Supplementary information

Synthesis and properties of oligodiaminogalactoses that bind to A-type oligonucleotide duplexes

Tomomi Shiraishi,^a Kazuki Sato,^a Rintaro Iwata Hara,^{a, b} and Takeshi Wada^{*a}

^a Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

^b Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo 113-8519, Japan

*twada@rs.tus.ac.jp

Table of Contents

1.	¹ H, ¹³ C NMR spectra
2.	Information of sequences of nucleic acid oligomers
3.	Melting carves of RNA/RNA (Table 1)
4.	Melting carves of DNA/RNA (Table 2)
5.	Melting carves of DNA/DNA (Table 3)
6.	Melting carves of gapmer/ RNA and 2'-OMe RNA/RNA (Table 4)
7.	UV spectra of oligomers
8.	CD spectra of oligomers
9.	RP-HPLC profiles of RNase A resistance experiment

1. ¹H, ¹³C NMR spectra

¹³ C {¹H} NMR (101 MHz, CDCl₃)

 13 C $\{^1\text{H}\}$ NMR (101 MHz, CDCl₃)

¹³ C {¹H} NMR (101 MHz, CDCl₃)

 13 C $\{^1\text{H}\}$ NMR (101 MHz, CDCl₃)

 13 C $\{^1\text{H}\}$ NMR (101 MHz, CDCl₃)

 13 C $\{^{1}\text{H}\}$ NMR (101 MHz, CDCl₃)

¹³ C {¹H} NMR (101 MHz, CDCl₃)

 13 C $\{^{1}H\}$ NMR (101 MHz, CDCl₃)

 13 C $\{^1\text{H}\}$ NMR (101 MHz, D_2O)

 ^{13}C $\{^{1}\text{H}\}$ (dept 135) NMR (101 MHz, D_2O)

 ^{13}C $\{^{1}\text{H}\}$ (dept 135) NMR (101 MHz, D_2O)

 1 H NMR (400 MHz, D₂O)

 ^{13}C $\{^{1}H\}$ (DEPT 135) NMR (101 MHz, $D_{2}O)$

 ^{13}C $\{^{1}H\}$ (DEPT 135) NMR (101 MHz, $D_{2}O)$

2. Information of sequences of nucleic acid oligomers

RNA/RNA

CAGURR	RNA	5'-	CAGUCAGUCAGU	-3'
	cRNA	5'-	ACUGACUGACUG	-3'
AP12RR	RNA	5'-	GCAUUGGUAUUC	-3'
	cRNA	5'-	GAAUACCAAUGC	-3'
AP16RR	RNA	5'-	CAGCAUUGGUAUUCAG	-3'
	cRNA	5'-	CUGAAUACCAAUGCUG	-3'
ML16RR	RNA	5'-	CUAGUUCACUGAAUGC	-3'
	cRNA	5'-	GCAUUCAGUGAACUAG	-3'
AP20RR	RNA	5'-	GCCUCAGUCUGCUUCGCACC	-3'
	cRNA	5'-	GGUGCGAAGCAGACUGAGGC	-3'
MP20RR	RNA	5'-	UUCAGCAUUGGUAUUCAGUG	-3'
	cRNA	5'-	CACUGAAUACCAAUGCUGAA	-3'

Capital letter: RNA.

DNA/RNA

CAGTDR	DNA	5'-	cagtcagtcagt	-3'
	cRNA	5'-	ACUGACUGACUG	-3'
AP12DR	DNA	5'-	gcattggtattc	-3'
	cRNA	5'-	GAAUACCAAUGC	-3'
AP16DR	DNA	5'-	cagcattggtattcag	-3'
	cRNA	5'-	CUGAAUACCAAUGCUG	-3'
ML16DR	DNA	5'-	ctagttcactgaatgc	-3'
	cRNA	5'-	GCAUUCAGUGAACUAG	-3'
AP20DR	DNA	5'-	ttcagcattggtattcagtg	-3'
	cRNA	5'-	CACUGAAUACCAAUGCUGAA	-3'
MP20DR	DNA	5'-	gcctcagtctgcttcgcacc	-3'
	cRNA	5'-	GGUGCGAAGCAGACUGAGGC	-3'

Small letter: DNA; capital letter: RNA.

DNA/DNA

AP16DD	DNA	5'-	cagcattggtattcag	-3'
	DNA	5'-	ctgaataccaatgctg	-3'
MP20DD	DNA	5'-	gcctcagtctgcttcgcacc	-3'
	DNA	5'-	cgtgcgaagcagactgaggc	-3'

Small letter: DNA.

