Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Electrocatalytic Three-Component Synthesis of 4-Halopyrazoles with Sodium Halide as Halogen Source

Jin-Yang Chen^{a,b}, Hong-Xia Li^b, Si-Yu Mu^b, Hai-Yang Song^b, Zhi-Lin Wu^b, Tian-Bao Yang^b, Jun Jiang^b, Wei-Min He^{b,*} ^aPostdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Uni versity of South China, Hengyang 421001, China ^bSchool of Chemistry and Chemical Engineering, University of South China, Hengyang 4 21001, China

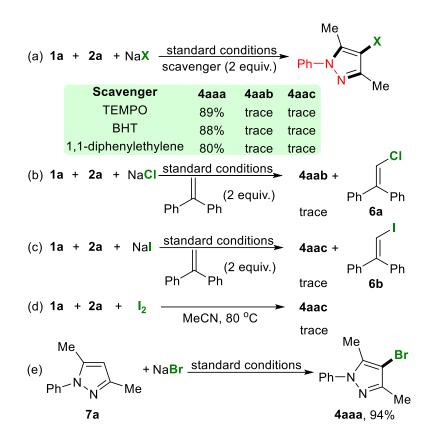
Table of Content

1. General information	S2
2. Experimental Section	S3
3. Characterization data of products	
4. References	
5. ¹ H and ¹³ C NMR spectra of products	S14

1. General Information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). The anode electrode is graphite (15 mm × 10 mm × 2 mm) and cathode electrode is platinum electrode (15 mm × 10 mm × 0.1 mm). The instrument for cyclic voltammetrys is CHI 660E potentiostat, and the conditions are as follow: a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl (0.1 M in CH₃CN) as counter and reference electrode. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. ¹H NMR spectra were recorded at 500 MHz, ¹³C NMR spectra were recorded at 125 MHz and ¹⁹F NMR spectra were recorded at 471 MHz by using a Bruker Avance 500 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹ H NMR: CDCl₃ 7.26 ppm, ¹³C NMR: CDCl₃ 77.0 ppm), the chemical shifts (δ) were expressed in ppm and J values were given in Hz. HRMS were performed on a spectrometer operating on ESI-TOF.

2. Experimental Section


Table S1. Optimization of the reaction conditions

PhNHNH ₂ +	Me Me	+ Na Br - ; (Pt (-) I C (+), I = 8 mA CH ₃ CN (6 mL), r.t., 10 h undivided cell
1a	2a	3a	4aaa

Entry	Variation from the standard reaction conditions	Yield ^b 96%	
1	None		
2	C(+) C(-) instead of C(+) Pt (-)	76%	
3	C(+) Cu(-) instead of C(+) Pt (-)	80%	
4	C(+) Ni(-) instead of C(+) Pt (-)	31%	
5	Pt(+) Pt(-) instead of C(+) Pt (-)	89%	
6	Pt(+) Mg(-) instead of C(+) Pt (-)	79%	
7	Pt(+) Fe(-) instead of C(+) Pt (-)	72%	
8	Pt(+) Zn (-) instead of C(+) Pt (-)	86%	
9	NH₄Br instead of NaBr	90%	
10	TBAB instead of NaBr	73%	
11	NBS instead of NaBr	76%	
12	MgBr ₂ instead of NaBr	44%	
13	CsBr instead of NaBr	51%	
14	EtOH instead of MeCN	79%	
15	DMF instead of MeCN	23%	
16	DMSO instead of MeCN	36%	
17	DCE instead of MeCN	trace	
18	THF instead of MeCN	trace	
19	1.0 equiv. of NaBr	84%	
20	4 mL MeCN instead of 6 ml	93%	
21	5 mA, 10 h instead of 8 mA, 10 h	56%	
22	15 mA, 4 h instead of 8 mA, 10 h	78%	
23	Without electric current	$N.D.^{c}$	

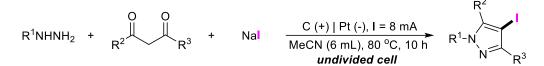
^{*a*}Conditions: C (15 mm × 10 mm × 2 mm) as the anode, Pt (15 mm × 10 mm × 0.1 mm) as the cathode, constant current = 8 mA, **1a** (0.5 mmol), **2a** (0.5 mmol), **3** (1 mmol), MeCN (6 mL), room temperature, in air, 10 h, undivided cell; ^{*b*} GC yields using dodecane as an internal reference. ^{*c*} No desired product.

Scheme S1 Control Experiments

2.1 General experimental procedure A for Compounds 4aaa-4aca

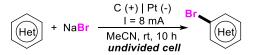
$$R^{1}NHNH_{2} + R^{2} + R^{3} + NaBr \xrightarrow{C (+) | Pt (-), I = 8 mA}{MeCN (6 mL), rt, 10 h} R^{1} - N R^{3}$$

In an undivided three-necked flask (25 mL) equipped with a stir bar, hydrazine (0.5 mmol), diacetone (0.5 mmol), NaBr (1.0 mmol) and MeCN (6 mL) were added. The flask was equipped with platinum electrode (15 mm \times 10 mm \times 0.1 mm) as cathode, graphite (15 mm \times 10 mm \times 2 mm) as the anode. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA under room temperature for 10 h. After completion, the solvent was concentrated under reduced pressure, and the pure products **4aaa-4aca** were obtained by flash chromatography on silica gel.

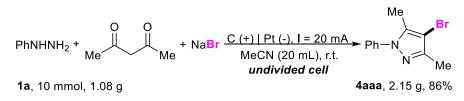

2.2 General experimental procedure B for Compounds 4aab-4bab

$$R^{1}NHNH_{2}$$
 + R^{2} + R^{3} + $NaCl$ $C (+) | Pt (-), l = 8 mA$
 $MeCN (6 mL), 80 °C, 10 h$
 $undivided cell$ $R^{1}-N$ R^{3}

In an undivided three-necked flask (25 mL) equipped with a stir bar, hydrazine (0.5 mmol), diacetone (0.5 mmol), NaCl (1.0 mmol) and MeCN (6 mL) were added. The flask was equipped with platinum electrode (15 mm \times 10 mm \times 0.1 mm) as cathode, graphite (15 mm \times 10 mm \times 2 mm) as the anode. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA


under 80 °C for 10 h. After completion, the solvent was concentrated under reduced pressure, and the pure products **4aab-4bab** were obtained by flash chromatography on silica gel.

2.3 General experimental procedure C for Compound 4aac


In an undivided three-necked flask (25 mL) equipped with a stir bar, hydrazine (0.5 mmol), diacetone (0.5 mmol), NaI (2.0 mmol) and MeCN (6 mL) were added. The flask was equipped with platinum electrode (15 mm \times 10 mm \times 0.1 mm) as cathode, graphite (15 mm \times 10 mm \times 2 mm) as the anode. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA under 80 °C for 10 h. After completion, the solvent was concentrated under reduced pressure, and the pure product **4aac** was obtained by flash chromatography on silica gel.

2.4 General experimental procedure D for Compounds 5aa-6da

In an undivided three-necked flask (25 mL) equipped with a stir bar, aromatic heterocycles (0.5 mmol), NaBr (1.0 mmol) and MeCN (6 mL) were added. The flask was equipped with platinum electrode (15 mm \times 10 mm \times 0.1 mm) as cathode, graphite (15 mm \times 10 mm \times 2 mm) as the anode. The reaction mixture was stirred and electrolyzed at a constant current of 8 mA for 10 h. After completion, the solvent was concentrated under reduced pressure, and the pure products **5aa-6da** were obtained by flash chromatography on silica gel.

2.5 Large-scale synthesis of 4aaa

In an undivided three-necked flask (25 mL) equipped with a stir bar, hydrazine (10 mmol), diacetone (10 mmol), NaBr (20 mmol) and MeCN (20 mL) were added. The flask was equipped with platinum electrode (15 mm \times 10 mm \times 0.1 mm) as cathode, graphite (15 mm \times 10 mm \times 2 mm) as the anode. The reaction mixture was stirred and electrolyzed at a constant current of 20 mA under room temperature for 72 h. After completion, the solvent was concentrated under reduced pressure, and the pure product **4aaa** was obtained by flash chromatography on silica gel in the yield of 86%.

2.6 Cyclic voltammetry experiment:

CV measurements were performed on a CHI 660E potentiostat, and the conditions are as follow: a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl (0.1 M in CH₃CN) as counter and reference electrode. Cyclic voltammograms of reactants and their mixtures in 0.1 M Bu₄NBF₄/CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl (0.1 M in CH₃CN) as counter and reference electrode at 50 mV/s scan rate: a) NaBr (20 mmol/L), b) NaCl (20 mmol/L), MeCN (9.5 mL), H₂O (0.5 mL), c) NaI (20 mmol/L), d) **7a** (20 mmol/L).

