Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supplementary data

Pd-catalysed intramolecular transformations of indolylbenzenesulfonamides: ortho-

sulfonamido-bi(hetero)aryls via C2-arylation and polycyclic sultams via C3 arylation

Rajnikanth Sunke,[#] Shabbir Ahmed Khan,[#] and K. C. Kumara Swamy^{*}

[#]Equal contribution

School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India

e-mail: kckssc@uohyd.ac.in, kckssc@yahoo.com

S. No	Contents			
1	Table S1: Iodine mediated synthesis of Indolylbenzene/thiophene sulfonamides 3 and 6	S2-S7		
2	X-ray data collection, solution, refinement and the ORTEPs/crystal data of 5aa , 9ba , 9bh , 10al , 10bk and 12ag (Figures S1-S6)	S9-S11		
3	¹ H and ¹³ C NMR spectra of all new compounds (Figures S7-S128) [order: 5aa-5dg; 6aa-6ag; 7; 8; 9aa-9dg; 10aa-10dg; 11 and 12aa- 12ag]	S12-S72		
4	HRMS for 5af, 9ae, 9bi, 12aa and 12ad	S73-S77		
5	References	S78		

Table S1: Iodine mediated synthesis of Indolylbenzene/thiophene sulfonamides (5), (6), (7) and (8).^{*a*}

(i) General Procedure for the preparation of 1, 2a, 3, and 4: 2-Iodo substituted sulfonamides 1 were prepared according to the procedure described in literature.¹ The compound 3-bromo-*N*-methylthiophene-2-sulfonamide 2a was prepared according to a procedure described in the literature.² Other starting materials 3 & 4 were prepared *via* alkylation, benzylation and allylation of the corresponding indoles according to a known procedure.³

(ii) General procedure for the preparation of iodo-substituted indolylbenzene/thiophene sulfonamides 5aa-5dg, 6aa-6ag, 7, and 8: An oven dried 25 mL round-bottomed flask was charged with sulfonamide 1 (0.32 mmol), Cs_2CO_3 (0.48 mmol) and I_2 (0.32 mmol) in acetonitrile (2.5 mL) added indole 3 (0.38 mmol). Then the mixture was stirred at rt (25 °C) under nitrogen for 5-8 h. After completion of the reaction (TLC), the reaction was quenched with a saturated solution of Na₂S₂O₃ (10 mL) and the mixture was treated with ethyl acetate (20 mL). The resulting solution was washed with water and the aqueous part extracted with ethyl acetate (2 x 20 mL). The combined organic layer was washed with saturated brine solution (2 × 20 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuum. The

residue was then purified by using silica gel column chromatography using hexane-ethyl acetate (9:1) as eluent to afford the pure desired compounds **5**, **6**, **7** and **8**. Compounds **5aa-5dg**, **6aa-6ag**, **7** and **8** were prepared from the appropriate sulfonamide **1a-e**, **2a** and indole **3**, **4** by using the same procedure and the same molar quantities

S3

10	1a	31	7	Me-N $O=S=O$ Me Sal	62
11	HN O Me 1b	3a	7	Me-N Me-N O 5ba	83
12	1b	3d	7	Me Ne-N_O O ^{-S} 5bd	71
13	1b	Зе	6	Me N Me N O'S 5be	77
14	1b	3h	6	$H_{3}C$ $H_{3}C$ N $H_{3}C$ N O I O $5bh$	83

15	1b	3i	7	Me Me ^{-N} , O Sbi	79
16	1b	3ј	6	H ₃ C N H ₃ C ^{-N} O ¹ 5bj	76
17	1b	Ph 3k	5	Ph Me-N O ^{-S} 5bk	70
18	CI O,S HN O Me 1c	3d	6	Me N Me N S Cl	72
19	1c	N M 3g	7		67

^aAll the reactions were carried out using **1** (0.32 mmol), **2** (0.38 mmol), I_2 (0.32 mmol) and Cs₂CO₃ (0.48 mmol) in acetonitrile (5.0 mL), at rt (25 °C) under nitrogen atmosphere. ^{*b*}Isolated yield.