gapmer/RNA and 2'-OMe RNA/RNA

AP12G2	gapmer	5'-	G ^M C ^M attggtatU ^M C ^M	-3'
	cRNA	5'-	GAAUACCAAUGC	-3'
AP12G4	gapmer	5'-	G ^M C ^M A ^M U ^M tggtA ^M U ^M U ^M C ^M	-3'
	cRNA	5'-	GAAUACCAAUGC	-3'
AP12MR	2'-OMe RNA	5'-	G ^M C ^M A ^M U ^M U ^M G ^M G ^M U ^M A ^M U ^M U ^M C ^M	-3'
	cRNA	5'-	GAAUACCAAUGC	-3'
AP16G2	gapmer	5'-	C ^M A ^M gcattggtatucA ^M G ^M	-3'
	cRNA	5'-	CUGAAUACCAAUGCUG	-3'
ML16G2	gapmer	5'-	C ^M U ^M agttcactgaatG ^M C ^M	-3'
	cRNA	5'-	GCAUUCAGUGAACUAG	-3'
AP16G4	gapmer	5'-	C ^M A ^M G ^M C ^M attggtatU ^M C ^M A ^M G ^M	-3'
	cRNA	5'-	CUGAAUACCAAUGCUG	-3'
ML16G4	gapmer	5'-	C ^M U ^M A ^M G ^M ttcactgaA ^M U ^M G ^M C ^M	-3'
	cRNA	5'-	GCAUUCAGUGAACUAG	-3'
AP16MR	2'-OMe RNA	5'-	Ċ ^M A ^M G ^M C ^M A ^M T ^M T ^M G ^M G ^M T ^M A ^M T ^M U ^M C ^M A ^M G ^M	-3'
	cRNA	5'-	CUGAAUACCAAUGCUG	-3'
ML16MR	2'-OMe RNA	5'-	C ^M U ^M A ^M G ^M U ^M U ^M C ^M A ^M C ^M U ^M G ^M A ^M A ^M U ^M G ^M C ^M	-3'
	cRNA	5'-	GCAUUCAGUGAACUAG	-3'

Small letter: DNA; capital letter: RNA; X^M; 2'-OMe RNA.

3. Melting carves of RNA/RNA (Table 1)

+ODAGal6 2 eq

temperature (°C)

0

0 10 20 30 40 50 60 70 80 90 100

temperature (°C)

-0.02

Figure S1 UV melting curves of RNA/RNA in the absence and presence of ODAGals. (A) at 260 nm (B) at 320 nm.

4. Melting carves of DNA/RNA (Table 2)

Figure S2 UV melting curves of DNA/RNA in the absence and presence of ODAGals. (A) at 260 nm (B) at 320 nm.

Figure S3 UV melting curves of DNA/DNA in the absence and presence of ODAGals. (A) at 260 nm (B) at 320 nm.

6. Melting carves of gapmer/ RNA and 2'-OMe RNA/RNA (Table 4)

S24

Figure S4 UV melting curves of gapmer/RNA and 2'-OMe RNA/RNA in the absence and presence of ODAGals. (A) at 260 nm (B) at 320 nm.

7. UV spectra of oligomers

Figure S5 UV spectra of 5 μ M duplexes in phosphate buffer at room temperature (24 ± 1 °C).

Figure S6 UV spectra of 4 µM DNA/RNA (AP16DR) in phosphate buffer.

Figure S7 UV spectra of 4 µM RNA/RNA (AP16RR) in phosphate buffer.

8. CD spectra of oligomers

Figure S8 CD spectra of duplexes in the presence and the absence of 1 equivalent of ODAGals at 37 °C. DNA/RNA: AP16DR; gapmer (2-12-2)/RNA: AP16G2; gapmer (4-8-4)/RNA: AP16G4; 2'-OMe RNA/RNA: AP16MR; RNA/RNA: AP16RR.

Figure S9 CD spectra of DNA/RNA (AP16DR) and RNA/RNA (AP16RR) in the presence and the absence of 1 or 2 equivalents of ODAGals at 37 °C.

Figure S10 CD spectra of DNA/RNA (AP16DR) in the presence and the absence of 2 equivalents of ODAGals.

Figure S11 CD spectra of RNA/RNA (AP16RR) in the presence and the absence of 2 equivalents of ODAGals.

9. RP-HPLC profiles of RNase A resistance experiment

Figure S12 RP-HPLC profiles of the mixture after treatment of 0.5 μ g/mL RNase A. RP-HPLC analyses (UV detection at 260 nm) were performed using a linear gradient of 0%–20% CH₃CN in 0.1 M triethyl ammonium acetate (TEAA) buffer (pH 7.0) at 30 °C for 60 min with a flow rate of 0.5 mL/min using a C18 column.

Figure S13 RP-HPLC profiles of the mixture after treatment of 0.5 μ g/mL RNase A. RP-HPLC analyses (UV detection at 260 nm) were performed using a linear gradient of 0%–20% CH₃CN in

0.1 M TEAA buffer (pH 7.0) at 50 $^{\circ}$ C for 60 min with a flow rate of 0.5 mL/min using a C18 column.

Figure S14 RP-HPLC profiles of the mixture after treatment of 10 μ g/mL RNase A. RP-HPLC analyses (UV detection at 260 nm) were performed using a linear gradient of 0%–20% CH₃CN in 0.1 M TEAA buffer (pH 7.0) at 30 °C for 60 min with a flow rate of 0.5 mL/min using a C18 column.

Figure S15 RP-HPLC profiles of the mixture after treatment of 10 μ g/mL RNase A. RP-HPLC analyses (UV detection at 260 nm) were performed using a linear gradient of 0%–20% CH₃CN in 0.1 M TEAA buffer (pH 7.0) at 50 °C for 60 min with a flow rate of 0.5 mL/min using a C18 column.