Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information for Anion recognition by silanetriol in acetonirile

Shin-ichi Kondo,*a Natsumi Okada,^b Shiori Abe,^a Ryoji Tanaka,^{b,c} Masaki Yamamura,^{b,d} and Masafumi Unno^b

^aDepartment of Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan ^bDepartment of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan ^cSagami Chemical Research Institute, Hayakawa 2743-1, Ayase, Kanagawa 252-1193, Japan ^dFaculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan

Fax: +81-23-628-4587; *Tel:* +81-23-628-4587; *E-mail: kondo@sci.kj.yamagata-u.ac.jp*

Contents

General	S2
Proton NMR titrations	S2
The optimized structure of 5	S8
Cartesian coordination of the optimized structures	

General

All reagents used were of analytical grade. Acetonitrile was distilled over calcium hydride. NMR spectra were measured on a JEOL ECA-500 (500 MHz) spectrometer. UV-vis spectra were recorded on a Shimadzu UV-2500PC spectrometer with a thermal regulator (\pm 0.5 °C). Fluorescence spectra were recorded on a Horiba Jobin Yvon Fluoromax 3 spectrofluorometer. FT-IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. Elemental analysis was performed with Yanaco MT-5. Column chromatography was performed by using Silica Gel 60N from Kanto Reagents. Melting points were determined with a Yanaco MP-J3 micro melting point apparatus and are uncorrected.

Fig. S1. Chemical shift changes of receptor **5** upon the addition of Cl⁻ in MeCN- d_3 at 298 K. [**5**] = 5.0×10^{-3} mol dm⁻³. SiOH (\blacktriangle), 3- and 5-CH (\blacklozenge), CH of 2- and 6-iPr (\blacksquare), and CH of 4-iPr (\blacklozenge). Curved lines indicate theoretical binding isotherms from curve-fitting anlysis.

Fig. S2. ¹H NMR titration of receptor **5** with TBABr in MeCN- d_3 at 298 K. [**5**] = 5.0×10^{-3} mol dm⁻³. [Br⁻]/[**5**] = 14.0 (*a*), 8.0 (*b*), 2.0 (*c*), 0.75 (*d*), and 0 (*e*) equiv.

Fig. S3. Chemical shift changes of the silanol OH proton of receptor **5** upon the addition of Br⁻ in MeCN- d_3 at 298 K. [**5**] = 5.0×10^{-3} mol dm⁻³.

Fig. S4. ¹H NMR titration of receptor 5 with TBAI in MeCN- d_3 at 298 K. [5] = 5.0×10^{-3} mol dm⁻³. [I⁻]/[5] = 60.0 (*a*), 30.0 (*b*), 12.0 (*c*), and 0 (*d*) equiv.

Fig. S5. Chemical shift changes of the silanol OH proton of receptor 5 upon the addition of I⁻ in MeCN- d_3 at 298 K. [5] = 5.0×10^{-3} mol dm⁻³.

Fig. S6. ¹H NMR spectra of receptor **5** in the presence of 1 equiv. of AcO^- in MeCN- d_3 at 298 K. [**5**] = [AcO^-] = 5.0×10^{-3} mol dm⁻³. Left: (*a*) In the absence of AcO^- ; (*b*) 2 min, (*c*) 4 min, (*d*) 15 min, (*e*) 34 min, and (*f*) 60 min after addition of AcO^- . Right: Time course of the integration ratio of the peak corresponding to 3- and 5-CH of Tip moiety of **5**· AcO^- and a newly formed peak in the upfield region.

Fig. S7. ¹H NMR titration of receptor **5** with TBAAcO in MeCN- d_3 at 298 K. [**5**] = 5.0×10^{-3} mol dm⁻³. [AcO⁻]/[**5**] = 2.0 (a), 1.5 (b), 1.0 (c), 0.5 (d), and 0 (e) equiv.

Fig. S8. Dilution experiment of receptor 1 by ¹H NMR spectroscopy in MeCN- d_3 . [5] = 5.25 (*a*), 2.62 (*b*), 1.31 (*c*), and 0.66 mM (*d*).

Fig. S9. ¹H NMR titrations of receptor **1** with Cl⁻ in MeCN- d_3 at 298 K. [**1**] = 5.0×10^{-3} mol dm⁻³. [Cl⁻]/[**1**] = 40.0 (*a*), 33.0 (*b*), 21.0 (*c*), 12.0 (*d*), 6.0 (*e*), and 0 (*f*) equiv.

