Perret, Y.-C. Shia, R. Fries, G. Vassart and M. Georges, Genomics, 1990, 6, 482-490.