Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Substituent effects of phenyl ring in different positions from a-

carbon of TEMPO-type nitroxide

Toshihide Yamasaki, Yuto Matsuda, Masayuki Munekane, Kohei Sano and Takahiro Mukai*

Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-

machi, Higashinada-ku, Kobe 658-8558, Japan

Corresponding author's e-mail address: tmukai@kobepharma-u.ac.jp

Table of Contents

1. Cyclic voltammetry	S2
2. Molecular calculation	S 3
3. NMR spectra	S5
4. HPLC chromatograms	S 10

1. Cyclic voltammetry

Figure S1. E_{pc} of nitroxide and hydroxylamine redox couple toward the scan rate. Square symbol: **1**; circle: **2**; triangle: **3**. The experimental conditions are described in Materials and Methods.

2. Molecular calculation

Figure S2. Energy diagram for the rotation of substituted group. (a) twisted boat conformation; (b) chair conformation. Black line and square symbol: **1**; dark gray line and circle symbol: **2**; light gray line and triangle symbol: **3**.

Figure S3. Molecular orbital contours. (a) SOMO of 2; (b) HOMO of ascorbate anion.

3. NMR spectra

Figure S5. ¹³C-NMR spectrum of 5.

Figure S6. ¹H-NMR spectrum of **1** added with phenylhydrazine.

Figure S7. ¹H-NMR spectrum of **6**.

Figure S8. ¹³C-NMR spectrum of 6.

Figure S9. ¹H-NMR spectrum of **2** added with phenylhydrazine.

Figure S11. ¹³C-NMR spectrum of **7**.

Figure S12. ¹H-NMR spectrum of **3** added with phenylhydrazine.

4. HPLC chromatograms

Figure S13. HPLC chromatogram of 1. Measured conditions were as follows. Mobile phase: A:
H₂O, B: MeCN; 50% B (t = 0-5 min), 100% B (t = 15 to 25 min); column: COSMOSIL 5C₁₈-AR-II, 4.6 mm I.D. x 250 mm; flow rate: 1 mL/min); detection: UV 254 nm.

Figure S14. HPLC chromatogram of 2. Measured conditions were as follows. Mobile phase: A:
H₂O, B: MeCN; 50% B (t = 0-5 min), 100% B (t = 15 to 25 min); column: COSMOSIL 5C₁₈-AR-II, 4.6 mm I.D. x 250 mm; flow rate: 1 mL/min); detection: UV 254 nm.

Figure S15. HPLC chromatogram of 3. Measured conditions were as follows. Mobile phase: A:
H₂O, B: MeCN; 50% B (t = 0-5 min), 100% B (t = 15 to 25 min); column: COSMOSIL 5C₁₈-AR-II, 4.6 mm I.D. x 250 mm; flow rate: 1 mL/min); detection: UV 254 nm.