Fig. S10. ¹H NMR titrations of receptor 1 with Br⁻ in MeCN- d_3 at 298 K. [1] = 5.0×10^{-3} mol dm⁻³. [Br⁻]/[1] = 80.0 (*a*), 40.0 (*b*), 20.0 (*c*), 10.0 (*d*), and 0 (*e*) equiv.

Fig. S11. ¹H NMR titrations of receptor **1** with I⁻ in MeCN- d_3 at 298 K. [**1**] = 5.0×10^{-3} mol dm⁻³. [I⁻]/[**1**] = 80.0 (*a*), 40.0 (*b*), 20.0 (*c*), 10.0 (*d*), and 0 (*e*) equiv.

Fig. S12. Chemical shift changes of silanol OH proton upon the addition of X^{-} . [1] = 5.0×10^{-3} mol dm⁻³.

Fig. S13. ¹H NMR titrations of receptor 1 with AcO⁻ in MeCN- d_3 at 298 K. [1] = 5.0×10^{-3} mol dm⁻³. [AcO⁻]/[1] = 4.5 (a), 3.0 (b), 1.5 (c), 0.8 (d), 0.4 (e), and 0 (f) equiv.

Fig. S14. Chemical shift changes of *o*-CH (\blacktriangle) and *m*-CH (\bullet) protons upon the addition of AcO⁻. [1] = 5.0 × 10⁻³ mol dm⁻³.

Fig. S15. ¹H NMR titrations of receptor **6** (Ph₃COH) with Cl⁻ in MeCN- d_3 at 298 K. [**6**] = 5.0×10^{-3} mol dm⁻³. [Cl⁻]/[**6**] = 60.0 (a), 40.0 (b), 20.0 (c), and 0 (d) equiv.

Fig. S16. ¹H NMR titrations of receptor 6 (Ph₃COH) with Br⁻ in MeCN- d_3 at 298 K. [6] = 5.0×10^{-3} mol dm⁻³. [Br⁻]/[6] = 60.0 (a), 40.0 (b), 20.0 (c), and 0 (d) equiv.

Fig. S17. ¹H NMR titrations of receptor **6** (Ph₃COH) with I⁻ in MeCN- d_3 at 298 K. [**6**] = 5.0×10^{-3} mol dm⁻³. [I⁻]/[**6**] = 60.0 (a), 40.0 (b), 20.0 (c), and 0 (d) equiv.

Fig. S18. Chemical shift changes of alcoholic OH group upon the addition of X⁻. [6] = 5.0×10^{-3} mol dm⁻³.

Fig. S19. ¹H NMR titrations of receptor 6 (Ph₃COH) with AcO⁻ in MeCN- d_3 at 298 K. [6] = 5.0×10^{-3} mol dm⁻³. [AcO⁻]/[6] = 3.0 (a), 1.5 (b), 0.8 (c), 0.4 (d), and 0 (e) equiv.

Fig. S20. The optimized structure of 5 by DFT calculation (B3LYP/6-31+G(d) level of theory) in MeCN.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-0.588	-1.362	-0.073	Н	-0.038	2.751	2.134
С	-2.059	1.017	0.022	Н	-1.437	3.485	1.326
С	0.107	-0.121	-0.037	Н	0.154	4.257	1.213
С	-1.991	-1.369	-0.03	С	-0.446	3.263	-1.304
С	-2.749	-0.199	0.025	Н	-0.187	2.707	-2.213
С	-0.661	1.083	-0.01	Н	0.075	4.229	-1.337
Н	-2.513	-2.323	-0.044	Н	-1.523	3.465	-1.326
Н	-2.626	1.944	0.043	С	-4.911	0.39	-1.171
С	-0.036	2.483	-0.038	Н	-4.542	-0.072	-2.094
Н	1.051	2.387	-0.075	Н	-4.69	1.464	-1.219
С	-4.271	-0.258	0.073	Н	-6.001	0.274	-1.143
Н	-4.551	-1.32	0.07	С	-4.831	0.364	1.367
С	0.106	-2.725	-0.154	Н	-4.405	-0.117	2.256
Н	1.169	-2.561	-0.329	Н	-5.921	0.247	1.406
С	-0.022	-3.502	1.173	Н	-4.607	1.436	1.424
Н	0.385	-2.926	2.013	Si	1.982	0.035	0.022
Н	0.525	-4.451	1.115	Ο	2.472	0.776	-1.39
Н	-1.07	-3.733	1.402	Н	3.418	0.71	-1.594
С	-0.402	-3.575	-1.337	Ο	2.333	0.913	1.401
Н	-0.313	-3.03	-2.284	Н	3.274	1.025	1.61
Н	-1.45	-3.874	-1.216	Ο	2.925	-1.345	0.067
Н	0.194	-4.493	-1.419	Н	3.041	-1.766	0.933
С	-0.362	3.288	1.236				