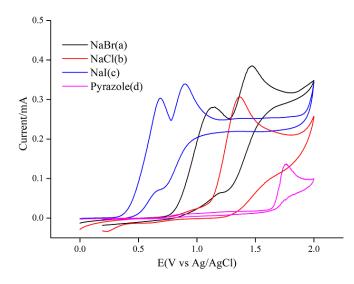
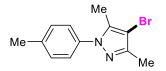
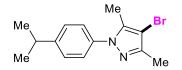
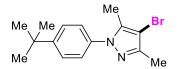
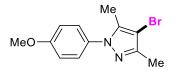
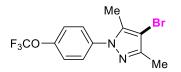



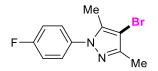
Figure S1 Cyclic voltammetry experiment

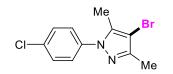

3. Characterization data of products 4aaa-4iab and 5aa-6da

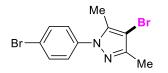

4-bromo-3,5-dimethyl-1-phenyl-1H-pyrazole (4aaa)^[1]: ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 7.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 3H), 2.22 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 146.50, 138.72, 136.45, 128.13, 126.77, 123.60, 95.33, 11.34, 10.73.

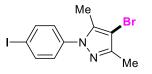

4-bromo-3,5-dimethyl-1-(p-tolyl)-1H-pyrazole (4baa): ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.23 (m, 4H), 2.39 (s, 3H), 2.29 (s, 3H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.27, 137.80, 137.47, 137.39, 129.72, 124.59, 96.03, 21.13, 12.38, 11.69; HRMS: calcd for C₁₂H₁₄BrN₂ [M+H]⁺ 265.0340, found 265.0344.


4-bromo-1-(4-isopropylphenyl)-3,5-dimethyl-1H-pyrazole (4caa): ¹³C NMR (500 MHz, CDCl₃) δ 7.30 (s, 4H), 2.97-2.94 (m, 1H), 2.29 (s, 6H), 1.27 (s, 3H), 1.26 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.74, 147.26, 137.59, 137.45, 127.14, 124.66, 95.98, 33.84, 23.97, 12.38, 11.70; HRMS: calcd for C₁₄H₁₈BrN₂ [M+H]⁺ 293.0653, found 293.0651.

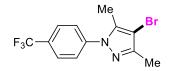

4-bromo-1-(4-(tert-butyl)phenyl)-3,5-dimethyl-1H-pyrazole (4daa): ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 2.29 (s, 6H), 1.34 (s, 9H); ¹³C NMR (500 MHz, CDCl₃) δ 150.94, 147.25, 137.41, 137.29, 126.07, 124.27, 96.03, 34.69, 31.34, 12.40, 11.72; HRMS: calcd for C₁₅H₂₀BrN₂ [M+H]⁺ 307.0810, found 307.0813.


4-bromo-1-(4-methoxyphenyl)-3,5-dimethyl-1H-pyrazole (4eaa)^[2]: ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, *J* = 8.5 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 2H), 3.84 (s, 3H), 2.28 (s, 3H), 2.24 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.18, 147.12, 137.66, 132.95, 126.31, 114.28, 95.65, 55.57, 12.34, 11.53.

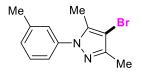

4-bromo-3,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-pyrazole (4faa): ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 2.32 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.26, 148.10, 138.28, 137.56, 125.88, 121.73, 120.42 (q, $J_{C-F} = 258.3$ Hz), 96.93, 12.31, 11.74; ¹⁹F NMR (471 MHz, CDCl₃) δ -58.02; HRMS: calcd for C₁₂H₁₁BrF₃N₂O [M+H]⁺ 335.0007, found 335.0004.


4-bromo-1-(4-fluorophenyl)-3,5-dimethyl-1H-pyrazole (4gaa): ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.36 (m, 2H), 7.17-7.14 (m, 2H), 2.29 (s, 3H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161. 91 (d, $J_{C-F} = 248.5$ Hz, 2H), 147.70, 137.64, 135.96, 126.64 (d, $J_{C-F} = 1.1$ Hz), 116.21 (d, $J_{C-F} = 23.1$ Hz), 96.37, 12.36, 11.65; ¹⁹F NMR (471 MHz, CDCl₃) δ -113.39; HRMS: calcd for C₁₁H₁₁BrFN₂ [M+H]⁺ 269.0090, found 269.0088.

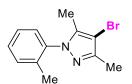
4-bromo-1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazole (4haa) ^[3]: ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.45 (m, 2H), 7.41-7.36 (m, 2H), 2.30 (s, 3H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.58, 139.82, 137.52, 129.19, 127.83, 124.69, 96.38, 12.39, 11.78.

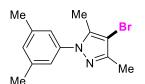


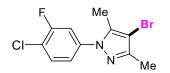
4-bromo-1-(4-bromophenyl)-3,5-dimethyl-1H-pyrazole (4iaa): ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 2.30 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.05, 138.83, 137.47, 132.32, 125.96, 121.40, 96.96, 12.40, 11.86; HRMS: calcd for C₁₁H₁₁Br₂N₂ [M+H]⁺ 328.9289, found 328.9291.

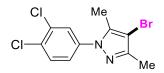


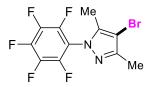
4-bromo-1-(4-iodophenyl)-3,5-dimethyl-1H-pyrazole (4jaa): ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz,

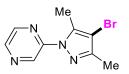

CDCl₃) δ 148.11, 139.52, 138.30, 137.45, 126.14, 97.02, 92.63, 12.40, 11.88; HRMS: calcd for C₁₁H₁₁BrIN₂ [M+H]⁺ 376.9150, found 376.9142.

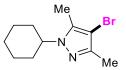

4-bromo-3,5-dimethyl-1-(4-(trifluoromethyl)phenyl)-1H-pyrazole (4kaa): ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 2.36 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.62, 142.56, 137.58, 129.44 (d, $J_{C-F} = 33.0$ Hz), 126.41(d, $J_{C-F} = 3.8$ Hz), 124.17, 123.80 (d, $J_{C-F} = 274.8$ Hz), 97.75, 12.38, 12.05; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.46; HRMS: calcd for C₁₂H₁₁BrF₃N₂ [M+H]⁺ 319.0058, found 319.0064.


4-bromo-3,5-dimethyl-1-(m-tolyl)-1H-pyrazole (4laa): ¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 8.0 Hz, 1H), 7.24 (s, 1H), 7.17 (t, J = 8.0 Hz, 2H), 2.40 (s, 3H), 2.29 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 147.39, 139.73, 139.38, 137.47, 128.86, 128.61, 125.41, 121.63, 96.22, 21.37, 12.39, 11.77; HRMS: calcd for C₁₂H₁₄BrN₂ [M+H]⁺ 265.0340, found 265.0344.


4-bromo-3,5-dimethyl-1-(o-tolyl)-1H-pyrazole (4maa):¹H NMR (500 MHz, CDCl₃) δ 7.36-7.30 (m, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 7.5 Hz, 1H), 2.29 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.07, 138.61, 138.44, 136.08, 131.01, 129.38, 127.79, 126.64, 94.54, 17.26, 12.43, 10.72; HRMS: calcd for C₁₂H₁₄BrN₂ [M+H]⁺ 265.0340, found 265.0344.

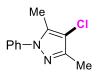

4-bromo-1-(3,5-dimethylphenyl)-3,5-dimethyl-1H-pyrazole (4naa): ¹H NMR (500 MHz, CDCl₃) δ 7.00 (s, 3H), 2.35 (s, 6H), 2.29 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 147.22, 139.67, 138.98, 137.43, 129.52, 122.45, 96.03, 21.27, 12.38, 11.76; HRMS: calcd for C₁₃H₁₆BrN₂ [M+H]⁺ 279.0473, found 279.0478.

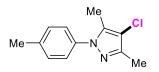

4-bromo-1-(3-chloro-4-fluorophenyl)-3,5-dimethyl-1H-pyrazole (40aa): ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 6.5 Hz, 1H), 7.28 (t, J = 8.5 Hz, 1H), 7.23 (t, J = 8.5 Hz, 1H), 2.30 (s, 3H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.38 (d, $J_{C-F} = 251.0$ Hz), 148.23, 137.66, 136.36 (d, $J_{C-F} = 0.4$ Hz), 127.04, 124.22 (d, $J_{C-F} = 7.4$ Hz), 121.77(d, $J_{C-F} = 19.0$ Hz), 116.92 (d, $J_{C-F} = 22.7$ Hz), 97.01, 12.35, 11.75; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.76-115.80 (m, 1F); HRMS: calcd for C₁₁H₁₀BrClFN₂ [M+H]⁺ 302.9700, found 302.9767.

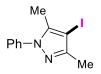

4-bromo-1-(3,4-dichlorophenyl)-3,5-dimethyl-1H-pyrazole (4paa): ¹H NMR (500 MHz, CDCl₃) δ 7.58 (s, 1H), 7.53 (d, *J* = 8.5 Hz, 1H), 7.27 (d, *J* = 5.5 Hz, 1H), 2.33 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.52, 139.01, 137.59, 133.25, 131.76, 130.76, 126.20, 123.30, 97.48, 12.38, 11.94; HRMS: calcd for C₁₁H₁₀BrCl₂N₂ [M+H]⁺ 318.9404, found 318.9401.

4-bromo-3,5-dimethyl-1-(perfluorophenyl)-1H-pyrazole (4qaa): ¹H NMR (500 MHz, CDCl₃) δ 2.30 (s, 3H), 2.17 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.52, 145.0-144.9 (m), 143.08-142.87 (m), 140.29, 139.03-138.77 (m), 136.99-136.79 (m), 96.86, 12.55, 10.37; ¹⁹F NMR (471 MHz, CDCl₃) δ -145.05--145.09 (m), -151.1--151.20 (m), -160.4--160.52 (m); HRMS: calcd for $C_{11}H_7BrF_5N_2$ [M+H]⁺ 340.9713, found 340.9710.