1. X-ray data collection, solution, refinement and the ORTEPs/crystal data:

Single crystal X-ray data for crystals of compounds **5aa**, **9ba**, **9bh**, **10al**, **10bk** and **12ag** were collected on an X-ray diffractometer using Mo-K_a ($\lambda = 0.71073$ Å) radiation after mounting on glass fibers inside a brass pin in open air. The structures were solved by direct methods and refined by full-matrix least squares method using standard procedures; absorption corrections were done using SADABS program, where applicable [(a) Sheldrick, G. M. *SADABS, Siemens Area Detector Absorption Correction*, University of Gottingen, Germany, **1996**. (b) Sheldrick, G. M. SHELX-97-A program for crystal structure solution and refinement, University of Gottingen, **1997**. (c) Sheldrick, G. M. *SHELXTL NT Crystal Structure Analysis Package*, Bruker AXS, Analytical X-ray System, WI, USA, **1999**, version 5.10]. In general, all non-hydrogen atoms were refined anisotropically; hydrogen atoms were fixed by geometry or located by a Difference Fourier map and refined isotropically.

Figure S1. ORTEP of 5aa with 30% probability of ellipsoids: *Crystal data*: C₁₇H₁₇IN₂O₂S, M = 440.29, Monoclinic, Space group $P2_{I}/c$, a = 6.2737(4), b = 18.0774(6), c = 16.6031(8)Å, V = 1734.91(15) Å³, $\beta = 112.875(8)^{\circ}$, Z = 4, $\mu = 1.976$ mm⁻¹, data/restraints/parameters: 2513/0/212, R indices (I> 2 σ \(I)): R1 = 0.0405, wR2 (all data) = 0.1204. CCDC No: 2202000

Figure S2. ORTEP of 9ba with 30% probability of ellipsoids: *Crystal data*: C₁₆H₁₆N₂O₂S, *M* = 300.37, Monoclinic, Space group *P21/n*, *a* = 11.6333(5), *b* = 11.3408(5), *c* = 11.7715(5) Å, V = 1523.13(11) Å³, $\beta = 101.2610(19)^{\circ}$, Z = 4, $\mu = 0.218$ mm⁻¹, data/restraints/parameters: 2683/0/193, R indices (I> 2 σ \(I)): R1 = 0.0464, *w*R2 (all data) = 0.1128. CCDC No: 2202001

Figure S3. ORTEP of **9bh** with 30% probability of ellipsoids: *Crystal data*: C₁₉H₂₂N₂O₂S, *M* = 342.44, Triclinic, Space group *P*-1, *a* = 8.4303(4), *b* = 10.1352(5), *c* = 11.2583(4) Å, *V* = 899.57(7) Å³, α = 80.979(4)°, β = 71.424(4)°, γ = 89.642(4)°, *Z* = 2, μ = 0.193 mm⁻¹, data/restraints/parameters: 3131/0/224, R indices (I> 2 σ \(I)): R1 = 0.0532, *w*R2 (all data) = 0.1620. CCDC No: 2202002

Figure S4. ORTEP of 10al with 30% probability of ellipsoids: *Crystal data*: C₂₂H₁₈N₂O₂S, *M* = 374.44, Monoclinic, Space group *P121/n1*, *a* = 9.2441(3), *b* = 9.3416(3), *c* = 21.8748(6) Å, V = 1884.83(10) Å³, $\beta = 93.805(3)^{\circ}$, Z = 4, $\mu = 0.191$ mm⁻¹, data/restraints/parameters: 3312/0/246, R indices (I> 2 σ \(I)): R1 = 0.0535, *w*R2 (all data) = 0.1430. CCDC No: 2202003

Figure S5. ORTEP of 10bk with 30% probability of ellipsoids: *Crystal data*: C₁₉H₁₈N₂O₂S, M = 338.41, Orthorhombic, Space group *Pna2(1)*, a = 37.1188(12), b = 7.4217(2), c = 11.9822(5) Å, V = 3300.9(2) Å³, Z = 8, $\mu = 0.210$ mm⁻¹, data/restraints/parameters: 5529/1/438, R indices (I> 2 σ \(I)): R1 = 0.0578, *w*R2 (all data) = 0.1464. CCDC No: 2202004

Figure S6. ORTEP view of **12ag** with 30% probability of ellipsoids. *Crystal data*: $C_{16}H_{16}N_2O_2S_2$, M = 332.43, Monoclinic, Space group *P121/n1*, a = 10.3674(4), b = 7.8969(3), c = 19.6001(8) Å, V = 1568.26(11) Å³, $a = 90^\circ$, $\beta = 102.228(4)^\circ$, $\gamma = 90^\circ$, Z = 4, $\mu = 0.347$ mm⁻¹, data/restraints/parameters: 2772/0/202, R indices (I> 2σ \(I)): R1 = 0.0492, *w*R2 (all data) = 0.1387. CCDC No: 2202005.