Table S1 Cartesian coordination of the optimized structure of $\mathbf{5}$ by DFT calculation

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-0.608	-1.386	-0.002	Н	-0.099	2.69	2.197
С	-2.064	1.003	0.028	Н	-1.472	3.444	1.365
С	0.097	-0.15	0	Н	0.124	4.209	1.307
С	-2.013	-1.381	0.01	С	-0.418	3.261	-1.242
С	-2.764	-0.207	0.025	Н	-0.138	2.72	-2.153
С	-0.665	1.06	0.015	Н	0.102	4.227	-1.246
Н	-2.541	-2.332	0.008	Н	-1.496	3.463	-1.286
Н	-2.624	1.935	0.039	С	-4.894	0.394	-1.221
С	-0.038	2.459	0.02	Н	-4.508	-0.074	-2.135
Н	1.048	2.363	0.009	Н	-4.664	1.466	-1.268
С	-4.287	-0.255	0.038	Н	-5.986	0.286	-1.218
Н	-4.574	-1.315	0.034	С	-4.871	0.376	1.318
С	0.064	-2.762	-0.018	Н	-4.47	-0.104	2.217
Н	1.143	-2.624	-0.026	Н	-5.963	0.269	1.332
С	-0.269	-3.576	1.25	Н	-4.64	1.447	1.376
Н	0.012	-3.028	2.158	Si	1.975	0.013	-0.015
Н	0.281	-4.526	1.245	Ο	2.423	0.866	-1.388
Н	-1.339	-3.812	1.318	Н	3.394	0.976	-1.421
С	-0.292	-3.558	-1.291	Ο	2.448	0.847	1.361
Н	-0.026	-2.998	-2.195	Н	3.419	0.957	1.379
Н	-1.362	-3.793	-1.343	Ο	2.808	-1.439	-0.033
Н	0.258	-4.508	-1.308	Н	3.771	-1.254	-0.04
С	-0.396	3.243	1.299	Cl	5.465	0.437	-0.043

Table S2 Cartesian coordination of the optimized structure of $5 \cdot \text{Cl}^-$ by DFT calculation

Atom	Х	Y	Z	Atom	Х	Y	Z
C	1.232	1.372	0.046	С	0.714	-3.263	-1.227
С	2.548	-1.096	-0.021	Н	0.425	-2.716	-2.132
С	0.457	0.179	0.013	Η	0.14	-4.198	-1.198
С	2.634	1.289	0.017	Н	1.775	-3.526	-1.314
С	3.317	0.073	-0.026	С	5.367	-0.629	-1.351
С	1.148	-1.07	0.002	Η	4.98	-0.126	-2.244
Н	3.216	2.207	0.033	Н	5.075	-1.685	-1.404
Н	3.054	-2.058	-0.034	Н	6.463	-0.584	-1.382
С	0.435	-2.427	0.038	С	5.429	-0.648	1.188
Н	-0.642	-2.259	0.069	Н	5.084	-0.159	2.106
С	4.839	0.034	-0.063	Н	6.525	-0.603	1.167
Н	5.186	1.076	-0.063	Н	5.139	-1.705	1.239
С	0.631	2.778	0.13	Si	-1.431	0.138	-0.047
Η	-0.45	2.69	0.211	Ο	-1.92	-0.803	-1.352
С	1.113	3.537	1.384	Η	-2.886	-0.661	-1.471
Н	0.898	2.968	2.297	Ο	-2.003	-0.508	1.377
Н	0.597	4.503	1.459	Н	-3.003	-0.555	1.368
Н	2.19	3.738	1.359	Ο	-2.162	1.629	-0.288
С	0.915	3.596	-1.147	Η	-3.106	1.435	-0.507
Η	0.536	3.083	-2.039	Η	-7.222	-0.69	0.75
Η	1.99	3.768	-1.29	С	-6.721	-0.303	-0.141
Η	0.426	4.577	-1.088	Η	-7.132	0.682	-0.392
С	0.79	-3.223	1.311	Η	-6.932	-0.965	-0.989
Н	0.562	-2.646	2.215	С	-5.211	-0.197	0.062
Н	1.853	-3.491	1.34	Ο	-4.531	0.285	-0.905
Н	0.211	-4.154	1.348	0	-4.724	-0.589	1.163

Table S3 Cartesian coordination of the optimized structure of $5 \cdot \text{AcO}^-$ by DFT calculation