2-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)pyrazine (4raa): ¹H NMR (500 MHz, CDCl₃) δ 9.23 (s, 1H), 8.45 (s, 1H), 8.35 (s, 1H), 2.66 (s, 3H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.76, 149.41, 141.19, 141.11, 139.77, 138.01, 99.92, 13.55, 12.61; HRMS: calcd for C₉H₁₀BrN₄ [M+H]⁺ 253.0089, found 253.0092.


4-bromo-1-cyclohexyl-3,5-dimethyl-1H-pyrazole (4saa): ¹H NMR (500 MHz, CDCl₃) δ 3.90 (t, *J* = 10.5 Hz, 1H), 2.23 (s, 3H), 2.21 (s, 3H), 1.92-1.86 (m, 6H), 1.69 (t, *J* = 7.0 Hz, 1H), 1.38-1.25 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.30, 135.83, 93.59, 58.46, 32.65, 25.75, 25.15, 12.38, 10.26; HRMS: calcd for C₁₁H₁₈BrN₂ [M+H]⁺ 257.0653, found 257.0658.


4-bromo-3,5-diethyl-1-phenyl-1H-pyrazole (4aba): ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.38 (m, 3H), 7.33-7.32 (m, 2H), 2.64-2.60 (m, 4H), 1.22 (t, *J* = 7.5 Hz, 3H), 1.04 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 151.42, 141.91, 138.90, 128.17, 127.08, 124.27, 93.32, 19.39, 17.64, 11.98, 11.88; HRMS: calcd for C₁₃H₁₆BrN₂ [M+H]⁺ 279.0497, found 279.0495.


4-bromo-3-cyclopropyl-5-methyl-1-phenyl-1H-pyrazole (4aca): ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.35 (t, J = 8.0 Hz, 1H), 2.28 (s, 3H), 1.80-1.74 (m, 1H), 0.87 (d, J = 8.0 Hz, 2H), 0.71 (d, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 147.76, 140.71, 139.94, 128.87, 127.52, 124.69, 96.62, 12.37, 6.98, 6.93; HRMS: calcd for C₁₃H₁₄BrN₂ [M+H]⁺ 277.0340, found 277.0346.

4-chloro-3,5-dimethyl-1-phenyl-1H-pyrazole (4aab)^[2]: ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.45 (m, 2H), 7.41-7.37 (m, 3H), 2.30 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 146.07, 139.75, 135.73, 129.20, 127.75, 124.56, 109.82, 11.44, 10.86.

4-chloro-3,5-dimethyl-1-(p-tolyl)-1H-pyrazole (4bab): ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.26 (m, 4H), 2.40 (s, 3H), 2.29 (s, 3H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.77, 137.74, 137.30, 135.71, 129.73, 124.50, 109.47, 21.13, 11.43, 10.78; HRMS: calcd for C₁₂H₁₄ClN₂ [M+H]⁺ 221.0846, found 221.0849.

3-cyclopropyl-5-methyl-1-phenyl-4-thiocyanato-1H-pyrazole (4aac)^[1]: ¹H NMR (500 MHz, CDCl₃) δ 7.45 (t, *J* = 7.5 Hz, 2H), 7.39-7.35 (m, 3H), 2.33 (s, 3H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.76, 140.89, 139.89, 129.18, 127.92, 124.80, 65.41, 14.18, 13.51.

5-bromopyridin-2-amine (5aa)^[4]: ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 2.5 Hz, 1 H), 7.36 (dd, *J*₁ = 7.5 Hz, *J*₂ = 2.5 Hz, 1H), 6.50 (d, *J* = 7.5 Hz, 1H), 3.53 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.05, 148.71, 140.14, 110.07, 108.31.

3-bromo-1-methylpyridin-2(1H)-one (5ba)^[5]: ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.49 (d, *J* = 8.5 Hz, 1 H), 6.41 (d, *J* = 8.5 Hz, 1H), 4.53 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.53, 142.58, 138.14, 121.90, 97.67, 37.74.

3-bromo-1-methylquinolin-4(1H)-one (5ca)^[6]: ¹H NMR (500 MHz, CDCl₃) δ 8.55 (d, *J* = 2.0 Hz, 1H), 7.93 (s, 1H), 7.76 (dd, *J*₁ = 7.0 Hz, *J*₂ = 2.0 Hz, 1H), 7.28 (d, *J* = 7.0 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.44, 143.92, 138.58, 135.40, 129.93, 126.48, 118.35, 117.34, 105.47, 40.92.

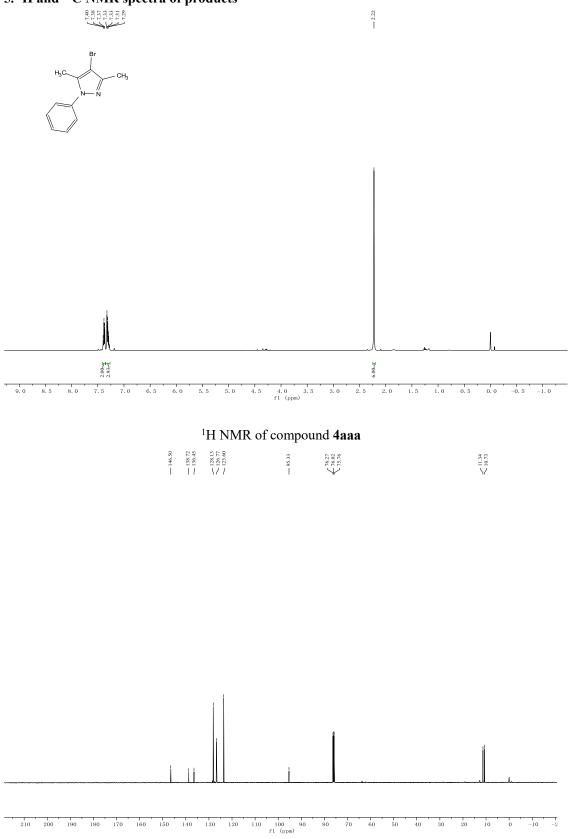
2,3-dibromo-1-methyl-1H-indene (5da)^[7]: ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 1H), 7.28-7.23 (m, 2H), 7.17 (t, *J* = 8.0 Hz, 1H,), 3.78 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 136.34, 126.96, 122.90, 120.80, 118.87, 114.90, 109.62, 92.68, 32.36.

4. References

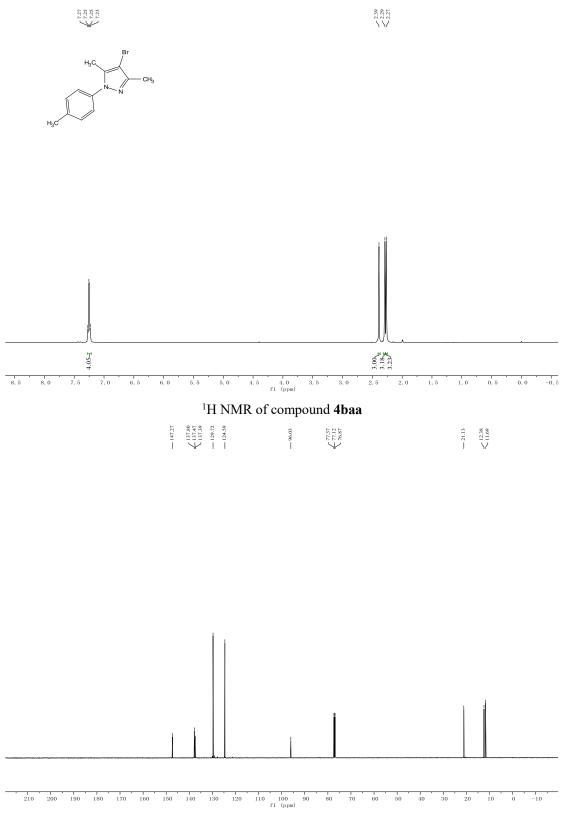
[1] Bondarenko, O. B.; Karetnikov, G. L.; Komarov, A. I.; Pavlov, A. I.; Nikolaeva, S. N. Journal of Organic Chemistry, **2021**, *86*, 322.

[2] Zhao, Z.-G.; Wang, Z.-X. Synthetic Communications, 2007, 37, 137.

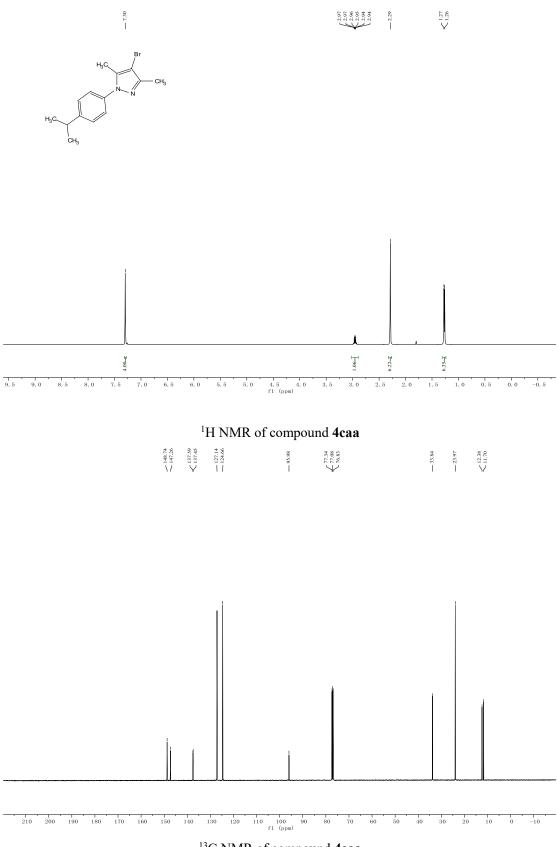
[3] Alinezhad, H.; Tajbakhsh, M.; Zare, M. Journal of the Mexican Chemical Society, 2011, 55, 238.