2.¹H and ¹³C{¹H} NMR spectra of all new compounds

Figure S8. $^{13}C{^{1}H}$ NMR spectrum of compound 5aa

Figure S10. ¹³C{¹H} NMR spectrum of compound 5ab

Figure S12. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 5ac

Figure S14. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 5ad

Figure S16. ¹³C{¹H} NMR spectrum of compound 5ae

Figure S18. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 5af

Figure S20. $^{13}C{^{1}H}$ NMR spectrum of compound 5ah

Figure S22. ¹³C{¹H} NMR spectrum of compound 5ai

Figure S24. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 5aj

Figure S26. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 5al

Figure S28. $^{13}C{^{1}H}$ NMR spectrum of compound 5ba

Figure S30. ¹³C{¹H} NMR spectrum of compound 5bd

Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum of compound 5bh

Figure S36. ¹³C{¹H} NMR spectrum of compound 5bi

Figure S38. ¹³C{¹H} NMR spectrum of compound 5bj

Figure S40. $^{13}C{^{1}H}$ NMR spectrum of compound 5bk

Figure S42. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 5cd

Figure S44. ${}^{13}C{}^{1}H$ NMR spectrum of compound 5cg

Figure S46. $^{13}C{^{1}H}$ NMR spectrum of compound 5dd

Figure S48. ¹³C{¹H} NMR spectrum of compound 5dg

Figure S50. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 6aa

Figure S52. ¹³C{¹H} NMR spectrum of compound 6ad

Figure S54. ¹³C{¹H} NMR spectrum of compound 6ag

Figure S56. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 7

Figure S60. $^{13}C\{^{1}H\}$ NMR spectrum of compound 9aa

Figure S62. $^{13}C{^{1}H}$ NMR spectrum of compound 9ab

Figure S64. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 9ac

Figure S66. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 9ad

Figure S68. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 9ae

Figure S70. $^{13}C{^{1}H}$ NMR spectrum of compound 9ah

Figure S72. $^{13}C\{^{1}H\}$ NMR spectrum of compound 9ai

S45

Figure S76. $^{13}C{^{1}H}$ NMR spectrum of compound 9ba

Figure S78. ¹³C{¹H} NMR spectrum of compound 9bd

Figure S80. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 9be

Figure S82. $^{13}C{^{1}H}$ NMR spectrum of compound 9bh

Figure S84. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 9bi

Figure S86. $^{13}C\{^{1}H\}$ NMR spectrum of compound 9bj

Figure S88. $^{13}C{^{1}H}$ NMR spectrum of compound 9bk

S55

Figure S96. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 10aa

Figure S98. $^{13}C{^{1}H}$ NMR spectrum of compound 10ac

Figure S100. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 10ae

Figure S102. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 10af

Figure S104. ¹³C{¹H} NMR spectrum of compound 10al

Figure S106. $^{13}C{^{1}H}$ NMR spectrum of compound 10ba

Figure S108. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10bd

Figure S110. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 10bj

Figure S112. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10bk

Figure S114. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10cd

Figure S116. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10cg

Figure S118. ${}^{13}C{}^{1}H$ NMR spectrum of compound 10dd

Figure S120. $^{13}C{^{1}H}$ NMR spectrum of compound 10dg

Figure S122. ${}^{13}C{}^{1}H$ NMR spectrum of compound 11

Figure S124. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 12aa

Figure S126. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 12ad

Figure S128. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 12ag
Display Report

Figure S129. HRMS (ESI) of compound 5af

Figure S131. HRMS (ESI) of compound 9bi

Figure S132. HRMS (ESI) of compound 12aa

Figure S133. HRMS (ESI) of compound 12ad

References

- Sandeep, K.; Reddy, A. S.; Swamy, K. C. K. Cu(I) catalysed annulation of isothiocyanates/isocyanates with 2-iodo-sulfonamides: synthesis of benzodithiazines, benzothiadiazinones, benzothiazinylidene-anilines and benzothiazolylidene-anilines. *Org. Biomol. Chem.* 2019, 17, 6880 (and references cited therein).
- Barange, D. K.; Kavala, V.; Kuo, C. -W.; Wang, C.-C.; Rajawinslin, R. R.; Donala, J.;
 Yao, C. -Fa. Regioselective synthesis of thiophene fused sultam derivatives via iodocyclization approach and their application towards triazole linker. *Tetrahedron Lett.* 2014, *70*, 7598.
- (3) Merlic, C. A.; You, Y.; McInnes, D. M.; Zechman, A. L.; Miller, M. M.; Deng, Q. Benzannulation reactions of Fischer carbene complexes for the synthesis of indolocarbazole. *Tetrahedron* 2001, *57*, 5199.