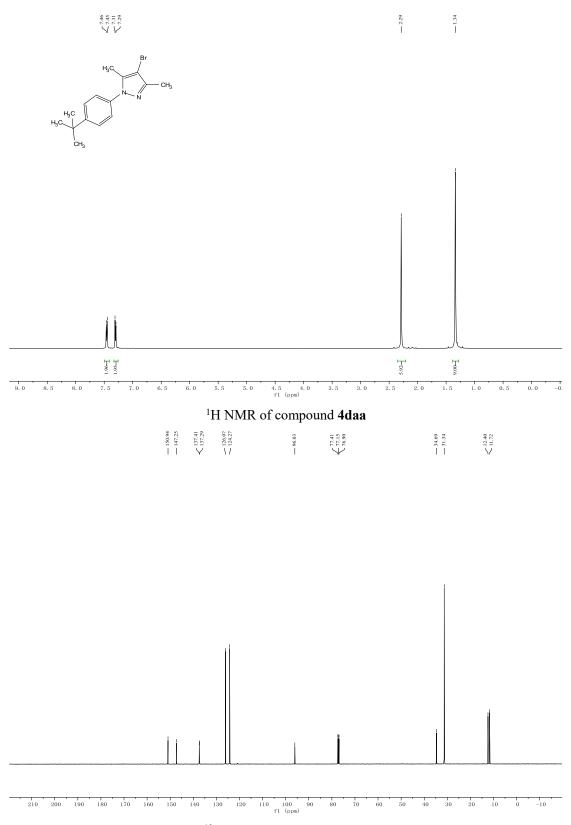

[4] Hanthorn, Jason J.; Valgimigli, Luca; Pratt, Derek A. *Journal of Organic Chemistry*, **2012**, *77*, 6908-6916.

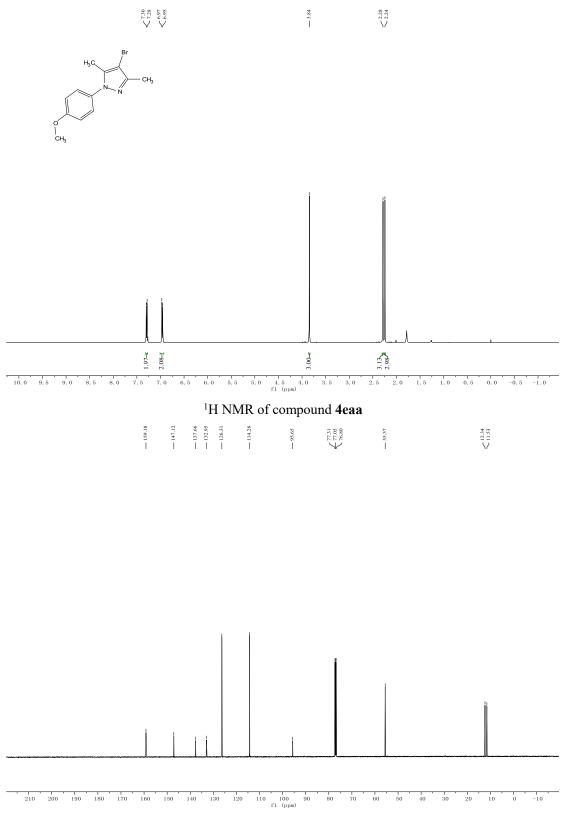
[5] Schwertz, G.; Witschel, M. C.; Rottmann, M.; Bonnert, R.; Leartsakulpanich, U.; Chitnumsub,
P.; Jaruwat, A.; Ittarat, W.; Schafer, A.; Aponte, R. A.; Charman, S. A.; White, K. L.; Kundu, A.;
Sadhukhan, S.; Lloyd, M.; Freiberg, G. M.; Srikumaran, M.; Siggel, M.; Zwyssig, A.; Chaiyen, P.;
Diederich, F. *Journal of Medicinal Chemistry*, **2017**, *60*, 4840-4860.

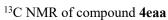

[6] Audisio, D.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Journal of Organic Chemistry, 2011, 7, 4995-5005.

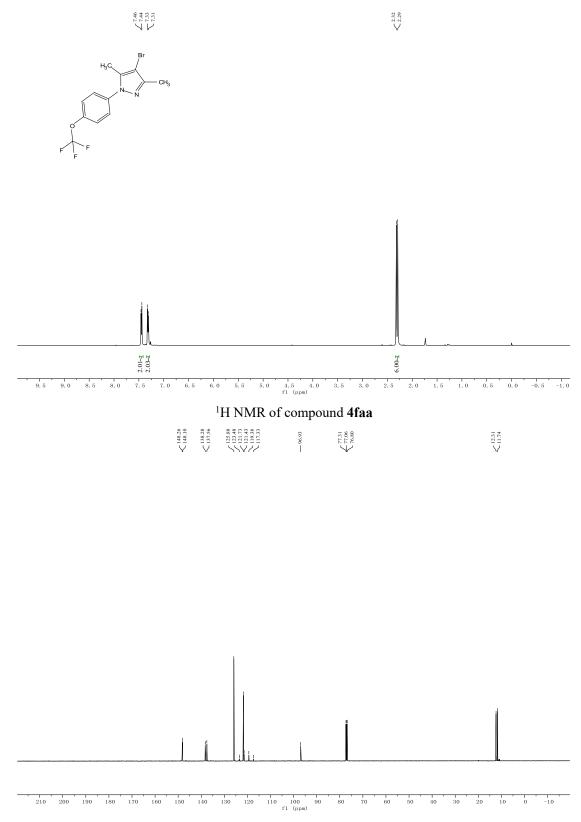
[7] Chelucci, G.; Pinna, G. A.; Pinna, G. European Journal of Organic Chemistry, 2014, (18), 3802-3807.



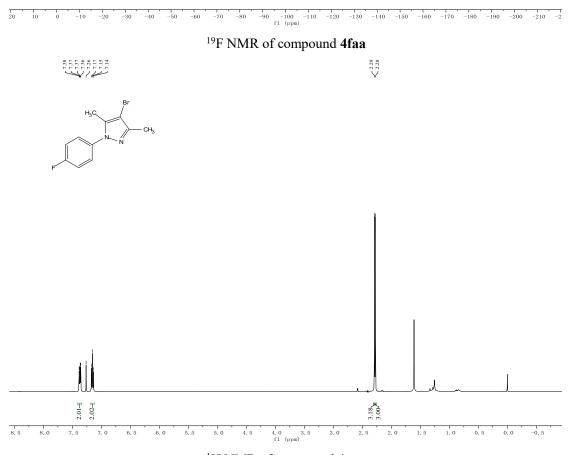

¹³C NMR of compound 4aaa

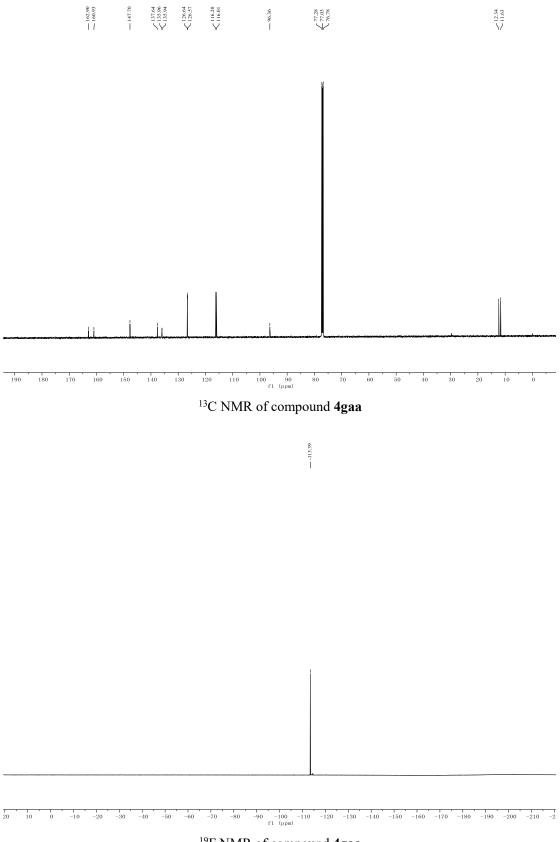

¹³C NMR of compound **4baa**

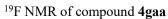


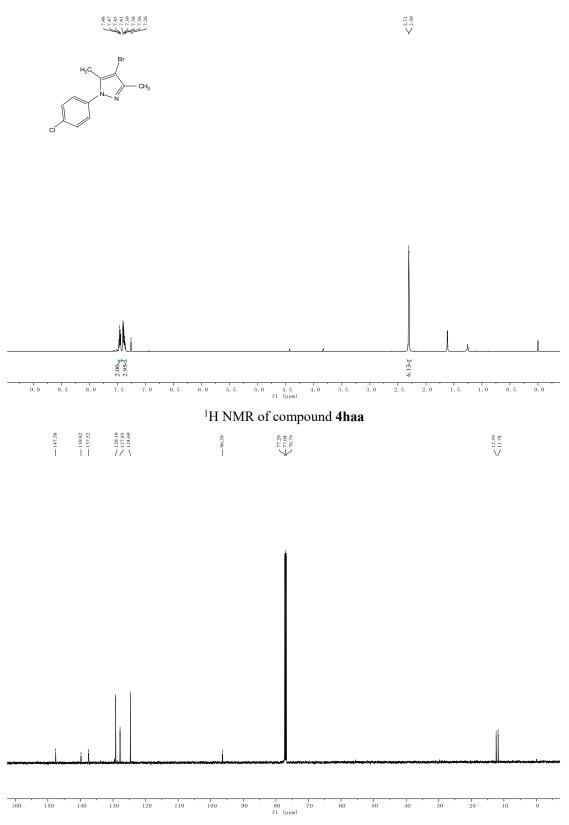

¹³C NMR of compound **4caa**

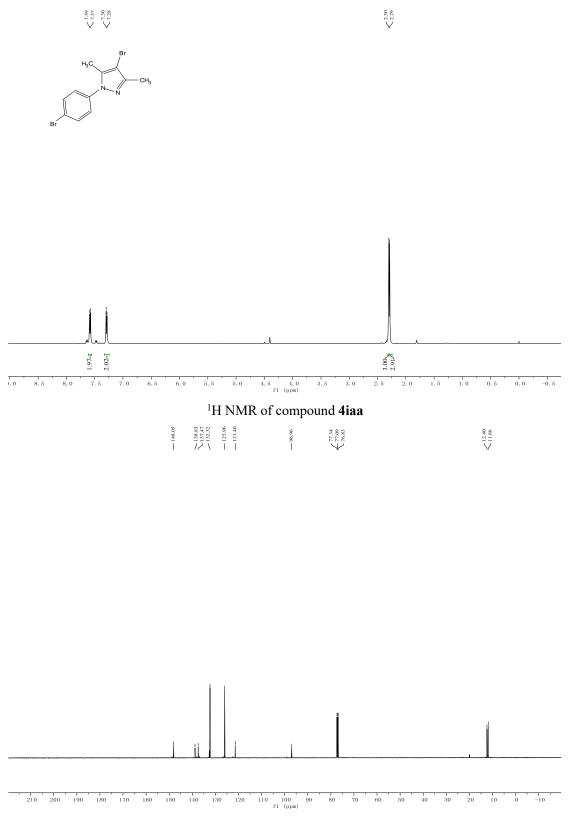
¹³C NMR of compound 4daa

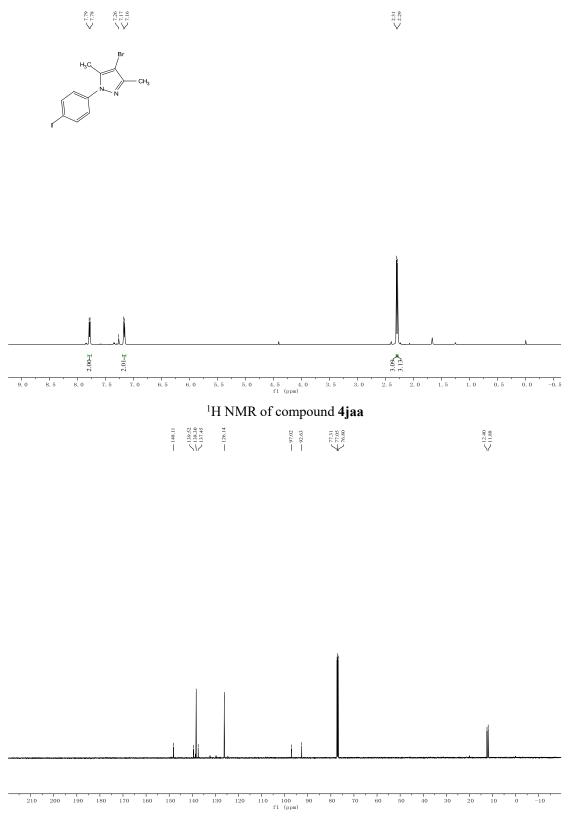


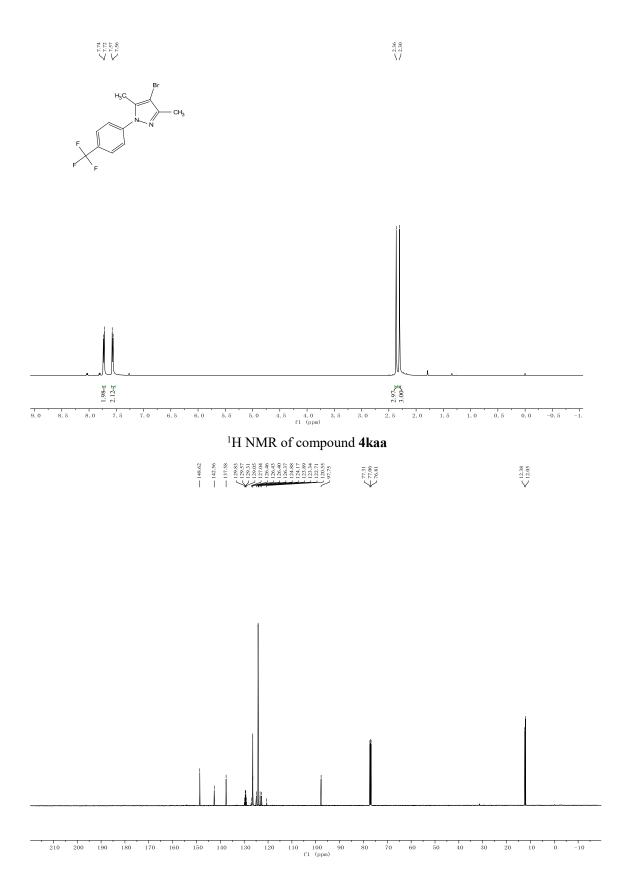

¹³C NMR of compound **4faa**

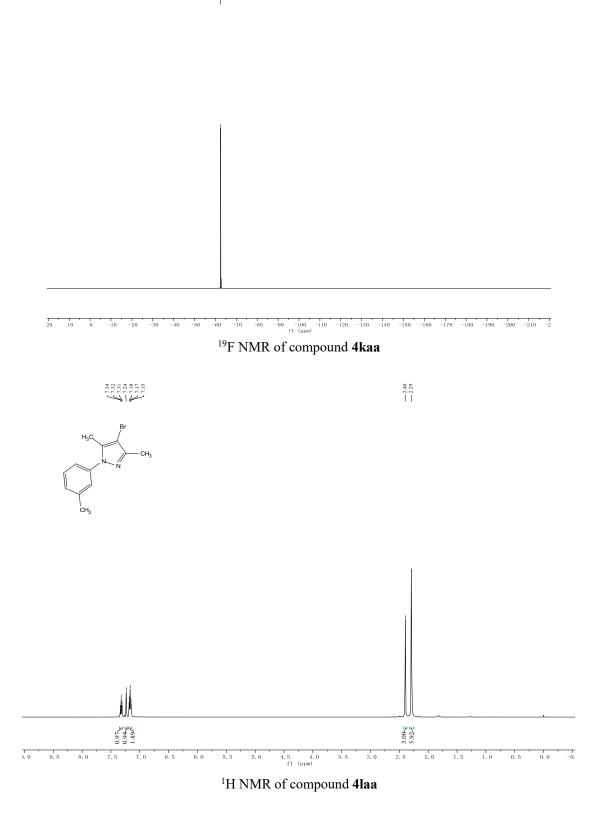


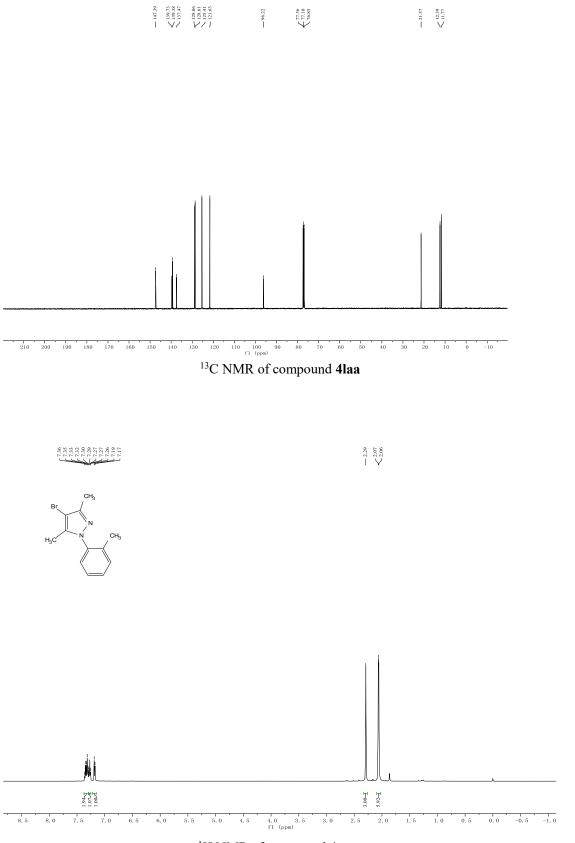

0 -10 -20

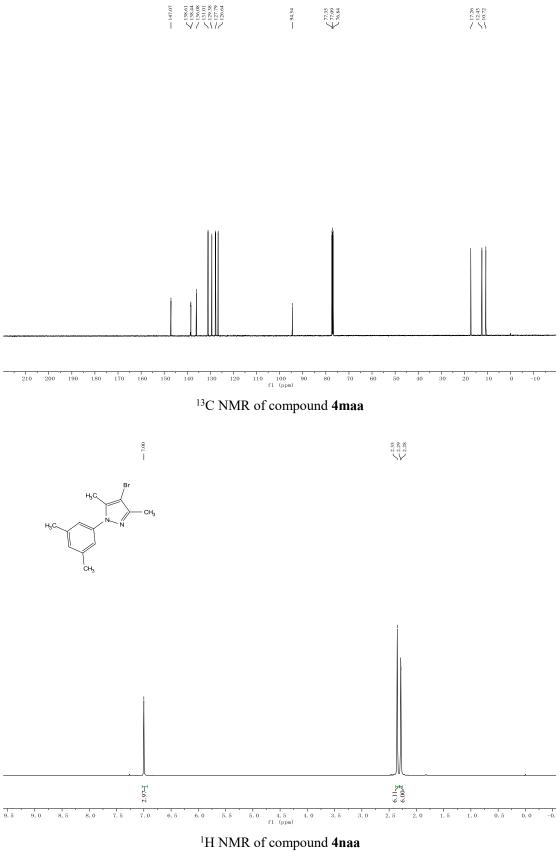

¹H NMR of compound 4gaa

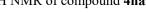


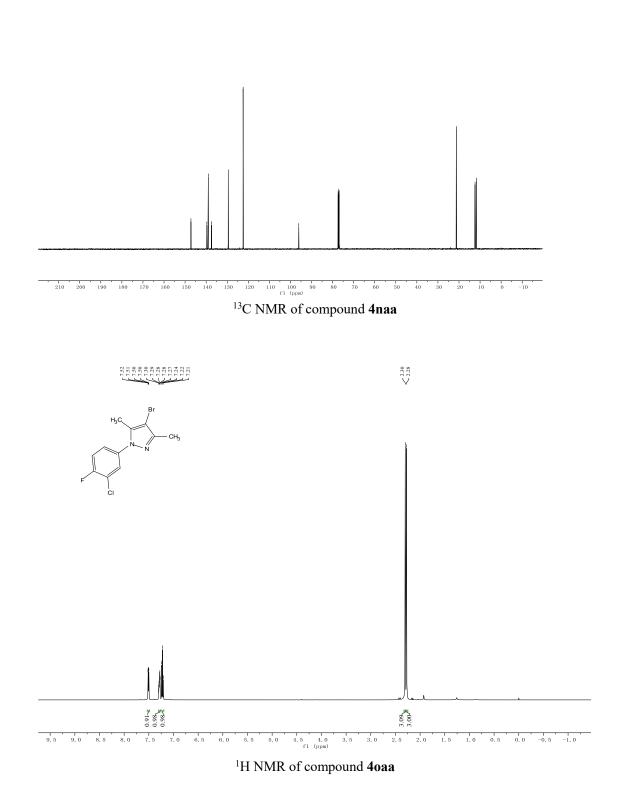

¹³C NMR of compound **4haa**


¹³C NMR of compound **4iaa**

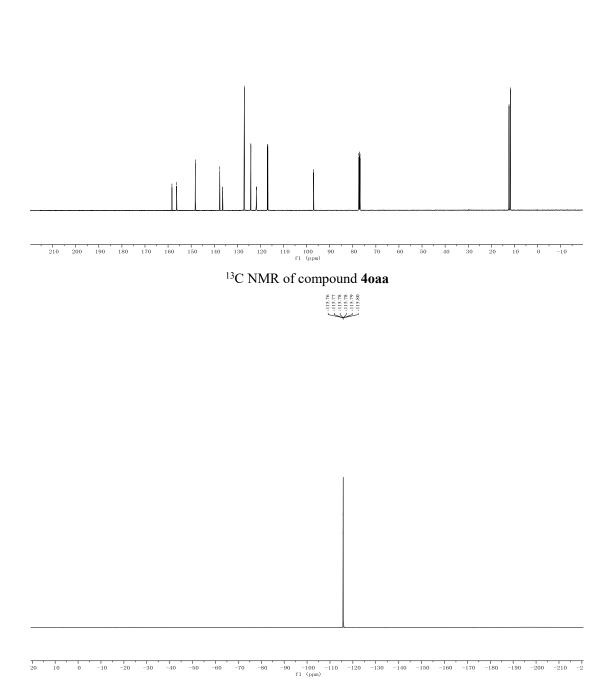

¹³C NMR of compound **4jaa**

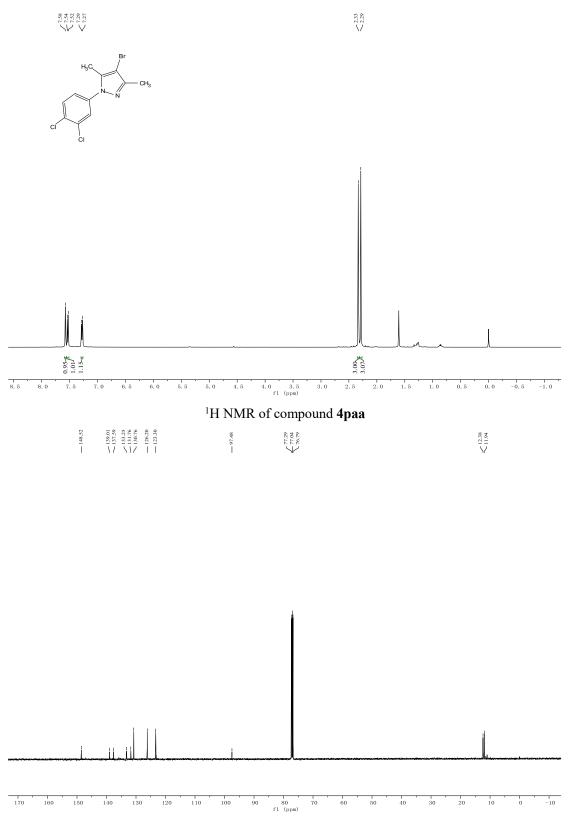

¹³C NMR of compound 4kaa

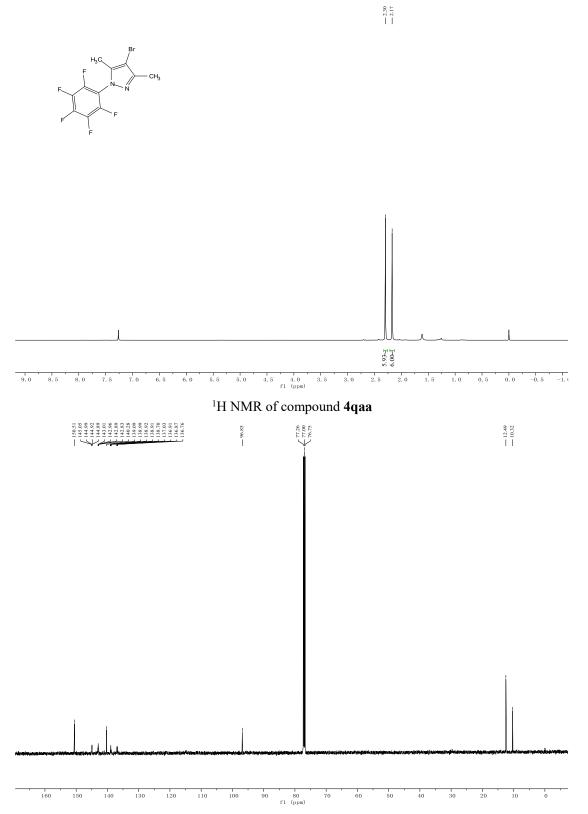


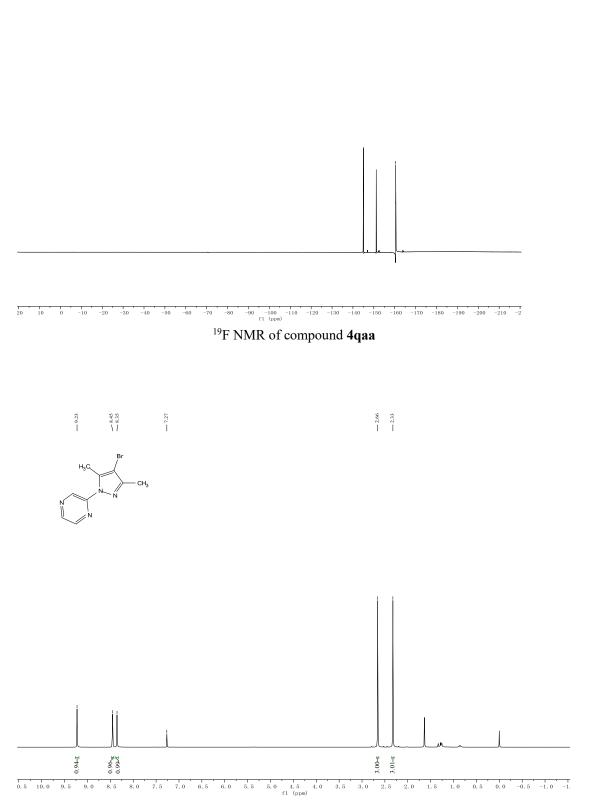


¹H NMR of compound **4maa**

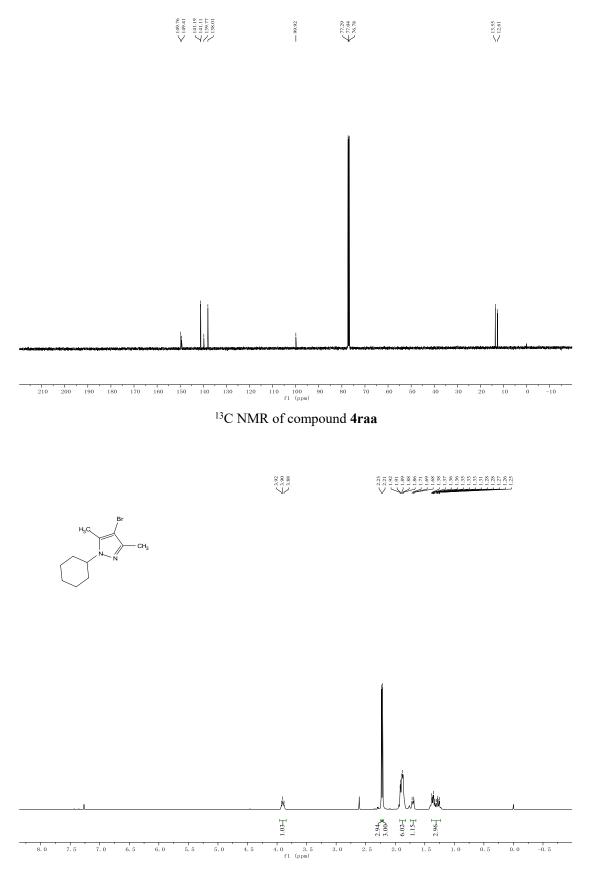




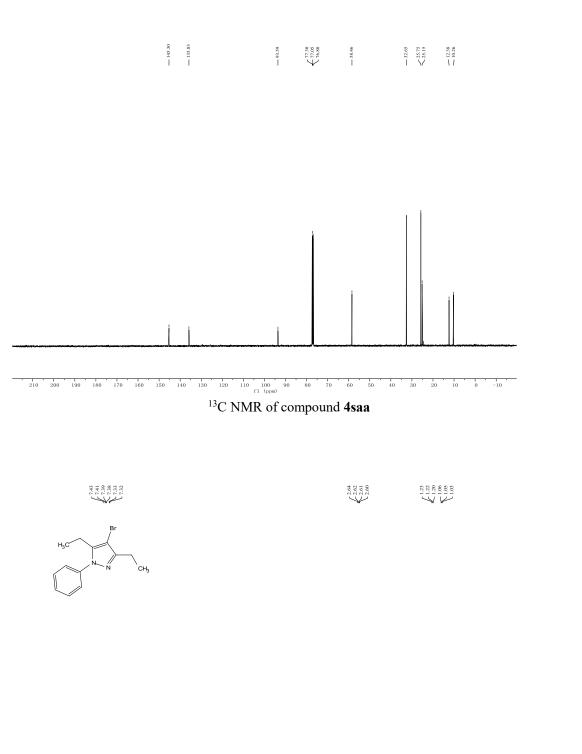


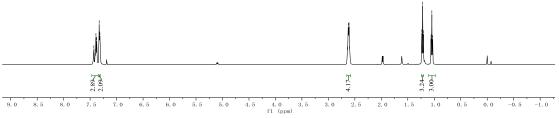

¹⁹F NMR of compound 40aa

¹³C NMR of compound **4paa**

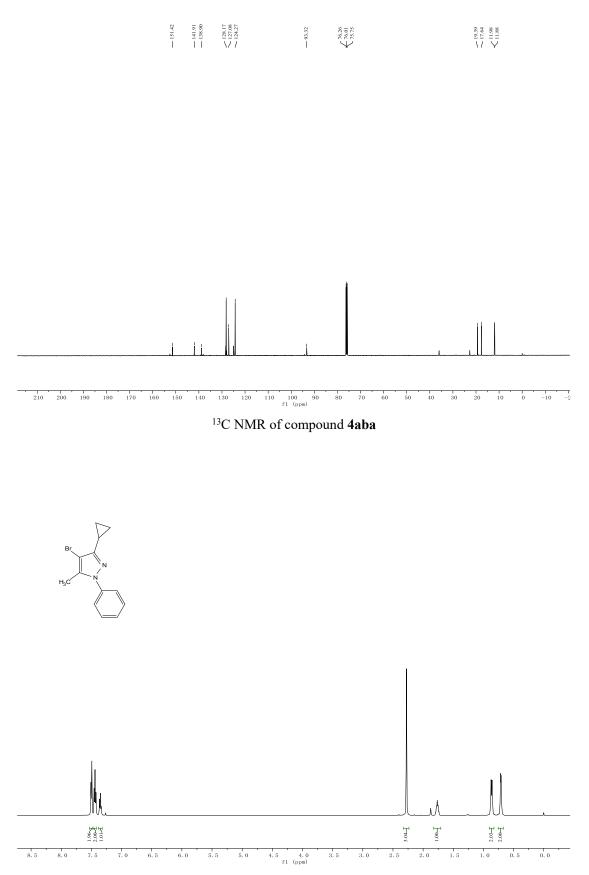


¹³C NMR of compound **4qaa**

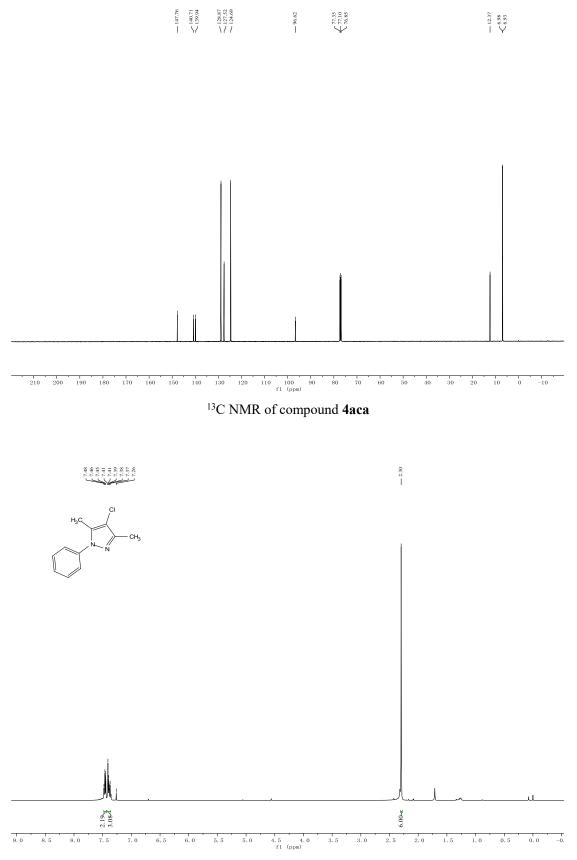


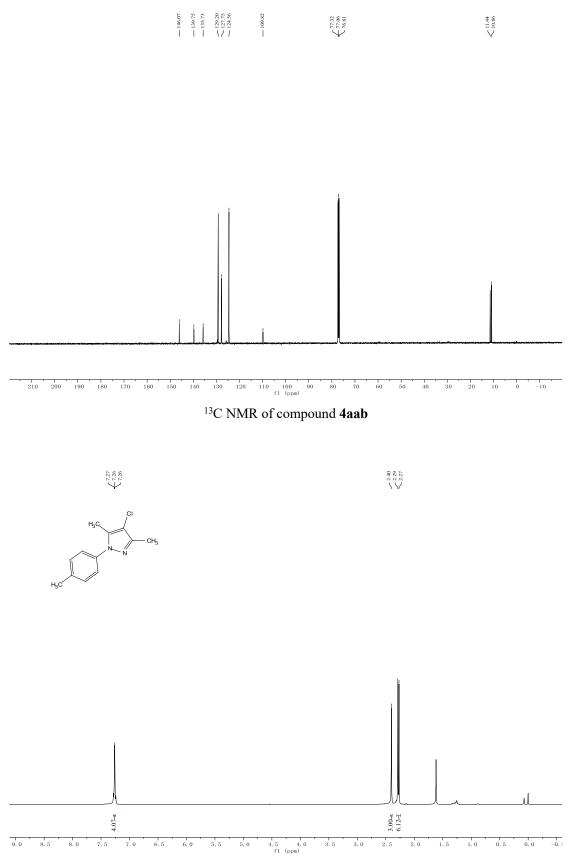

 $\underbrace{ \begin{array}{c} +145.05 \\ -145.06 \\ -145.09 \\ -145.09 \\ -151.16 \\ -160.43 \\ -160.43 \\ -160.41 \\ -160.51 \\ -160.51 \end{array} } }_{-160.51 \\ -160.51 \\ -160.52 \end{array} }$

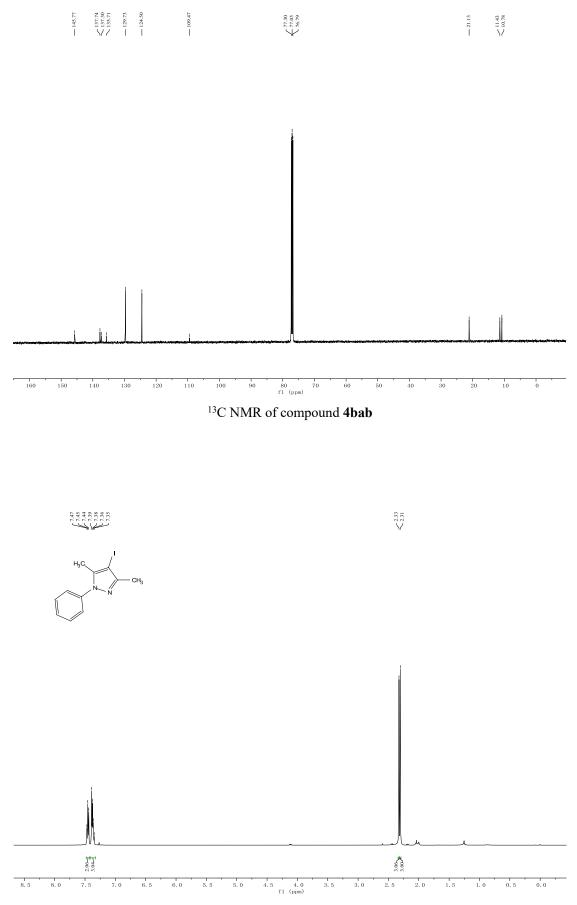

¹H NMR of compound **4raa**

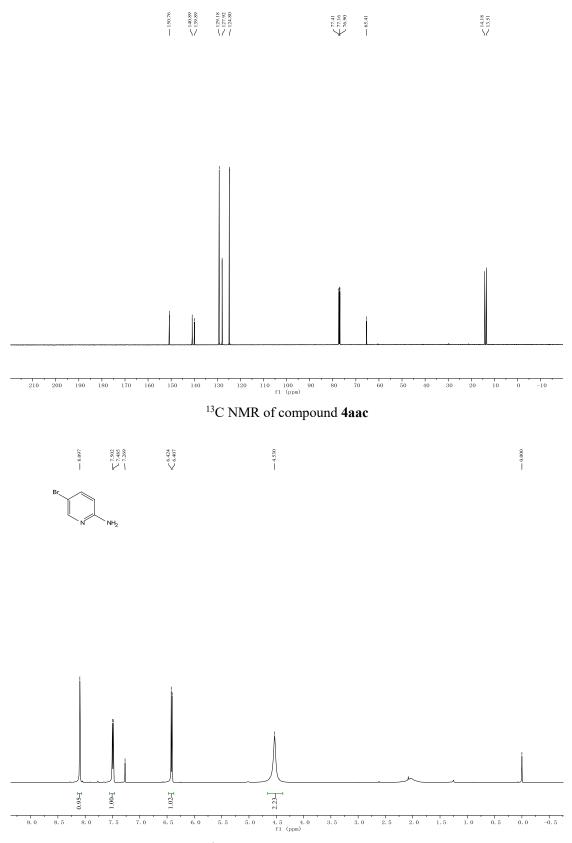


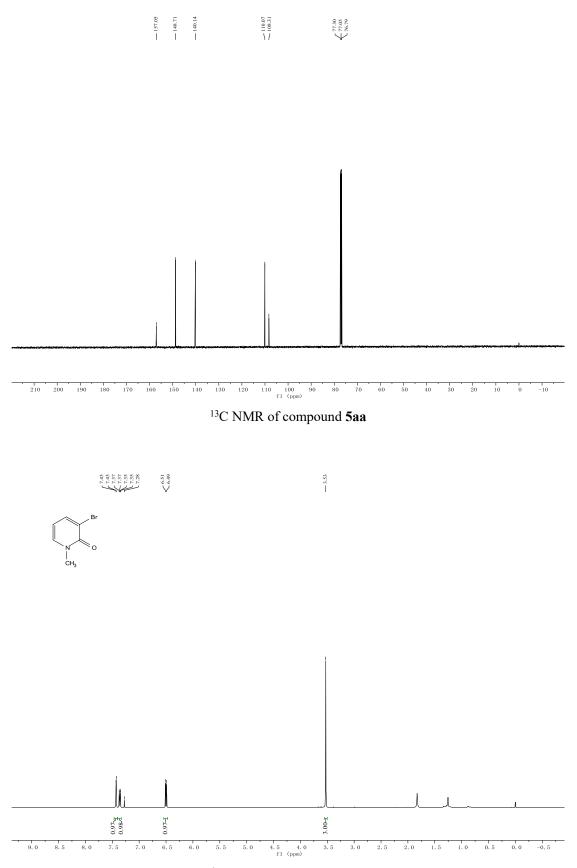
¹H NMR of compound 4saa

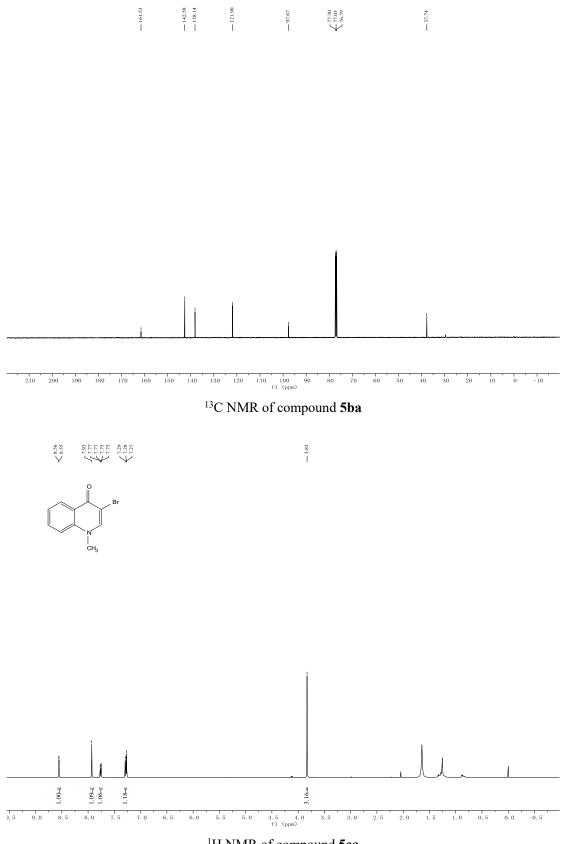




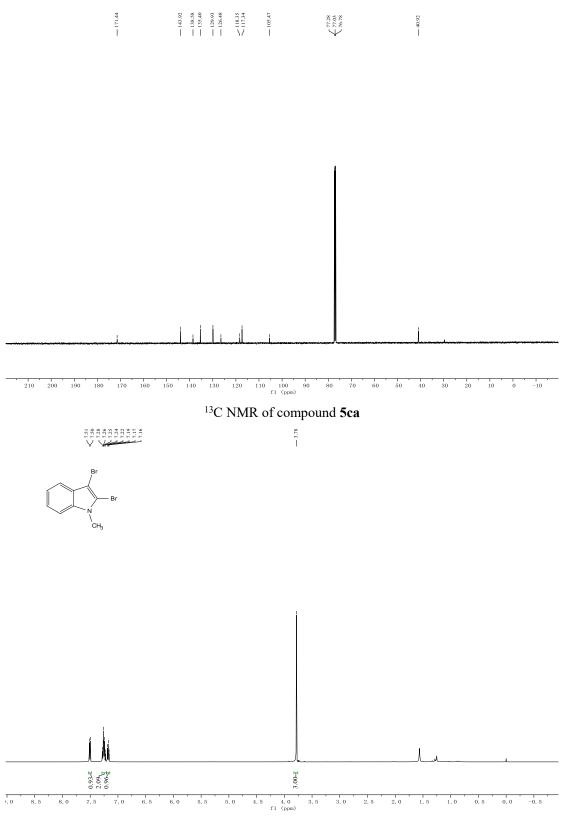

¹H NMR of compound **4aca**

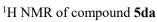

¹H NMR of compound **4aab**

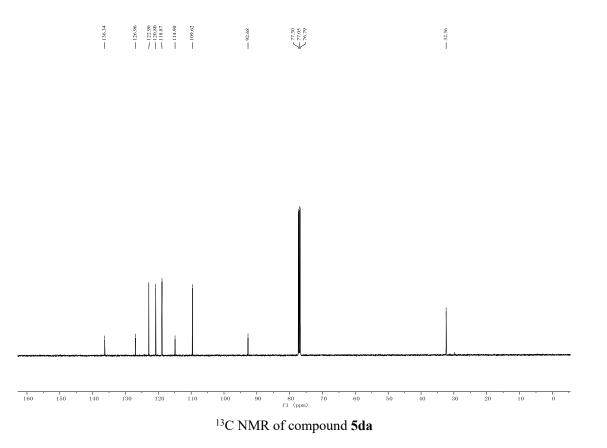

¹H NMR of compound **4bab**


¹H NMR of compound **4aac**




¹H NMR of compound **5aa**




¹H NMR of compound **5ba**

